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Isoprene and monoterpenes emission fluxes emitted by Quercus robur seedlings were measured at a leaf

scale in the field. Isoprene emissions were always predominant over the monoterpene ones, a-pinene,

b-pinene and camphene being the most abundant emitted monoterpenes. Emission fluxes were

normalised at standard conditions of temperature and photosynthetically active radiation, PAR, (30 �C

and 1000 mmol m�2 s�1 respectively) using temperature and light dependent algorithms. The

standardised emission fluxes ranged from 43 to 73 mg gDM
�1 h�1 for isoprene and from 0.04 to 2.95 mg

gDM
�1 h�1 for the monoterpenes. The values reported in the literature are within our experimental

intervals. These standardised fluxes were used to estimate the Quercus robur emissions in Galicia (NW

Spain). This region is characterised by its abundant forest extensions where Quercus robur occupies the

second place in species abundance with a total of 195029 ha of Quercus robur pure stands. To estimate

the region emission fluxes, both the extension and distribution of the forest areas and the regional

climatic conditions over five years (2002–2006) were taken into account. The averaged annual fluxes

regarding the forest extension were 0.04 t ha�1 yr�1 for isoprene and 0.52 kg ha�1 yr�1 for monoterpenes.

This means averaged annual fluxes of 9730 t yr�1 and 114 t yr�1 for isoprene and monoterpenes,

respectively. These values place Galicia as an important isoprene emitter power in Spain as

a consequence of the extension of its forests more than of the climatic conditions.
Introduction

Vegetation constitutes a very important source of volatile

organic compounds (VOCs) into the atmosphere. Biogenic

volatile organic compounds (BVOCs) include isoprene, mono-

terpenes, alkanes, alkenes, carbonyl compounds, alcohols, esters,

ethers and acids. The most studied group is the one called the

isoprenoids or terpenoids where isoprene and monoterpenes are

included.1,2 These compounds have been so widely studied

because, as a consequence of their high reactivities, they have

a great impact on both regional and global air quality. Terpe-

noids play a very dynamic role in the photochemical production

of oxidants3 and they can be either a source or a sink for ozone,

depending on the presence of NOx. Isoprenoids are involved in

reactions with hydroxyl radicals, ozone, nitrates and sulfates,

producing ketones, aldehydes and CO.4–6 Isoprene and mono-

terpene emissions can also take part in the formation of

secondary organic aerosol with its implications for the radiative

balance of the Earth7–9 and in the climate change, since they alter

the concentrations of some greenhouse gases.10 Apart from their

active role in tropospheric chemistry, the magnitude of the

emissions of terpenoid compounds is also important regarding

the global carbon cycle. Guenther et al.11 have estimated

a natural VOC global emission of 1150 TgC for the year 1990
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and, in a global scale, the annual flux of isoprene has a similar

magnitude to the flux of methane.

Galicia is a region situated on the northwest of the Iberian

Peninsula. It is located between 43�480 and 41�490N and 6�440

and 9�180W with an extension of 29574 km2 and a population of

2772533 inhabitants (2007). Administratively it is divided into

four provinces, three of them being coastal regions and the

fourth completely interior (figure 1). Galicia is characterised by

an oceanic climate which provides abundant rainfall, high rela-

tive humidity and mild temperatures along the whole year.

However, the most interior areas have a continental Mediterra-

nean climate, with cool temperatures during the winter and

autumn, but with high temperatures and severe droughts along

the summer season. Regarding the economy, there is a big

difference between the industrialised western coast areas and the

east regions, with an economy based on the exploitation of the

natural resources. According to the Third National Forest

Inventory12 Galicia has a total of 1425000 ha of tree wooded

areas, Pinus pinaster (maritime pine), Quercus robur (English oak

or pedunculate oak) and Eucalyptus globulus (blue gum) being

the most abundant tree species. The Quercus robur is a native

species from this area (an autocthonous species). In contrast,

Pinus pinaster and Eucalyptus globulus are alien (allocthonous)

species in Galicia.

