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Abstract

We characterize dynamic (not just steady state) equilibria in a
search-theoretic model of fiat money, where buyers and sellers, upon
meeting, enter bargaining games to determine prices. Equilibrium in
the bargaining game is approximated in terms of a tractable dynam-
ical system, in much the same way that the Nash solution approx-
imates equilibrium in bargaining games in stationary environments.
The model with our dynamic bargaining solution can generate out-
comes (such as limit cycles) that never arise in the same model if one

imposes a myopic bargaining solution, as has been done in the past.



1 Introduction

Recent papers by Shi (1995a) and Trejos and Wright (1995a) integrate bi-
lateral bargaining into search-theoretic models of the exchange process so
as to develop a new microeconomic foundation for monetary economics.!
This approach is proving useful for studying a wide variety of applications in
monetary economics from a novel perspective.? To this point, however, the
analysis of these models has either focused exclusively on steady states or, as
in Trejos and Wright (1995a), simply imposed a myopic axiomatic bargaining
solution and then proceeded to discuss dynamics.

The attraction of an axiomatic bargaining model of the sort introduced by
Nash (1950) is that it is simple. The drawback, from the present perspective,
is that it is inherently timeless: one specifies agents’ preferences over a set
of possible outcomes (agreements and disag‘reemeﬁt), and then establishes

that there exists a unique outcome satisfying a number of axioms. There

is no discussion whatsoever of the bargaining process, or of the resources

1Earlier papers, such as Kiyotaki and Wright (1989, 1991, 1993}, also present search-
theoretic models of monetary economies; but these models have the deficiency that the
terms of trade are fixed exogenously, and hence they have nothing to say about the deter-

mination of (real or nominal) prices.
2Recent examples include: Aiyagari et al. (1995), who analyze conditions that allow for

the coexistence of fiat money and interest-bearing government securities; Shi (1995b), who
introduces private credit; Trejos (1995), who studies the effects of asymetric information;
Trejos and Wright (1995b), who analyze exchange rates; Li (1995), who analyzes the role of
middlemen; Li and Wright (1995), who study the effects of government transaction policies;
and Velde et al. (1995), who study issues in monetary history, including Gresham’s Law

and the debasement of commodity monies.



— including time — that may be essential in reaching an agreement. It
therefore seems worth considering explicit strategic bargaining models of the
sort developed by Rubinstein (1982), in which one specifies a sequence of
moves and preferences over the time of agreement as well as the terms of
agreement, and then looks for subgame perfect equilibria. Only in this way
can one analyze how negotiations between any two individuals (say, over a
particular price) are affected by the fact that economy-wide variables (such
as the aggregate price level) may be changing over time.

Of course, in stationary environments there is a close relation between the
models of Nash and Rubinstein; as shown by Binmore (1987) and Binmore
et al. (1986), when the time between offers in the strategic model is small
the unique subgame perfect equilibrium can be approximated by the Nash
solution with threatpoints and bargaining power that depend on details of
the strategic model. Hence, we can think of the Nash solution as a reduced
form for an underlying strategic model, which is very useful in applications
as long as one is interested only in steady states. We generalize this result
to environments that may be nonstationary, in the sense that we provide a
tractable differential equation that approximates equilibrium in the strategic
model and can be used in dynamic applications in much the same way that
the Nash solution can be used in static or steady state analyses.

Our differential equation representation of bargaining equilibrium has the
interpretation that agents are forward looking when they negotiate, while
imposing a simple Nash solution has the interpretation that they are myopic.
This can be qualitatively important. For example, in the monetary model, it

implies that there can exist limit cycles in nominal prices and real economic
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activity that never arise when one imposes a myopic bargaining solution,
as in Trejos and Wright (1995a). Other applications in macro and labor
economics that also impose myopic bargaining solutions in dynamic models
include Pissarides (1987), Drazen (1988), and Mortensen (1989). We discuss
conditions under which this may actually be valid, but, in general, the myopic
solution does not give the ss;;me answer as our forward looking solution.

The existence of cycles in the search model of fiat model is of interest in
its own right. Although endogenous limit cycles have been derived in similar
models in the past (see, e.g., Diamond and Fudenberg [1990] or Boldrin et
al. [1994]), those models had to rely on increasing returns to scale (in the
meeting technology). Here, the dynamics are driven purely by self-fulfilling
expectations in the search and bargaining processes. Moreover, it seems clear
that the existence of endogenous fluctuations depends on the fiat nature of the
medium of exchange in the model. Hence, the results provide support for the
long-standing notion that monetary economies are particularly susceptible to
fluctuations induced by self-fulfilling prophecies, animal spirits, and so on (see
the discussion and references in Wright [1994]). |

The rest of the paper is organized as follows. In Section 2 we present
the basic search and bargaining model of money. In Section 3 we analyze
dynamic bargaining games and derive our differential equation representation
of equilibrium. This analysis is presented in somewhat general terms, rather
than the particular application to monetary economics, since (as suggested
above) the results may prove useful in other applica‘tions. In Section 4 we
imbed the solution to the dynamic bargaining game into the search model

and describe equilibria. In Section 5 we present some extensions to more
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general bargaining environments. We conclude in Section 6.°

