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Abstract Monk seals in Cape Blanc (Western Sahara coast) suffered a mass mortality Turing May-July 

1997 which was attributed to a morbilivirus. High performance liquid chromatography (HPLC) analysis 

on tissues of seals killed during the outbreak and on related fauna showed peaks with retention times 

coincident with those of some saxitoxin derivatives but their identity of these toxins by mass 

spectrometry (MS), supporting the hypothesis that this mortality of monk seals was caused by biotoxins 

rather than by a morbillivirus.  
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Introduction 

 

In May–July 1997, a mass mortality of the colony of Mediterranean monk seals (Monachus monachus) 

established in NW Africa was observed for about two-thirds of the population. A preliminary survey 

(Osterhaus et al., 1997) was unable to detect the presence of paralytic shellfish toxins in tissues of seal 
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carcasses, but using standard mouse bioassays of American Official Analytical Chemist (AOAC) a 

morbillivirus was found in the organs of three seals. This served as a basis to claim that the morbillivirus 

was the causative agent of the mortality. However, neither the clinical signs of affected individuals, the 

macroscopic observation of corpses, the results of the anatomopathological examination of tissues of 

dead individuals nor the epidemiology of the mortality were consistent with the action of a 

morbillivirus. It has been generally agreed that if a morbillivirus was responsible for most of the 

mortality, the effect was very different from that observed in other morbillivirus outbreaks that have 

affected marine mammals in the past (Harwood, 1998). Instead, the above elements were all consistent 

with an intoxication of the paralytic shellfish poisoning (PSP) type. High Performance Liquid 

Chromatography (HPLC) analysis on tissues of seals killed during the outbreak and on related fauna 

showed peaks with retention times coincident with those of some saxitoxin derivatives (Franco and 

Fernández, 1993). We present here results of further analyses that prove the presence of saxitoxin 

derivatives in these samples, supporting the hypothesis that the mortality of monk seals was caused by 

biotoxins rather than by a morbillivirus (Harwood, 1998; Hernández et al., 1998).  

 

Material and methods 

 

We analysed tissue samples from 8 affected seals: liver from 7 seals, muscle from 6 seals, nervous tissue 

from 5seals, kidney from 1 seal, spleen from 1 seal and juices from the stomach contents of 1 seal, as 

well as the viscera from 12 fishes and 1 cuttlefish, muscle from 2 fishes, 2 whole mussels, 4 barnacles 

and 1 oyster. All these samples were collected between 17 May and 10 June 1997, which corresponded 

to the period when most dead seals were found. Samples were extracted following the protocol for 

mouse bioassay of the AOAC (1990), but the heating stage was omitted to prevent potential alteration of 

the labile compounds. Extracts were analysed by reverse phase-HPLC with postcolumn oxidation and 

fluorometric detection (Franco and Fernández, 1993) to determine the possible presence of saxitoxin-

related toxins.  

 

In order to observe the death symptoms of mice, rather than to quantify the toxins, when the AOAC 

standard bioassays were below the detection limit, other assays were run but injecting 2 ml of extract 

instead 1 ml as in the standard AOAC mouse bioaasay. In those cases, blanks were also done. The result 

of the sample of liver seal (346 Afp) is based on the standard bioassay.  

 

To analyse the presence of toxins by mass spectrometry, 300–500 µl of each sample extract were 

typically cleaned in two fractions by injection into a LiChrospher 100 RP8, 5µm (250 x 4.6 mm) 

column and isocratic elution with 10% CH3CN: 90% 10 mM heptafluorbutyric acid (HFBA) at 1 ml 



min
-1

. No toxins were detected in the first fraction; the second fraction containing 1-Nhydroxy-saxitoxin 

(neoSTX) and decarbamoyl-saxitoxin (dcSTX) was collected, and about one-third was dried down and 

resuspended in methanol / water (1:1) containing 0.1% formic acid to concentrate the sample about 20-

fold before mass analysis. Some fractions were further diluted in the same medium in order to improve 

nanospray ionization. An ion-trap mass spectrometer model LCQ (Finnigan, ThermoQuest, USA) was 

used in this work. Off-line nanospray ionization was carried out using disposable gold-coated capillary 

probes (The Protein Analysis Company, Denmark), as described previously (Locke and Thibault, 1994; 

Marina et al., 1998). Aliquots (1 µL) of the previously cleaned and concentrated samples were placed 

on the tip of the nanospray probe and subjected to analysis.  