The aims of this study were (i) to measure the instantaneous

emission rate for the BVOCs emitted by the dominant

autocthonous tree species in Galicia, Quercus robur, in condi-

tions of light saturation, and (ii) to estimate the BVOC emis-

sions from Quercus robur in Galicia using the experimentally

determined emission fluxes, the biomass data of Quercus robur

stands and the meteorological data in this region during

five years (2002–2006).
This journal is ª The Royal Society of Chemistry 2009
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Fig. 1 Galicia and its administrative divisions. Situation of the meteorological stations in the year 2006.
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Material and methods

Plant material

Two-year-old potted Quercus robur plants from a local nursery

(Forestal Catalana, St. Feliu de Buixalleu, Girona) were used to

carry out the experimental research. When the plants were

acquired from the nursery, the leaf emergence after the winter

season had already started. Plants were grown in the exterior of

the Faculty of Sciences of the Universitat Aut�onoma de Barce-

lona (Bellaterra, Barcelona) where all the measurements were

conducted. Quercus robur plants were well irrigated for a couple

of weeks before the beginning of the experiments.
Gas exchange

CO2 and H2O exchanges were measured using a non-dispersive

infrared gas analyser (IRGA) ADC-LCA4 (ADC Inc. Hoddes-

don, Hertfordshire, UK) coupled with a PLC2P (ADC Inc.) leaf

cuvette. In order to determine the VOC emissions exiting from

the cuvette, a T-system was employed to split the air flow into

two currents. One of these currents was led through an adsorbent

trap and the other to the gas analyser. VOCs were not sampled

until the photosynthesis and leaf gas exchange were stabilised.

Two different kinds of adsorbent traps were alternately used. The

first one was a multiadsorbent trap formed by three carbon based

adsorbents and the second type was a polymeric trap. Stainless

steel adsorbent cartridges from PerkinElmer (Norwak, CT,

USA) were manually filled with Carbosieve SIII (40 mg), Car-

botrap B (64 mg) and Carbotrap C (96 mg), (multiadsorbent

traps) or with Tenax TA (200 mg) for the simple traps (all the

adsorbents from Supelco, Bellefonte PA, USA). In the multibed

traps individual adsorbent layers were separated by plugs of

quartz wool. Before their first use, traps were conditioned at 350
�C (carbonaceous traps) or at 300 �C (Tenax TA traps) for four

hours and, previous to the sampling, they were heated at the

same temperature during ten minutes under a helium flow. To

minimize the risk of contamination during the transport to the

sampling site, adsorbent tubes were individually stored in glass
This journal is ª The Royal Society of Chemistry 2009
jars sealed with Teflon lids and these jars were put into a box

filled with a bed of activated charcoal.

Gaseous samples were taken forcing the air to pass through the

adsorbent cartridges using a Silent Air 3 diaphragm pump (Penn

Plax, NY, USA) with sampling flows ranging from 90 to 110 mL

min�1 during 10 minutes. The flow through each individual tube

was controlled using a previously calibrated rotameter. Samples

were taken in field conditions and only on sunny cloudless days.

After the sampling, tubes were transported to the laboratory

using a portable refrigerator (4 �C) and stored at �30 �C until

analysis.

At the end of the sampling, leaf areas were measured with a Li-

Cor 3100 Area Meter (Li-Cor Inc., Lincoln, NE) and, after that,

leaves were dried at 60 �C until constant weight, with the aim of

determining the leaf areas and dry weights.
Instrumental analyses

Samples were analysed with thermal desorption coupled with gas

chromatography with mass spectrometry detection (TD/GC/

MSD), all the equipment was from PerkinElmer. An ATD-400

was employed to carry out the thermal desorption in two steps.

The primary desorption was developed at 350 �C (carbonaceous

traps) or at 300 �C (Tenax TA traps) for 5 minutes and then the

desorbed VOCs were cryo-focused onto a Tenax TA secondary

trap at �30 �C. In the next step this trap was quickly heated to

300 �C with a rate of 40 �C s�1 and kept at that temperature for

4 minutes. Separation was performed using an AutoSystem

chromatograph equipped with a capillary ZB-624 column (Phe-

nomenex, Torrance, CA, USA), 60 m � 0.32 mm � 1.8 mm film

thickness, subjected to the following temperature program: from

46 �C to 70 �C at 30 �C min�1, to 150 �C (5 min) at 10 �C min�1

and to 250 �C (5 min) at 20 �C min�1. A flow of helium of 1 ml

min�1 was used as carrier gas. A mass spectrometer TurboMass

operated by TurboMass Ver4.1.1 software was employed to

carry out the peak detection and data acquisition. The spec-

trometer scanned from 35 to 200 amu in electron ionization
J. Environ. Monit., 2009, 11, 1268–1275 | 1269
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mode (70 eV) and the transfer line and source temperatures were

250 �C.