2 The Monetary Model

There is a [0,1] continuum of infinitely-lived individuals. These individu-
als meet in an anonymous random mgtching process where all exchange is
bilateral and quid pro quo. Tc') make éxchange difficult, some notion of spe-
cialization is required. Here, we assume that there are k types of agents and
k goods, k > 2, with the property that type j only consumes good j and
only produces good j + 1 (modulo k). This rules out direct barter. Also, we
assume the goods are nonstorable. This rules out commodity money. Hence,

if trade occurs at all in this economy it requires the use of fiat currency.*

3There exist prior analyses of nonstationary bargaining environments. For example,
going back to Stahl (1972), people have considered finite horizons (which can be analyzed
using backward induction). Also, in some of the search and bargaining literature, when
some traders leave the market the arrival rates for other agents can change; see the survey
in Osborne and Rubinstein (1990). Perry and Reny (1993) analyze a continuous-time
dynamic bargaining model, and Merlo and Wilson (1993a, 1993b) analyze models where
payoffs and bargaining power both follow general discrete-time stochastic processes. None
of these authors pursue the main object of interest here, however, which is to derive an
approximation to the equilibrium that will be useful in applications such as the search and

bargaining models studied in labor, macro, and monetary economics.
4Versions of the model that allow some direct barter, commodity money, credit, and

several other complications are contained in the papers discussed in the Introduction,
although those papers only consider steady states, or ignore bargaining by fixing exchange
ratios exogenously. A somewhat related paper by Casella and Feinstein (1990) is concerned

with bargaining when the aggregate price level is changing over time. In that model,



At t = 0, a fraction M € [0,1] of the population are each endowed with
one unit of fiat currency, and the rest with production opportunities. For
simplicity we assume that when agents spend their money they spend all of it
(say, because it comes in indivisible units), and that except for those initially
endowed with production opportunities no agent can produce until after he
consumes. This implies that at.every point in time there will be M agents
with one unit of money (called buyers) and 1 — M agents with production
opportunities (called sellers), since each exchange involves exactly one unit
of currency going from some buyer to some seller. If a buyer gets g units of
output for his money, the implied nominal price is p = 1 /q.

Consumption of ¢ units of one’s consumption good generates utility U(q),
while production of one’s production good generates disutility c(g). We can
always normalize U(g) = g, with no loss in generality, as long as we also
renormalize the cost function c(q) (since we can always let agents bargain
over utility rather than physical units of output). Assume 0 < ¢/(0) < 1,
"(q) > 0 for all ¢ > 0, and ¢(g) > g for large g. Initially we assume c¢(0) = 0,
although we introduce a fixed cost below by allowing c(0) > 0.

For now, time is considered as a sequence of discrete periods of length A >
0. Agents meet randomly according to a Poisson process with arrival rate a,

which means that the probability of a meeting in a period is approximately

however, buyers are in the market for a finite number of periods, and so the solution is
easily computed using backward induction. Moreover, that is not a model of fiat money,
per se, because it assumes a cash-in-advance constraint that is not needed here (in the
sense that the present model allows for the existence of valued fiat money even if there is

also barter, commodity money, etc.).



aA with the approximation becoming arbitrarily good as A — 0. Hence,
the probability that a seller meets a buyer in a period' is (approximately)
aAM and the probability that a buyer meets a seller is alA(l1—M). When a
buyer and seller meet, the probability is 1 /k that the latter can produce the
former’s desired good. If in that event they agree to trade, they negotiate
the quantity ¢, the buyer hands over his money, consumes and becomes a
seller, while the seller takes the money and becomes a buyer.

We will present explicit details of the bargaining process below. For now,
simply assume that when a buyer meets an appropriate seller they complete
negotiations and trade immediately, at some (possibly random) quantity g¢;
of course, it will have to be verified below that immediate trade is consistent
with equilibrium behavior. Letting V5 and V, denote the value functions for

buyers and sellers, the standard dynamic programming equations of search

theory are
() = 3 +1TA{aA(1 CM)Eqt+A) +Vit+D)] (D)
+1—aA(l - M)LVi(t + A) +0(A)}
Vi) = 1 +1r (A M- Euclalt + &) + %(t + &) (2)

+[1 - aAMLV(t + A) +0(A)},

where r is the rate of time preference.” Note that these functions are not

SFor example, (1) says that between ¢ and t+A a buyer meets a seller that can produce
his desired good with probability aA(1— M)/k, which yields payoff Eq(t+A)+Vi(t+4)
from consuming and becoming a seller. Otherwise, he remains a buyer. The term o(A)

appears because of the Poisson approximation for the meeting probabilities.
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indexed by agent type, because we will only consider symmetric equilibria
here where all types use the same strategies and receive the same payoffs.
It remains to describe the determination of g(t). One approach is to adopt

the generalized Nash bargaining solution,
a(t) = argmax [ + Va(t) - (O [=clg) + Vo(t) - T,1"°  (3)

where T},(t) is the called the threatpoint of agent 7 and f the bargaining power

of the buyer, and the maximization is subject to
a(t) + Vy(0) 2 Vo(t) ®

—c(q(t) + Va(t) = Vi(t). (5)
Constraints (4) and (5) simply say that trade is voluntary. If they are not
binding, then q(t) solves the first order condition for (3)

0[—c(q) + Va(t) = Tu(t)] — (1 = B)lg + Vi(t) = To(t)lc () =0 (6)

Choosing the threatpoints and 6 closes the model. An equilibrium may be
defined as a (nonnegative) list [V;(t), Vs(t), ¢(t)]220 satisfying (1), (2) and (3),
subject to constraints (4) and (5) for all t.

Convenient threatpoints include T;(t) = 0 and Ti(t) = Vi(t) (see Trejos
and Wright [1995a]). However, the apparent arbitrariness of T;(t), as well as
g, seems somewhat problematic. A response is to model the bargaining pro-
cess explicitly as a noncooperative game, the equilibria of which may perhaps
be represented as the solution to a particular Nash bargaining problem for
appropriate choices of T;(t) and 6 (this research agenda is the so-called Nash

program). For example, Binmore (1987) and Binmore et al. (1986) show how
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different games lead to different versions of (6) in stationary environments
(time-invariant payoffs, etc.).