 

The specific detection of toxins at high sensitivities was performed by looking for the appearance of 

daughter ions (239 and 298 Da) produced by the fragmentation of the corresponding precursor ions (257 

and 316 Da, for dcSTX and neoSTX, respectively), and taking advantage of the ability of the ion trap to 

concentrate analyte ions and the extended analysis time allowed by the nanospray method. Isolation 

width of parent ions was set to only 1 Da, and collision energies were manually increased until the 

specific fragments were stably detected above background after averaging a minimum of 500 scans 

using an injection time of 500 ms. These conditions allowed the highly specific detection of each of the 

toxins with a practical detection limit of about 0.4 µM. Sample clean-up and concentration allowed the 

detection of toxins present in crude extracts at levels below 100 nM.  

 

Results and discussion 

 

In the HPLC analysis of all samples a peak appeared at the retention time of the dcSTX standard (Table 

1). An additional peak at the retention time of the neoSTX standard, supplied by the project EUR 18318 

of European Commission, was also detected in some of the samples (examples of the HPLC analyses 

are given in Figure 1). The mouse bioassays produced symptoms of PSP intoxication in 9 samples: 7 

from seals and 2 from fish viscera. In order to confirm the chemical identity of the HPLC peaks and 

support our bioassay results, several samples were further analysed by tandem mass spectrometry 

(Figure 2). The fragmentation patterns specific for dcSTX were detected in 8 out of 9 seal samples and 

in the 4 samples of fishes and mussels. NeoSTX was detected in 6 seal samples and in 2 fish samples 

(Table 1).  

 

The origin of the detected toxins is difficult to establish. Toxin profiles can be used as a fingerprint to 

trace the transmission of PSP toxins through the trophic web but with caution, as metabolism of the 

affected species may cause changes in those profiles (Shimizu and Yoshioka, 1981). Based on the toxin 



composition of the analysed samples, the dinoflagellate Gymnodinium catenatum appears to be the most 

likely origin of the toxins. Cultures of G. catenatum usually yield a wide toxin profile, typically 

containing neoSTX and dcSTX, as well as four sulphocarbamoyl-sulphate-saxitoxins (C1 to 4), two 

sulphocarbamoyl-saxitoxins (GTX5, GTX6) and traces of GTX2 and GTX3 (Oshima et al., 1993; 

Donker et al., 1997; Bravo et al., 1998). Although Alexandrium minutum has been reported from Cape 

Blanc area (Herna´ndez et al., 1998) its presence in the area is doubtful, and this species lacks the two 

toxins detected in the seals samples (Hallegraeff et al., 1991; Franco et al., 1995; Forteza et al., 1998). 

Another possibility is Pyrodinium bahamense; resting cysts of this species have been reported for the 

first time in the Eastern Atlantic in sediments of the Portuguese shelf (Amorim and Dale, 1998). 

Although P. bahamense var. bahamense, which is common in the Caribbean Sea is nontoxic, P. 

bahamense var. compressa which is common in other tropical areas has a toxin profile (Oshima, 1989) 

very similar to that observed in the Cape Blanc samples. The known distribution range of G. catenatum 

in the Northeast Atlantic Ocean extends from the northwest of the Iberian Peninsula to the Moroccan 

coasts, its southern limits remaining imprecise due to insufficient information. This dinoflagellate has 

been associated to human intoxications by mollusc consumption as far south as Essaouira (Tahri-Joutei, 

1998). Given that G. catenatum is a warm-water species, it is feasible that its actual distribution range 

extends further south to reach Cape Blanc. G. catenatum is particularly well adapted to producing 

blooms in upwelling areas such as that occurring off northwest Africa (Hallegraeff and Fraga, 1998).  