Quantitative analyses were carried out using the external

standard method. Isoprene, camphene, cineol, limonene,

a-pinene, b-pinene, g-terpinene (Sigma-Aldrich, Bellefonte, PA,

USA), D3-carene, ocimene, a-phellandrene, a-terpinene and

linalool (Fluka Chemic, Bellefonte, PA), pure standards were

used to prepare gravimetrically both individual and multicom-

ponent methanolic solutions. Qualitative analyses were devel-

oped taking into account the information provided by the mass

spectrometer and the retention times achieved in the chromato-

graphic separation.
Normalised emission rates

The instantaneous emission rates were normalised at standard

conditions of photosynthetically active radiation (PAR) and

temperature according to Guenther et al.13,11 We used the

temperature and light dependent model for non-storing species

such as the studied Quercus robur.

The algorithm related to the non-storing species is:

E ¼ ES � CL � CT (1)

where E is the instantaneous emission rate (mg terpenoid gDM
�1

h�1) in environmental conditions of T (K) and PAR (mmol m�2

s�1), ES is the emission rate in standard conditions of tempera-

ture, TS (303 K) and PAR (1000 mmol m�2 s�1) and CT and CL are

functions of the temperature and PAR respectively, according to

the equations [2] and [3]:

CT ¼
exp

CT1 � ðT� TSÞ
R� TS � T

1 þ exp
CT2 � ðT� TMÞ

R� TS � T

(2)

CL ¼
a� CL1 � PAR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2 � PAR2

p (3)

with R ¼ 8.314 J K�1 mol�1 and TM ¼ 314 K. a ¼ 0.0027, CL1 ¼
1.066, CT1 ¼ 95000 J mol�1 and CT2 ¼ 230000 J mol�1 are

empirically determined coefficients.
Regional estimation considering the climatic conditions in

Galicia from 2002 to 2006

Based on meteorological data for the years from 2002 to 2006

and taking into consideration the standardised emissions calcu-

lated with the experimental data, instantaneous emission rates

were estimated for the four Galician provinces during these

years. Climatic data were obtained from the Galician climato-

logic yearbooks for the years 2002 to 2006.14–18 The situation and

number of the climatic stations recording both temperature and

PAR in Galicia have increased along this time. The distribution

of the climatic stations used for the year 2006 is shown in figure 1.

It is important to take into account that the number and distri-

bution of the meteorological stations does not show the real

climatic situation in Galicia because they are not equally

distributed along the whole territory. At the same time, the use of
1270 | J. Environ. Monit., 2009, 11, 1268–1275
averaged climatic data according to the administrative division in

provinces is only a way of simplifying the explanation of the

results, but it does not obey to a criterion regarding the magni-

tude of the emissions. In the climatologic yearbooks the

temperature, T (�C), and PAR data are arranged according to

the province and month. In order to make the data handling

easier, we have averaged the values of these parameters for each

month and for all the stations belonging to the same province.

Thus, we have obtained monthly averaged values of T and PAR

for each province along the five years.

Statistical analyses

Statistical descriptive analysis, anomalous detection analysis and

paired sampled comparison analysis were conducted with Stat-

graphics Plus for Windows v. 5.0 (Statistical Graphics Corp.,

Herndon, VA, USA).

Results and discussion

Instantaneous measurements and standardisation of the emission

rates

Isoprene and monoterpene emissions were determined using the

two kinds of adsorbent traps. Most of the measurements were

carried out with the carbonaceous traps but duplicates of the

samples were taken using the Tenax TA cartridges. A sample-

paired comparison analysis using a t-test (95% confidence level)

was carried out in order to establish if, in our conditions of work,

both kinds of traps are comparable. The results demonstrated

that the mean of the difference between the compounds

compared individually is statically equal to zero in all the samples

for all the compounds except for isoprene. Isoprene has been

reported to be lost by up to 80% when molecular sieves (in our

case Carbosieve SIII) are employed in the sampling, even

immediately after the sampling step.19 So, in our work we have

quantified the isoprene concentrations using the Tenax TA traps.

Qualitative analysis of Tenax TA traps revealed the presence of

limonene while it was not observed in the carbonaceous traps.

We suppose that limonene can be a product of the dimerization

of isoprene, thus isoprene concentrations reported on Tenax TA

traps would be slightly lower than the actual values. In fact, we

have quantified that the isoprene dimerization percentage during

the generation of a gaseous standard from an isoprene liquid

standard on Tenax TA traps is lower than 7%.

All the measurements were carried out in environmental field

conditions but always with an irradiance close to the standard

condition of 1000 mmol m�2 s�1 and 30 �C. We worked with PAR

ranging from 902.3 to 1386.0 mmol m�2 s�1 and temperatures

from 300.5 to 309.8 K, even when it has been reported20 that for

Quercus robur isoprene emission is saturated at PAR values

between 400 and 500 mmol m�2 s�1.