In general, we cannot impose stationarity here, since part of the payoft
to completing a bargain is the continuation value Vi(t), which may vary
endogenously with time. In the next section we therefore extend the type of
result derived by Binmore (1987) and Binmore et al. (1986) to environments
that are potentially nonstationary. Our generalization of (6) will be a forward
looking dynamic (difference or differential) equation, rather than something

quite as simple as (6); but, as we shall see, it turns out to be surprisingly

tractable and fits very neatly into search theory.

3 Bargaining Theory

Since the central aim here is to obtain a solution to a strategic bargaining
game that can be used in applications, we do not purport to study the most
general case. In particular, we are concerned with cases where in equilibrium
there is no delay (players always reach immediate agreement), even though it
is the threat of delay that drives the solution. Also, out of equilibrium, if no
agreement is reached in a period, we assume the players prefer to continue
bargaining rather than break up to search for a new partner. The latter
is automatically satisfied in models with constraints like (4) and (5). The
former is less automatic but is made in the interests of tractability; indeed,
unless it holds, (1) and (2) do not describe the value functions. We will refer
to an equilibrium of this class as an Immediate Trade Equilibrium (ITE).

Of course, even if we are only interested in ITE, we still have to check that
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immediate trade is consistent with equilibrium behavior.®

We depart from the particular model in the previous section to study a
slightly more general situation. Time is an infinite sequence of periods of
length A > 0. There are two agents, labeled i = 1,2, and 1 is interested
in obtaining some portion of a “cake” owned by 2 in exchange for a fixed
amount of something else (like money). The cake may change over time. If at
time ¢ agent 1 trades with agent 2 for g units of the cake, their instantaneous
utilities are u;(g,t) and uy(g,t). Additionally, they discount the future at
rate 7 > 0, so that the payoff from this trade for , discounted back to the
present, is € "‘u;(g,t). Assume u; € C?, Bu,/8q > 0, and Bu,/dq < 0, for all
t. Also, assume that u; and u, are concave in ¢ for all t. For example, in the
model of the previous section, the payoff to the buyer is ui(g, t) = g+ Vil(t)
and the payoff to the seller is us(g,t) = —c(q) + Va(t).

Agents derive some utility from not trading at all, normalized to 0. Define
A(t) as the set

A(t) = {g:uw(g,t) 20,i=1,2}, (7)

and assume A(t) is non-empty for all t and uniformly bounded in t; i.e., gains
to trade always exists, and u;(g, t) < 0 for g sufficiently small and ug(q,t) <0
for q sufficiently large.” Finally, assume that u,(q, t) is bounded in ¢, and that

6Much of the bargaining literature has focussed on situations where delay may occur
in equilibrium; see, for example, Binmore (1987) and Merlo and Wilson (1993a, 1993b),
among others. Although this is an important and interesting issue, it is not our concern

here.
"This insures that ¢ is bounded. In principle, we could also impose a constraint such

as q € [0, g], but we simply assume that such contraints are not binding in most of what
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the time derivative du;(gq,t)/0t is also bounded for all (g, t).

The bargaining procedure assumes random alternating offers. Suppose at
time ¢ the agents have not yet reached agreement. With equal probability,
nature chooses either player 1 or 2 to propose a value of g. Given that offer,
the other agent decides either to accept or reject. If he accepts, exchange
takes place, payoffs are realized, and the players part company. If he rejects,
they realize no instantaneous utility that period, and the game moves to
the next period where nature again randomly chooses a proposer with equal
probability. This continues until an offer is accepted.?

Our goal is to characterize subgame-perfect equilibria in strategies that
are history independent although potentially nonstationary. History inde-
pendent strategies do not depend on offers made at previous points in time.
However, the equilibrium strategies generally must depend on time because
the payoffs generally vary over time.

In any equilibrium with history independent strategies, if 1 is willing to
accept q at t and ¢ > ¢, then 1 must also be willing to accept ¢' at t.
Similarly, if 2 is willing to pay gat t and ¢ < ¢ then 2 must also be willing to
pay ¢ at t. Hence, there exist reservation values, q;(t) and go(t), such that
at time t agent 1 accepts any ¢ > ¢qi(t) and agent 2 accepts any ¢ < qat).
Moreover, in any ITE, the best proposal is always the reservation value of
the other agent. This implies that we can identify an ITE strategy profile
with [q1(t), g2(t)], where at time t agent 1 proposes g2(t) if it is his turn to

follows.
81n Section 5 we generalize things to allow different probabilities of making the next

offer, different rates of time preference, breakdowns in the negotiations, etc.
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make an offer and accepts any q > ¢;(t) if it is his turn to respond, while
agent 2 proposes q;(t) if it is his turn to make an offer and accepts any q <
ga(t) if it is his turn to respond.

In any ITE, therefore, the reservation values satisfy the following recursive

relations:
wlan(®),8 = o (Jmila+ 8),6+ Al + Julm(t+ 8), .+ A} ()
u;[(h(t), t] = 1 +1’I‘A {%UQ[Ql(t + A)) t+ A] + %‘Uq[(h(t + A)vt + A]} (9)

For example, (8) says that agent 1 is indifferent between accepting his reser-
vation value at t, or delaying until t + A when a new proposer will be de-
termined. These equations are forward looking, in the sense that reservation
values at t are defined in terms of reservation values at t + A. If nothing
changes over time (8) and (9) determine a pair of numbers (q1,gz). Here
they constitute a dynamical system that determines paths [q1(t), q2(t)]. A
solution to (8) and (9) is actually an ITE if and only if q1(t) < qo(t) for all
t, as this ensures that at each stage player 1 gets a higher payoff by trading
at g(t) than by deferring agreement, and similarly for player 2.

We begin the analysis with some preliminary technical results. Proofs are
in the Appendix.®

Lemma 1 In ITE, ¢;(t) is bounded and lies in A(t) for allt, i = 1,2.