 

P. bahamense is a tropical species that in some regions, like Mexico of southeast Asia, overlaps in 

distribution to G. catenatum; if resting cysts have been observed off the Portuguese coast, its presence in 

more southern and warmer waters is likely, but this has to be proved and toxicity tested. However, since 

certain cyanobacteria and eubacteria are also known to produce PSP toxins (Negri et al., 1997; Kodama, 

1990), their potential involvement cannot be totally dismissed at present.  

 

PSP toxins affect higher vertebrates when transmitted through the trophic web. Taking into account that 

the adult seal body mass is about 400 kg, its fish consumption is about 20 kg per day, about 20% of the 

fish body mass is the viscera and, as shown above, the dcSTX concentration in the fish viscera averages 

0.6 µgg 
-1

, it canbe deduced that an adult seal would ingest 6 µg dcSTX per kg body mass per day. 

Given that in humans the minimum lethal dose via food is 7–16 µg of STX per kg (Schantz et al., 1975), 

it is therefore probable that food poisoning caused by STX derivatives was the actual cause of the mass 

mortality. Moreover, the dependence of seals on marine life would make them particularly vulnerable to 

neurotoxic substances affecting respiratory function. Information available on PSP intoxication in 

marine mammals is extremely limited (Geraci et al., 1989). However, it is likely that a number of 

unexplained mortality events occurring in the past have indeed been caused by ingestion of toxins 



produced by microorganisms (microalgae, eubacteria, cyanobacteria).  
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Table 1. PSP toxins in several organs of monk seal and other samples  

Seals/other  
  

Mousea  
HPLC in μg  

100 g-1 w.w.b  
Detection by MSb 

samples  Date  Sample  bioassay  dcSTX neoSTX  dcSTX neoSTX 
335AM  21/5/97  liver  11–15 min  18.4  tr  +  +
336AM  25/5/97  liver  11–15 min  0.8  tr  +  + 
342SF  3/6/97  kidney  >25 min  0.6  tr  +  nd 
345SM  3/6/97  liver  11–15 min  28.0  8.4 nd  +  + 
  Sk. 

muscle  >25 min  12.0   +  + 

346Afp  3/6/97  liver  47μgSTXeq 
100g-1  19.2  10.8 nd  +  + 

  brain  >25 min  4.0   +  nd 
347AM  3/6/97  liver  >25 min  10.6  8.0 nd  +  nd 
  brain  >25 min  3.6   nd  nd 
Unidentified 
fish  29/5/97  whole  >25 min  8.4  tr  + + 

Mussels  3/6/97  meat  >25 min  12.6  tr  +  nd 
Fish D. s.  3/6/97  viscera  20–25 min  27.6  tr  +  nd 
Fish D. p.  3/6/97  viscera  20–25 min  90.0  tr  +  + 
 

Seals: AM: adult male, SM: subadult male, SF: subadult female, Afp: pregnant adult 

female. Mussels: Mytilus galloprovincialis. Fish: D. s.: Diplodus sargus, D. p.: 

Dicentrarchus punctatus. 
a 
The first number is the time (min) when PSP toxicity symptoms appear and the second 

number is the death time (min) by injection of 2 ml of extract. Only the liver sample of 

the 346Afp seal could be quantified with 1 ml extract. 
b 
nd: not detected tr: traces, +: positive presence. 

 



 

Figure 1. Chromatograms of viscera of (A) Dicentrarchus punctatus, (B) liver of monk 

seal and (C) standard toxins 
 
 
 

 



Figure 2. Specific detection of dcSTX (A and C panels) and neoSTX (B and D panels) 

in viscera of Dicentrarchus punctatus and monk seal liver extracts (upper and lower 

panels, respectively) by nanospray ion-trap mass spectrometry. Molecular ions of either 

dcSTX (257 Da) or neoSTX (316 Da) were isolated inside the trap and subjected to 

fragmentation. The specific fragments at the masses indicated are characteristic of the 

presence of each of the toxins 

 