In all the samples isoprene was the most abundant BVOC with

instantaneous emission rates fluctuating between 50.57 and 134.1

mg isoprene gDM
�1 h�1, while the total monoterpene sum ranged

from 0.03 to 3.20 mg monoterpene gDM
�1 h�1, gDM being the leaf

dry mass expressed in grams. This corroborates the fact that

Quercus robur is a strong isoprene emitter.

Regarding monoterpenes, a-pinene was the most abundant of

them in all the samples with instantaneous emission rates as high
This journal is ª The Royal Society of Chemistry 2009
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as 2.62 mg gDM
�1 h�1 (304 K, 908.4 mmol m�2 s�1 of PAR).

b-pinene and camphene were also present in most of the samples

but with fluxes always lower than 0.40 mg gDM
�1 h�1. Occasion-

ally, in a few samples, myrcene was also quantified with

a maximum flux of 0.06 mg gDM
�1 h�1.

The trends of the emissions of both pinenes are correlated,

with a linear correlation coefficient of 0.64, but there is not such

a linear correlation between a-pinene and camphene (R2 ¼ 0.14)

or between b-pinene and camphene (R2 ¼ 0.14).

The instantaneous emission rates normalised at standard

conditions of PAR and temperature according to Guenther

et al.13,11 are shown in Table 1. The standardised isoprene emis-

sions that we have determined experimentally ranged from 43.30

to 72.79 mg gDM
�1 h�1, the averaged value being 58.28 mg gDM

�1

h�1. These data are consistent with those reported in the litera-

ture for Quercus robur. Hewitt and Street21 extended the emission

interval from 40 to 76.6 mg gDM
�1h�1 in standard conditions.

Simpson et al.22 have gathered several data extracted from the

literature (see references therein), and they have reported

isoprene standardised emission factors for the United States (40

mg gDM
�1 h�1, as the arithmetic mean of 20 and 60 mg gDM

�1 h�1),

Europe (40 mg gDM
�1 h�1) and Russia (60–100 mg g�1 h�1 in fresh

weight). In order to evaluate the temporal and spatial distribu-

tion of the non-methane hydrocarbons, NMHC, in Greece,

Simeonidis et al.23 used an isoprene emission factor of 14.7 mg g�1

h�1 for oak (at 303 K, 800 mmol m�2 s�1), but they did not specify

which were the species included in the term oak. To study the

BVOC emissions in German forests Smiatek and Steinbrecher24

used emission rates extracted from public databases and other

sources and, for Quercus robur, they reported an isoprene

standardised emission factor of 60 mg g�1 h�1.

Although Quercus robur is a strong isoprene emitter, moderate

monoterpene emissions from this species have also been repor-

ted. The database from Lancaster University (http://www.es.

lancs.ac.uk/cnhgroup/cover.html) includes a monoterpene emis-

sion rate of 1.76 mg gDM
�1 h�1 for Quercus robur, a-pinene and

1,8-cineol being noted as the main emitted monoterpenes.

Besides this Guenther et al.25 reported a value of 0.2 mg gDM
�1 h�1

for the terpenes released from oaks while Smiatek and Stein-

brecher24 gave a value of 0.30 mg gDM
�1 h�1 for the sum of the

emitted monoterpenes (mainly a-pinene, b-pinene and limo-

nene). They have also reported emissions of other BVOCs as

methanol, hexenal or hexenol. The value from the database (1.76

mg gDM
�1 h�1) is within our interval (0.04–2.95 mg gDM

�1 h�1) but

far from our averaged value (0.68 mg gDM
�1 h�1). Monoterpene

emissions reported by Guenther et al.25 and Smiatek and Stein-

brecher24 are also included in our experimental range.
Table 1 Descriptive statistics for the terpenoid emissions (mg gDM
�1 h�1) in sta

Compound Mean SDa

Isoprene 58.28 14.77
a-Pinene 0.53 0.70
Camphene 0.12 0.09
Myrcene 0.05 0.01
b-Pinene 0.07 0.07
SMonoterpenes 0.68 0.80

a SD: Standard deviation.