Lemma 2 Let q(t) = 3 [q1(t) + q2(t)]. As & — 0, gi(t) converges Lo q(t) and
g:(t) — q(t) = 0(4), 1 =1,2.

91n the statement of Lemma 2, the notation g;(t) — q(t) = O(A) means that, as & — 0,

q:(t) = q(t) — kA for some finite k.
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The last result indicates that when the time between offers is small g:(¢)
and gy(t) can be well approximated by the average q(t). The goal now is to

characterize the behavior of ¢(t).

Theorem 1 In ITE, in the limit as A — 0, q(t) satisfies

C_ l [rul(Q7t) - 3”1(‘1»’5)/31 + l [rw(q,t) - 3’“2(‘1, t)/(?t]
1 Bui(g,t)/dq - Bua(g,t)/8q '

3 (10)
Proof: Let &(t) = q1(t) —q(t) = q(t) —qa(t), where £(t) = O(A) by Lemma

2. A first order Taylor approximation on (8) and (9) implies
Buig(t).f] _ wmla(t+A).t+A)

wla(t) 8 + (0L A SIS}
g - (2000 EEIEES o)

where 0(A) satisfies o(A)/A — 0 as A — 0. If we multiply (11) by
Sualq(t),t]/8q and (12) by du,[q(t),t]/dq, add the equations and simplify,

we get

{2l Sl 2

(13)

us(g(t + A) t+A}}8u1[q(t),t] ~ oA,

#{uala) 8 - ES 1

Now multiply by 1+ 74, divide by A, and take the limit as A — 0 to get

8‘&1 . 811.1 8112 Gug . 8‘11.2 6u1
e — —q¢——= | 7t - ——q - =0,
' 8q ot | dq 5q 1" ot ) 8q

where for ease of notation we drop the arguments of u[q(t), t]. Solving for ¢

yields (10). O



The above result says that in a dynamic environment we can approximate
the trades that occur in ITE by solutions to differential equation (10). It is
instructive to consider what happens if the payoff functions u; settle down

over time.

Theorem 2 Suppose u;(q,t) — (q) ast — 0o, 1 = 1,2, where i; satisfies
all of the assumptions on u;. Then, in the limit as A — 0, if an ITE ezists

it is unique, and q(t) — § as t — oo where

g = argmax t1(q)%2(q)-

Proof: If u;(q,t) = G:(q) then (10) becomes

q=1(@+5—‘3> = T(g)-

2\ T U

The solution to Y(gq) = 0 is §. Moreover, Y'(g) > 0. This implies that if
g(t) > § in the limit then g(t) increases without bound, and if ¢(t) < g in
the limit then q(t) decreases without bound. But Lemma 1 says that ¢ is
bounded, and so it must converge to §. As the dynamics exhibit an unstable
root as t — oo while g(t) — § as t — oo, there is a unique solution to (10)
given this boundary condition, and therefore a unique ITE. O

Hence, in steady state, an ITE outcome is the same as the Nash bargain-
ing solution with zero threatpoints and equal bargaining power (as previously
established by Binmore [1987] and Binmore et al. [1986]). But this does not
generally hold outside of steady state. To see this, consider what we call the

myopic Nash solution:
g(t) = arg maxfuy (q,t) — Ti(8)[walg, t) = To®)]""- (14)
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With T;(t) = 0 and 6 = 3, this implies

Ouq(q,t Juy(g,t
T e

In general, and as we show below with an example, this generates a different

=0. (15)

time path for ¢ than our forward looking solution.!?

There is, however, a special case in which (10) and (15) do generate the
same path, and not just the same steady state: the case where agents are risk
neutral. This is useful because some previous authors, including Pissarides
(1987), Drazen (1988), and Mortensen (1989), have imposed the myopic Nash
solution in dynamic models with risk neutral agents, and this can now be
justified as an approximation to a strategic bargaining game. However, to
the extent that one wants to generalize those models to include risk averse
agents, the myopic Nash solution would not give the same answer as our

forward looking solution.

Theorem 3 Suppose u;(q,t) = nig + ¢i(t), where m > 0 > ng and @i(t)
is bounded for all t. Then if an ITE ezists it is unique, and ¢ satisfies the
myopic Nash condition with T;(t) =0 and § = % for all t; that is, q satisfies

(15).
Proof: Without loss in generality, normalize 7; = 1 and 72 = —1. Then

(10) reduces to

4=%(TQ+T'<P1—<P1)—%(—T(I'*'T(Pz—%),

190ne might be tempted to say that the myopic Nash solution gives the “wrong” answer
outside of steady state because it uses the wrong threat points or bargaining power. We
address this in detail below; the point here is simply that a Nash solution that gives the

right steady state does not generally give the right path.
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which implies
g—rg=3((p2— 1) = (P2 — 1)l

Solutions to this equation are of the form

g = 3(p2 — 1) + m0€™,

where 7 is a constant. Since g is bounded by Lemma 1, we have ng = 0 and
g = 3(w2—1). In the case under consideration, this is also the myopic Nash

solution. O

Note that until now we have been assuming immediate trade. As re-
marked above, it must be checked that this is consistent with equilibrium
behavior. Let IL(t) = e "u[q(t),t] be the equilibrium discounted payoff to
i if agreement is made at time t, given g solves (10). Then immediate trade

for all ¢ constitutes an equilibrium if
Ii(t) >0 and II(t) <O (16)

for all t and i = 1,2, and the inequalities are strict for at least one agent.
The first inequality says the agents always want to trade, while the second
says they always want to trade sooner rather than later.!!

Rather than verifying (16) directly in each application, note that IT,(t) <

1By inspection of (11), a sufficient condition that e(t) < 0 for all ¢ in the limit as
A — 0, and hence q;(t) < go(t) for all ¢, is that uy[g(t), t] — urlg(t + D), t + Al/(1+rd)
is strictly positive and is O(A) for all t. By definition of I1;(t), a sufficient condition for

existence of an ITE in the limit as A — 0 is that [Tj(t) <0 for all ¢. Similarly for ¢ = 2.
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0 for at least one agent if and only if

(ml _ Q’_ﬂ) bur _ (m - %) %% <0. (17)

A simple sufficient condition which guarantees (17) is the “shrinking cake”
assumption that e "u;(g,t) is decreasing in t for all ¢ € A(t) for all ¢, and
is strictly decreasing for one agent (see Binmore [1987]). However, as these
payoff functions may be endogenously determined as part of a bigger model
(as is the previous section), it may not be possible to establish whether the
“shrinking cake” condition holds before solving the entire model. In that
case, it is necessary to generate a candidate ITE and then check that (17)
holds along the equilibrium path.'?

To close this section we present a simple example, where u;(g,t) = ¢°,
with 0 < 3 < 1, and u5(q,t) = e™% — g. One interpretation is that the cake
is depreciating at rate § (or, if § < 0, appreciating, but as long as r > 0, the
agents may still want to trade sooner rather than later). For these functional

forms, (10) can be written

. r(1+08)qg—8(r+ §)e ¢
q= 25 . (18)

Since the u; functions settle down over time, Theorem 2 implies g(t) — g,

where in this case § = 0.

121f it fails for some ¢, and if a non-degenerate equilibrium exists, then there will be
some periods where trade is delayed. The researcher’s problem would then be to match
trading phases to deferred-trading phases. Equation (10) would describe ¢ in the trading

phase.
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v.a‘..‘.

The solution to (18) subject to this boundary condition is

. Blr+8e ™
U= 1+ +268

and the implied payoffs are II; = APe("*%9* and I1, = Ae~ "+t where

A= 7(1_5%235' ‘If r + 6 > 0 then II(t) < 0, which is sufficient for ITE.

By way of comparison, the myopic Nash solution with zero threatpoints and

equal bargaining powers is

56—5t
T1+8
It is easy to check that ¢* > ¢" if and only if 6 > 0. The intuition is that IT)

q

falls more slowly than II, along the equilibrium path when 6 > 0, effectively
making agent 1 less averse to delay. The myopic Nash solution ignores this,
while the forward looking solution takes it into account and therefore gives

a bigger payoff to agent 1.2

4 Monetary Equilibria

We are now in a position to characterize equilibrium in the model of monetary
trade with forward looking strategic bargaining. Using the results in the last
section, for small A > 0, assuming an ITE exists in the bargaining game that
buyers and sellers play once they meet, the value functions are given by (1)
and (2), where g(t+4) is a random variable which takes values ¢, (t+A) and
g2(t + A) with equal probabilities, and the values of i(t +4A) and go(t +4)
are defined by the recursive equations (11) and (12) with ui(g,t) = g+ Vi(t)
and u(q,t) = ~¢(g) + Va(t). ‘

13These results hold for 8 < 1; if 3 =1, then ¢" = q", as predicted by Theorem 3.
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Now consider the limiting case as A — 0. Rearranging and taking the
limit of (1) and (2), we arrive at the continuous time dynamic programming
equations,

erza(l—M)%(q-FV,—Vb)%-Vb (19)
rVy = aMi—[—c(q) +Vi =V + Vi, (20)

where g is the limiting value of both q; and g,. Theorem 1 says that (if an
ITE exists) q satisfies (10), which in this model specializes to

 rq+rVi=V, —re(@ +rV—V
1= ) "22(g) ‘

(21)

An (immediate trade) equilibrium with forward looking strategic bargaining
is now a list of functions [V4(t), Vs(t), q(t)] satisfying the three differential
equations (19), (20), and (21) subject to constraints (4) and (5), as well as
the immediate trade conditions (17) for all ¢.

Fortunately, the structure of (21) is quite simple, with the natural in-
terpretation that g changes over time to split the flow surplus between the
buyer and seller in each (arbitrarily small) period. It is this property of the
bargaining outcome that makes it particularly tractable in a search context,
since these flow surpluses are given by the dynamic programming equations
(19) and (20). In particular, if we define = Vj — V4, then subtracting (19)
and (20) yields

1 .
rr=a(l - M)%(q -zI)— anc-[——c(q) +z| + 1,

and inserting (19) and (20) into (21) yields
rq+aMifz—clq)]  rclg) + a(l = M)i(z—4q)

q= +

2 2¢(q)
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\foreover, constraints (4) and (5) can be rewritten (q,z) € B, where B =
{(g,z):clg) sz < q}. This reduces the model to two dimensions.

In order to simplify the notation, rescale time by letting a/k = 1 (which
requires, of course, renormalizing 7). Then the model can be represented as
the dynamical system

rq+ Mz —e(@)] (@) + (1 - M)z =9

q 2 2¢(q)
= , (22)

z (1-}-7‘)3:—Mc(q)—(1—M)q

and an (immediate trade) equilibrium is any solution to (22) that stays in B
and also satisfies the sufficient conditions for immediate trade, I, =e "(qg+
V,) and II; = e~"t[—c(q) + V4| strictly decreasing in t. A special case is a
steady state, which is an equilibrium where ¢ and z are constant. We also
distinguish between monetary and nonmonetary equilibria, where the latter
entails ¢ = 0 for all ¢. }

Previously, Shi (1995a) and Trejos and Wright (1995a) studied steady
states by imposing the myopic Nash bargaining solution with zero threat-

points and equal bargaining power. !4 Additionally, Trejos and Wright stud-

14They also analyzed the Nash solution with nonzero threatpoints. Consistent with
the discussion in the next section, zero threatpoints are correct if there are no exogenous
breakdowns in the bargaining, which can be motivated by the assumption that agents
do not meet other potential trading partners between rounds in the bargaining g:_ame.' If,
alternatively, agents do meet other potential trading partners between rounds, and they
have to leave with them and abandon their current partners, then there can be exogenous
breakdowns and the appropriate threatpoints are T; = V.. We have also analyzed the

dynamics in the model with exogenous breakdowns using the generalized version of our



ied dynamic equilibria by looking for nonconstant solutions to (19) and (20)
that satisfy the myopic Nash solution at each point in time. While this yields
the same ¢ as our forward looking solution in steady state, it does not yield
the same ¢ outside of steady state. To the extent that one thinks of the Nash
solution as a reduced form for strategic bargaining, clearly agents ought to
be forward looking in the bargaining game as they are in other aspects of the
model. Hence, the forward looking solution seems the prefetred alternative.