This journal is ª The Royal Society of Chemistry 2009
The qualitative composition reported in the literature for the

monoterpene fraction is different from the observed in our

experimental measurements. We have found a significant emis-

sion for both pinenes (especially for the a isomer) and camphene

but we have not detected 1,8-cineol.
Regional estimation considering the climatic conditions in

Galicia from 2002 to 2006

Table 2 summarises the average emission rates for the years from

2002 to 2006 calculated for isoprene and monoterpenes using the

experimental leaf terpenoid emission data and the values of T

and PAR reported in the meteorological stations of each prov-

ince. The emission rates for both isoprene and monoterpenes

grow from the beginning of the year to reach a maximum in the

summertime (August or July) and, after that, the values of

the emission rates begin to decline to get minimum values in the

wintertime. Taking into account that the emission rates are

obtained as the product of CL, CT and a constant value for the

average emission of isoprene or monoterpenes, ES, the trend

showed by the emission rates along the year in the Table 2 is only

a consequence of the climatic conditions of each province. So, the

western coast provinces show the highest average emission rates

as a consequence of their temperate climate along the year while

the emissions in the interior eastern provinces reflect the presence

of more severe winters.

Figure 2 shows the evolution during these five years of the

provincial isoprene emission rates estimated in response to the

meteorological variables. The pattern followed by the emission

rates along these five years is very similar from one year to

another, with minimum emissions during the autumn and winter

and growing emissions from spring to summer, as it was

explained before. In the majority of the months the maximum

emissions were achieved in Pontevedra because of several facts.

First, its southern location provides a benign climate during the

whole year and, besides this, the presence of the sea exerts an

effect of thermoregulation which is reflected on these mild

temperatures along the whole year, even in winter. It is also

worth saying that the relative small size and the elongated shape

of this province favours that the effect of the sea is noticed even

in the most interior areas of Pontevedra. On the opposite side, it

is the province of Ourense with the lowest emission rates during

the winter because, as a consequence of its totally interior

(continental) position, the temperatures in this area are very low

during this season. Its interior location is also responsible for the

high temperatures that increase the emissions in the summertime.

During the year 2002 there was a clear difference between the
ndard conditions of temperature TS (303 K) and PAR (1000 mmol m�2 s�1)

Median Maximun Minimun

58.52 72.79 43.30
0.24 2.41 0.004
0.09 0.28 0.02
0.05 0.06 0.04
0.04 0.25 0.01
0.42 2.95 0.04

J. Environ. Monit., 2009, 11, 1268–1275 | 1271
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Table 2 Isoprene and Smonoterpenes averaged emission rates (mg gDM
�1 month�1) for the Galician provinces from 2002–2006, considering only the

climatic conditions (i.e. CL and CT) and the daylight hours

E Isoprene (mg gDM
�1 month�1) E Smonoterpenes (mg gDM

�1 month�1)

A Coru~na Lugo Ourense Pontevedra Monthly average A Coru~na Lugo Ourense Pontevedra Monthly average

January 686 459 344 669 539 8.02 5.37 4.02 7.82 6.31
February 772 521 417 778 622 9.02 6.10 4.87 9.10 7.27
March 1501 1010 901 1472 1221 17.54 11.81 10.53 17.21 14.27
April 1946 1319 1245 2122 1658 22.75 15.42 14.55 24.81 19.38
May 3077 2159 2141 3372 2687 35.97 25.24 25.03 39.43 31.42
June 5230 4163 4677 5970 5010 61.15 48.67 54.68 69.80 58.57
July 5867 4922 5196 6726 5678 68.58 57.55 60.74 78.63 66.38
August 6295 4766 5297 6802 5790 73.60 55.72 61.92 79.52 67.69
September 4055 3138 3029 4470 3673 47.41 36.69 35.41 52.26 42.94
October 2020 1481 1144 2269 1729 23.62 17.31 13.37 26.53 20.21
November 1090 674 509 1043 829 12.74 7.88 5.95 12.19 9.69
December 635 414 303 639 498 7.43 4.84 3.54 7.47 5.82
Provincial average 2764 2085 2100 3028 32.32 24.38 24.55 35.40
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emissions in eastern provinces (taken together) and in western

provinces but this difference was reduced along the years. In that

year there were only nine stations reporting both temperature

and PAR simultaneously in Galicia (versus 17 in the year 2006).

From these nine stations, six were placed on the western prov-

inces and only three on the east. Only two of the western stations

were sited with an altitude higher than 100 m (but lower than 410

m) while in the east the situation was radically different, with two

of the three stations with an altitude higher than 950 m. So, it is

possible that the differences between the position and number of

the western and eastern stations were responsible for the marked

differences in the climatic recordings during that year between

the eastern and western provinces. As the number of stations was

growing along the years and their distribution was covering

a broader extension, the actual climate in Galicia is better

described, with differences between the east and the west but not

as pronounced as the data for the year 2002 showed.

Apart from the comparison among the different administra-

tive regions, it is also noticeable that there is an upward trend in

the emissions along these five years, the maxima in summer being

slightly higher every year. It can be seen that the generalised

increasing temperatures, intensified by the climate change, is
Fig. 2 Time course of the Quercus robur isoprene emission rates from 2002 to

A Coru~na; B: Lugo; C: Ourense; D: Pontevedra.
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affecting the magnitude of the emissions of BVOCs. The summer

emissions in 2003 were exceptionally high as a consequence of

a heat wave that affected a great extension of Europe, especially

Spain, Portugal, France and Italy, causing an increase in the

BVOC emissions regarding the rest of the years.

Figure 2 shows the trend in the isoprene emission along these

years. The evolution for the estimated monoterpene emissions in

this period had the same pattern, since the same factors, CT and

CL, were used in the estimation; however, these terpene emissions

presented lower values corresponding to the smaller values of ES

for the monoterpenes (Table 1).
Extrapolation to the Galician forests

Detailed information on the extent of the Galician forest and

species-type was extracted from the most recent forest inven-

tory.12 The distribution of the Quercus robur stands in Galicia

shows that Lugo is the province with the most extensive pure

forests of this species (131175 ha), followed by Ourense (38854

ha), Pontevedra (14215 ha) and A Coru~na (10785 ha). In addi-

tion, the inventory also reports the presence of mixed forest, but

without specifying how much of the total extension is occupied
2006 considering the calculated Es and the T and PAR for these years. A:

This journal is ª The Royal Society of Chemistry 2009
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by oaks and by the other species. In these cases, and as a first

approach, the total area of the mixed forest was divided by the

number of the majority species coexisting in the same stand.

Considering this, the areas occupied by Quercus robur in Pon-

tevedra and A Coru~na would be 29571 and 19105 ha respectively.

According to this, the Quercus robur stands have a total exten-

sion of 218704 ha in Galicia.

To convert the calculated emission rates (mg gDM
�1 h�1) into

emission fluxes referred to the extension of the forests (mg ha�1

h�1) it is necessary to estimate a leaf biomass factor or a biomass

density (g biomass ha�1) for the Quercus robur stands. In order to

calculate this parameter we have used the total aerial biomass

value for Quercus robur (238 Mg ha�1) and an estimation of the

percentage of leaf biomass in the aerial total biomass (2.1%).26 It

was also necessary to calculate the percentage of humidity of the

oak leaves (61.1 � 3.85%) to extend our cuvette emission

measurements to the real forests. An ME215PE analytical

balance (Sartorius AG, Goettingen, Germany) was used for this

purpose. The biomass factor, 194 g m�2 (in dry weight), was

multiplied by the species emission rate (mg gDM
�1 h�1), after

considering the percentage of humidity, to estimate the biogenic

hydrocarbon emission rate referred to the forest area (mg ha�1

h�1). Our calculated biomass factor is lower than the calculated

ones by Simeonidis et al.23 (220 g m�2 for a sparse forest and 400 g

m�2 for a dense forest), by Smiatek and Steinbrecher24 (320 g

m�2) or by Andreani-Aksoyoglu and Keller27 (530 g m�2). It

should be kept in mind that in these references authors do not

clarify if their biomass factors are referred to as wet or dry mass.

Apart from all these previous considerations to estimate the

mass of the leaves in Quercus robur, it is also necessary to

introduce a corrective factor in order to describe the biomass

decrease of the deciduous trees during the autumn and winter

periods. Andreani-Aksoyoglu and Keller27 consider that decid-

uous species only emit isoprene during the daytime within the

period between April and September, so the value that they use

for this corrective factor during the rest of the year is 0. Simeo-

nidis et al.23 consider that the value of this factor is 0.5 for

October, November and April and for December, January,

February and March its value is 0. We have considered the

corrective factor cited by Simeonidis et al.23 because this

correction assumes a progressive decreasing and increase of the

emission as a function of the leaf fall or emergence respectively,

instead of a complete suppression of the emissions at the

beginning of the autumn and at the end of the winter. The use of

corrective factors agrees with the experimental data of Smiatek

and Steinbrecher24 who modelled the VOC forest emissions in

Germany for a whole year and proved that only 0.1% of

isoprene, 2.5% of monoterpenes and 3.3% of other VOCs are

emitted in the winter season. Symeonidis et al.28 have also esti-

mated that, approximately, 94% of annual isoprene emissions are

produced from May to September in the Balkan Peninsula.