We first look for steady states. It is obvious that (g,z) = (0,0) is a
nonmonetary steady state. Following the method in Trejos and Wright, it is
easy to show that whenever a monetary steady state exists it is unique, and
it exists if and only if ¢(0) is below some threshold ¢.1% For the remainder
of the analysis we impose ¢/(0) < ¢. We now proceed to consider dynamic

equilibria with forward looking bargaining.

forward looking solution; the results are available upon request.
15From (22), ¢ = £ = 0 is equivalent to ¥(q) = 0, where ¥(q) is defined in (23) in the

text below. Moreover, a necessary and sufficient for (¢,z) € B is that ¢ < ¢, where § is
defined by (1 — M)§ = (r + 1 — M)c(g). Note that ¢ > O as long as ¢/(0) < & where Cis
the smaller root of the quadratic

o 2Ar+ M), (r+M)(1-M)
Iy v wy v, M

One can show ¥(0) = 0, ¥(§) <0, and ¥'(q) < 0 at any q € (0, g) such that ¥(q) = 0.
One can also show that ¥’(0) > 0 if and only if ¢'(0) < & Hence, if ¢/(0) < & then there is
a unique ¢° € (0, §) such that ¥(g*) = 0, and therefore a unique monetary steady state;

otherwise, there is no such ¢ and no monetary steady state.
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The Jacobian of (22) is

Mc _ 1-M _ re+(1-M)(z=-q)lc" M + 1-M
2 2’ 2(c’)* 2

—MJ — (1= M) 147

It is routine (if tedious) to show that det(J) = —¥'(q)/2c(g) in steady state,

where
¥(g) = (r+ M)[(1 = M)g = (r+1 = M)e(9)] (23)
—(r + 1= M)[(r'+ M)q - Mc(g)l¢'(q)-
Since ¥'(0) > 0 (see footnote 15), det(J) < O at the nonmonetary steady
state, and it is a saddle point. Since ¥'(¢*) <0, det(J) > 0 at the monetary

steady state, and it is either a sink or a source. One can show that in steady

state
(1-M—- M} —¥
2(1 +r)c '

As ¥'(g*) < 0, trace(J) > 0 at the monetary steady state, it must be a

trace(J) =1+71+

source.

One can also show that along the boundary of the set B the flow is
outward; thus, as shown in Figure 1, orbits never enter B from outside of
B. Since (0,0) € B, the saddle path leading to the nonmonetary steady
state lies entirely in B, and so any orbit beginning on the saddle path i1s an
equilibrium. Furthermore, since it cannot come from outside of B, the saddle
path must either emanate from (g*,z*) or from a cycle surrounding (¢*,z*).

Using the myopic Nash solution, Trejos and Wright (1995) also find that
the monetary steady state is a source and the nonmonetary steady state is

a saddle point. However, that model cannot exhibit cyclical dynamics: In

22



equilibrium, g(t) is always decreasing in ¢. This is not true in the model with
forward looking bargaining. It is easy to construct examples where the saddle
path emanates from (¢*,z") and converges monotonically to (0,0), but also
to choose parameter values where the monetary steady state is an unstable
focus and [q(t), z(t)] first spirals around (g°,z") before converging to (0,0).
Hence, prices and quantities can oscillate over time, at least initially.

To construct an example of a stable limit cycle, consider augmenting the
model slightly by introducing a fixed cost, ¢(0) > 0. As shown in Figure 2, if
the fixed cost is not too big, it shifts the ¢ = 0 and £ = 0 curves so that the
intersection at the origin moves to (¢°,z°% € int(B). Hence, there are now
two monetary steady states, (¢°,2°) and (¢*,z*) (as well as a nonmonetary
steady state at the origin, not shown in the figure). With a fixed cost, if we
impose the myopic Nash bargaining solution, it is still the case that (¢*,z")
is a source, (¢° z°) is a saddle, and the saddle path converges monotonically
from the former to the latter. That is, there are no spirals, let alone cycles.
Therefore, if we find cycles in our model, it must be due to the rforward
looking nature of the bargaining solution.

Our strategy is to proceed as follows. First fix M, and set 7 = 7. Then
let c(q) = a0 +a19 + a2q* in the neighborhood of (¢*,z*), and choose the
coefficients a; so that (¢*,z*) €int(B) and trace(J) = 0 at (¢*,z"). Note that
this is impossible when ag = 0, as we argued earlier that trace(J) > 0 at the
monetary steady state under the assumption c(0) = 0, but it is possible if
ao > 0 (this is where the fixed cost comes in). Now for a range of values of
r in the neighborhood of ¥, we study the system numerically.