The main results of the terpenoid emission rates considering

the extension occupied by Quercus robur stands in Galicia are

summarised in the Table 3. As it was expected, the emissions in

Lugo are the highest in Galicia due to the vast extension of the

forests in this province. The magnitude of the area occupied by

Quercus robur prevails over the values of CL and CT. So, despite

having the third lowest emission values in relation to the other

provinces when these emissions are expressed as a function of the
This journal is ª The Royal Society of Chemistry 2009
climatic conditions, i.e. as a function of CT and CL, (Table 2),

Lugo occupies the top position when the forest area is

considered.

The estimated BVOC emissions are higher in summer, when

temperatures, radiation and plant biomass are the highest of the

year. Figure 3 shows the evolution of the isoprene emissions

regarding the province and taking into account the extension of

the Quercus robur forests. Comparing figures 2 and 3 it is obvious

the change in the positions of the provinces regarding the

magnitude of the emissions when the extent of the stands is taken

into account (figure 3) or not (figure 2).

During these five years, the averages of the Quercus robur

emission fluxes were 9730 t yr�1 and 114 t yr�1 for isoprene

and monoterpenes, respectively. Isoprene emissions ranged

from 7691 to 11257 t yr�1 and monoterpenes from 90 t yr�1 to

132 t yr�1.
Comparison with other inventories

There are only few data of isoprene emission by Quercus robur in

terms of t ha�1 yr�1 in the literature. For example, Anastasi

et al.29 reported a total emission rate of 16500 tC yr�1 for NMHC

in the United Kingdom for a deciduous forest area of 698000 ha,

but they did not specify how much of these emissions were

isoprene or monoterpenes. Neither did they clarify the compo-

sition of the deciduous forests. Isidorov et al.20 reported that the

emission for isoprene in Polish forest ranges from 38900 to

135800 t yr�1 depending on the weather conditions but, although

they reported the area occupied by the stands of Quercus robur

(557964 ha), they did not specify the contribution of this species

to the isoprene total emission. Andreani-Aksoyoglu and Keller27

in their inventory for the isoprenoid emissions from Swiss forests

reported data of isoprene emission referred to the extension of

the forests. Working with their data, we estimate that the

Quercus robur isoprene emission rate in Switzerland is 0.096 t

isoprene ha�1 yr�1, our estimation for the Galician forest being

smaller than this (0.044 t isoprene ha�1 yr�1). It is noticeable that

the emissions for Switzerland were calculated using the algo-

rithms developed by Tingey while in this work the Guenther’s

algorithms were used. Another important difference lies in the

value of the biomass factor used for the Swiss forests (530 g m�2)

and the value for the same factor considered in this work

(194 g m�2).

Simpson et al.22 estimated the isoprene emissions for various

European countries using different models and within them, the

Guenther 93 algorithm. Using this model and emission data for

isoprene extracted from American and European literature for

the main forest categories (see references therein), they estimated

a value for the isoprene emission in Spain of 137800 t yr�1. They

consider that the extension of oak forests in Spain is 5380000 ha

and these forests emit 79100 t isoprene yr�1, that results in an

annual emission of 0.015 t ha�1 yr�1. This value is smaller than

the one calculated for Galicia (0.044 t ha�1 yr�1). Anyway, it is

important to note that data from Simpson et al.22 are referred to

oak but they do not specify which species are included in that

term, so they are taking into consideration different kinds of

oaks that are weaker isoprene emitters than Quercus robur (i.e

Quercus ilex) and with different biomass densities. It is remark-

able that Quercus robur is the second species with the highest
J. Environ. Monit., 2009, 11, 1268–1275 | 1273
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Table 3 Isoprene and Smonoterpenes averaged emission rates (ton month�1) for the Galician provinces from 2002–2006 considering both climatic
conditions and the forest extension

E Isoprene (ton month�1) E Smonoterpenes (ton month�1)

A Coru~na Lugo Ourense Pontevedra Monthly average A Coru~na Lugo Ourense Pontevedra Monthly average

January 0 0 0 0 0 0 0 0 0 0
February 0 0 0 0 0 0 0 0 0 0
March 0 0 0 0 0 0 0 0 0 0
April 36 169 47 61 78 0.4 2.0 0.6 0.7 0.9
May 115 552 162 194 256 1.3 6.5 1.9 2.3 3.0
June 195 1064 354 344 489 2.3 12.4 4.1 4.0 5.7
July 218 1259 393 388 565 2.6 14.7 4.6 4.5 6.6
August 234 1219 401 392 562 2.7 14.3 4.7 4.6 6.6
September 151 802 229 258 360 1.8 9.4 2.7 3.0 4.2
October 38 189 43 65 84 0.4 2.2 0.5 0.8 1.0
November 20 86 19 30 39 0.2 1.0 0.2 0.4 0.5
December 0 0 0 0 0 0 0 0 0 0
Provincial average 84 445 138 144 1.0 5.2 1.6 1.7
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extension in Galicia being the third position occupied by Euca-

lyptus globulus. Eucalyptus emits also great quantities of

isoprene,30 (ES up to 69 mg g�1 h�1) which means that Galician

forests are an important source of isoprene emissions.
Uncertainties

The cuvette or enclosure method has been widely used in order to

determine the BVOC emissions at a leaf or at a branch scale.