For r < T, (¢*,z") is a source and (g%, z°) a saddle; see Figure 2. The
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important thing about the global dynamics in this case is that the unstable
manifold of (¢°, £°) loops around the branch of the stable manifold connecting
(¢",z*) and (¢° z°. As we increase T, these branches of the stable and
unstable manifolds get closer together until, at some 7 = 7 < T, they coalesce
to form a homoclinic orbit that starts at (g%, £°), loops around (g*,z"), and
returns to (g%, z°%). |

For r > 7, the branch of the unstable manifold lies inside of a region
formed by the two branches of the stable manifold and the vertical axis in
Figure 3. Notice that orbits that start in this region cannot escape. Hence,
the branch of the unstable manifold in this region must either converge to
(¢",z*) or to a cycle around (g*,z7). But for r < 7, we have trace(J) > 0, and
(¢*,z*) is a source. Applying the Poincare — Bendixson Theorem (see, e.g.,
Guckhenheimer and Holmes 1983), there exists a stable limit cycle around
(¢",z*) for all r € (7,7). The size of the cycle is decreasing in 7, and for
r > T, it collapses into (¢*, "), as shown in Figure 4.

The essential point is that for all r € (F,7) any orbit that starts in the
region formed by the stable manifold and the vertical axis depicted in Figure
3 converges to a limit cycle. To argue that such a path is an equilibrium, we
need to verify two more things: that it stays within B, and that it satisfies
the immediate trade condition, ITj(t) < 0 for all t. Since (¢*,z*) € int(B), at
least for r near T, the cycles are sufficiently small they must stay in int(B).
We then verified numerically in examples that IT/(t) < 0 along the cycle.
Hence, there exist stable limit cycles that satisf}; all of the conditions for
monetary equilibria.

To reiterate, price cycles are possible with forward looking bargaining
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but not possible using the myopic Nash solution. The intuition is relatively
straightforward. The above analysis implies there are two relevant “shadow
prices”: = (the added value of holding money while searching) and ¢ (the
value of money when trading). In both versions of this model, the dynamic
programming equations imply z is a forward looking variable which depends
on future values of ¢. In the version with the myopic Nash solution, implic-
itly ¢ is a function of the current value of z only, and this precludes cyclic
phenomena. In the version with strategic bargaining, ¢ depends on future
values of = and it is this additional feedback which generates the possibility

of cycles.

5 Generalizations

As we suggested earlier, our forward looking bargaining solution may prove
useful in other applications. Hence, here we analyze some extensions to the
basic model, including different rates of time preference, different probabili-
ties of getting to make the next offer, and exogenous breakdowns. All proofs
are in the Appendix.

Let r; be the discount rate of agent i. Let ; be a flow utility that z gets
while bargaining is in progress. Let ); be the Poisson arrival rate with which
i believes exogenous breakdowns in the bargaining will occur, and b; his
utility in this event (we do not necessarily impose A; = Ag,since a breakdown
effectively occurs for one agent but not the other if the former is replaced by
an identical new agent). If there is no breakdown, the next offer is made by

agent i with probability m, where m; + T = 1. Note that we allow 7, ¥, i,
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\;, and b; to depend on time, although to save space we do not make this
dependence explicit in the notation. First we generalize Theorem 1 (again,

proofs are in the Appendix).

Theorem 4 In ITE, in the limit as A — 0, q(t) satisfies

j = m ((ry+ A)up — 1 — Mby — du, /Ot
] Ouy/0q .
, (24)
-(7‘2 + A2)U~2 —:b’)’z - Agb‘z - BuQ/at]
+ 7 .
! | Ouq/0q

One reason for considering the extended model is that we can provide
some insight into the relationship between strategic bargaining and the Nash
solution. In particular, we can ask, are there paths for T;(t) and 6(t) that
make the Nash solution reproduce the path for g(t) described by (24) at each
point in time, and not just in steady state?

The solution to (14) satisfies

(1 - Ofwla.t) - Tll%’g—? 4 Ofuala,) - m%‘q—‘ —0. (25)

Suppose we have an ITE, and consider the case where A is arbitrarily small.
Then, comparing (25) and (36) from the proof of Theorem (4) in the Ap-

pendix, it is immediate that we must choose § = 7 and

’Y,‘A + /\,’Abg + (1 - /\iA)u,-[q(t + A),t + A]
1+ T‘,‘A '

T, =

Outside of a steady state, the appropriate T, is i’s expected payoff should
they not reach agreemént this period. In an ITE, this is the agent’s utility

YA while there is no agreement, plus the probability of a breakdown times
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b;, plus the probability of no breakdown times the equilibrium payoff from
settling next period, appropriately discounted.

Although this result clarifies what the appropriate threatpoints are, in
general, it is not of great practical use as T; depends on the endogenous
usg(t+A),t+A]. However, there are alternative Nash representations where
T; depends only on exogenous variables if we restrict attention to steady

states.

Theorem 5 Suppose ui(q,t) = 4:(q) ‘and all parameters are constant with

respect to t; then as & — 0, (24) and (25) generate the same g if we set

¥ + Aib
T ST A
Ti+ A
9 m(ra + Ao)

7T1(7‘2 + /\2) + 7('2(1"1 + )\1).
As a special case, if i =T and X\; = X, then 6 = my.
The threatpoint T} has a simple interpretation as i’s expected discounted
payoff should they continue bargaining but never reach agreement. The next
theorem shows that this threatpoint is also appropriate outside of steady

state if both players are risk neutral (and given some additional conditions).

Theorem 6 Suppose an ITE ezists in the limit as A — 0, and u;(q,t) =
n:q + i(t), where my > 0> m2 and @i(t), bi(t), and %(t) are bounded for all
t. Without loss of generality, let m =1 and np = —1. Then, if m does not
depend ont and ri + \i =T+ A does not depend on i (but may depend on t)

there is a Nash representation for q qwen by § = 7, and

T, = / °° e~ R [y (1) + A(T)bi(7)] dT
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where R(t,7) = [7[r(0) + Mo)|do. In particular, if v, A, b and r; are
constants then
T,= X + /\ibi-
T+ A

With these results in hand, it is worth mentioning that several earlier
results in the literature can be obtained as special cases. First, let \y =y =
0; then T; = 0 and 8 = myry/(mr2 + ﬁ'zrl), which is the Nash representation
derived in Binmore et al. (1986) for what they call their time preference
model. Now set r; = ; = 0 but felax the assumption \; = 0; then T} = b;
and 6 = m g/ (m A2 + M2A1), Which is the representation in Binmore et al.
(1986) for what they call their model with exogenous breakdowns.