However, the extrapolation of the obtained data by this method

up to a canopy or a regional scale must be done carefully because

the errors associated with the scaling up are many. First of all,

when we extrapolate the leaf measurements to the canopy level

we are assuming that the behaviour of the sampled individual

leaf is exactly the same as the behaviour of a heterogeneous forest

cover. We are also considering that the solar radiation and the

temperature are homogeneous all over the canopy. This is

obviously not true, because the leaves are not all oriented in the

same direction and the own canopy shields part of the foliage

from sunlight. So with this extrapolation we are not taking into

account the presence of both leaves in the sun and in the shade.

In fact, Guenther et al.31 estimated that the isoprene emission

rates for individual leaves can be up to a 75% higher than the
Fig. 3 Time course of the Quercus robur isoprene emissions in Galicia fro

1274 | J. Environ. Monit., 2009, 11, 1268–1275
emission rates measured using an entire branch. On the other

hand, regarding the temperature, the canopy leads to an increase

of the emissions because the temperature inside tends to be

higher than ambient temperatures. Lamb et al.32 reported that

increasing the leaf temperature from 25 to 30 �C causes a 70%

increase in isoprene emissions, while doubling the available PAR

can increase isoprene emissions by 100%. We have conducted

here the simplest approach, which assumes that the temperature

and radiation within the canopy are the same as the ambient

levels. As we have not used a canopy sunlight model our esti-

mations of the total emissions are overestimated but, on the

other hand, we are neither considering the influence of the

canopy on the temperature, which produces an opposite effect.

Related to the meteorological data, it is also important to bear

in mind that the number of meteorological stations recording

both temperature and PAR is limited and their situation does not

cover the total extension of Galicia. So, the subsequent estima-

tions of the emissions are conditioned to these climatic data and

sometimes they do not reflect the real characteristics of the

Galician climate.

With regard to the composition of the forests, we have

considered that in mixed forest the distribution of the forming

species is egalitarian. This is often not true, however we have
m 2002 to 2006. A: A Coru~na; B: Lugo; C: Ourense; D: Pontevedra.

This journal is ª The Royal Society of Chemistry 2009
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used this approach in order to have a first preliminary estimation

of the Quercus robur extension in mixed forests. In relation to the

parameters used to estimate the biomass factors we have used an

average value for the aerial biomass (238 Mg ha�1) to calculate

the leaf biomass factor. However, the values of aerial biomass in

Galician forests ranged from 136 to 385 Mg ha�1.26 This means

that the leaf biomass factor can vary approximately by a factor of

�1.7, depending on the characteristics of the forest.

Apart from the considerations about the uncertainties in the

extrapolation from the leaf-scale to the megaescale, it is impor-

tant to emphasise that the uncertainty of the experimental data

produces uncertainties in the results of the extrapolation. Thus,

the precision of our experimental measurements, with variation

coefficients lower than 8%, and the uncertainty associated with

the measures of the rotameter (less than 5%) also affect the values

obtained from the extrapolation.

Conclusions

Quercus robur is a strong isoprene emitter. It also emits mono-

terpenes. Among them, a-pinene, b-pinene, and camphene

emissions were measured in most of the samples and myrcene

was found to be emitted occasionally. The standardised emission

rates ranged from 43 to 73 mg gDM
�1 h�1 for isoprene and from

0.04 to 2.95 mg gDW
�1 h�1 for the sum of monoterpenes. The

values found in the literature are within our experimental inter-

vals.

Considering the calculated standardised emissions, meteoro-

logical data from 2002 to 2006 and the biomass and distribution

of the Quercus robur stands in Galicia, we have estimated that the

isoprene and monoterpene emissions fluctuated between 7691

and 11257 t yr�1 and from 90 t yr�1 to 132 t yr�1 respectively. This

means that the isoprene averaged emission referred to the

extension of the forests is 0.044 t ha�1 yr�1, a value a bit lower

than those reported in the literature.
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