An important case is the one where after a breakdown agent ¢ may meet
a new partner, as in many models of search and bargaining. Let the arrival
rate of new partners for i be o;, and for simplicity set y; = 0; then the usual
dynamic programming equation from search theory implies that (in steady
state)

riby = o (s — bi). (26)

In this case, equilibrium in the bargaining game satisfies (see equation 35 in

the Appendix)
To [(T1 + A])('&] - bl) + Txbl] ’&{2 + m [(7‘2 + /\2)(17'2 - bg) + T2b2] ﬁ/l =0. (27)
Inserting (26) into (27), we have

7!'2(7‘1 + /\1 -+ al)(ﬁl - bl)ﬁ; + 71'1(7‘2 + /\2 + al)(ﬁg - bz)ﬂll = 0. (28)
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This implies that g has a Nash representation with T, = b; and!®

_ ™ (7'2 + + /\2)
7['1(7'2 -+ (03} + /\2) -+ 7T'2('I‘1 + (631 + /\1)

(29)

A typical case in the literature is the one where the only source of break-
downs is that new agents may arrive during the bargaining, and when a new
type i agent arrives he reinlacés the incumbent (see, e.g., Rubinstein and
Wolinsky [1985], Wolinsky (1987], or Binmore and Herarro (1988]). This im-
plies that the breakdown rate for type 1 is the arrival rate for type 2 and
vice-versa: \; = &g and Ay = ;. If we let fl = ry and T, = Ty, for example,
then § = %, and different arrival rates show up in terms of different threat
points but the same bargaining power.!”

Many search and bargaining models of the labor market can be inter-
preted as special cases of this framework (see, e.g., Mortensen and Pissarides

[1994] and the references contained therein). The monetary model in the

previous section can also be modified to include breakdowns in bargaining.

16 Alternatively, we can eliminate b; entirely from (27) and write

mo(ry + A1 +ay)r m(re + A +0)T2_ _
2(r1 1 1) Lg. @+ 1(r2 +Ag 1)2u2u,1=0
r+o . r2 + a2

This implies that q has an equivalenf,' Nash representation with Ty = 0 and

Tl'lrz(rl + C!l)("Q + ag + /\2)
0=
mira(ry + a1)(r2 + a2 + A2) +mory(re + ag)(r1 + 01 + A1)

17 Alternatively, following the previous footnote, there is an equivalent Nash represen-
tation with T; = 0 and 0 # % when a; # ag; in this case, different arrival rates show up
" in terms of different bargaining power and the same threat point. Hence, different arrival
rates can be captured either by different bargaining power or by diﬁ'érent threat points,

at least if we are only concerned with steady states.
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Steady states of such a model have already been analyzed in Shi (1995a) and
Trejos and Wright (1995a), and it is known that some substantive results can
change due to the possibility of breakdowns. Using (24), one can also study
dynamic equilibria in this version of the model (results are available upon

request).

6 Conclusion

This paper has analyzed models of search and bargaining in potentially non-
stationary environments. Although we concentrated exclusively on equilibria
with immediate trade, dynamics are important in that the terms of settle-
ment depend in general on when buyers and sellers meet. As a function of
time, the terms of trade can be characterized by a relatively simple dynam-
ical system, which may be useful for applications in dynamic economics in
much the same way that the Nash solution is useful in static or steady state
analyses. In the context of the search-theoretic model of fiat money, it was
demonstrated that our solution does not give the same answer as the myopic
Nash solution except in steady state. In particular, we constructed an exam-
ple with price cycles in the forward looking model, something that cannot

happen in the model with myopic bargaining solution.
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Appendix

Proof of Lemma 1: By always rejecting offers and making offers ¢;(t) €
A(t), agent i can always guarantee a non-negative payoff. Hence an equi-
librium offer must lie in A(t). Then gi(t) must be bounded because Alt) is
uniformly bounded. O ©

Proof of Lemma 2: We must show that for all ¢, for small A, qa(t) —
q:(t) = O(A®) where a > 1. By way of contradiction, suppose that at some
t we have ga(t) — qu(t) = O(A®) with a < 1. Notice that ITE requires
q2(t) > qi(t), while Lemma 1 requires @ > 0. Now let h = hoA®, where
ho > 0 and a < b < 1, and consider the time interval Ty = [t,t + h]. By
construction, h — 0 as A — 0. Also, if N denotes the number of A time
periods in Ty then N — o0 as A — 0.

The following result sets up the required contradiction.

Claim: Fix A >0and k > 0. Let n=1,2,..., and let M be the number
of time periods in an ITE where t + nA € Ty and

wlga(t +nd) t+nA]
t),t] + kA. 32
(1+T_A)n > Ul[‘]l( )’ ]+ ( )

Then,asA#O,%—»O.

Proof: Let P;(t) be the expected payoff to player 1 at t if agreement is not
reached at t. Player 1 can always use the following strategy in the subgame:

1. Always reject player 2's offer;
2. In period t + nd, propose q > g2(t +nA) if (32) does not hold;
3. In period t + nA, propose ¢ = gt + nd) if (32) holds.
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Given player 2’s strategy in ITE, this strategy implies

Pt 2 (wlm(0.8 + 58} [1 - (3)"]. (33)

Settlement occurs in the third contingency in the above list; the probability
that this never occurs is (1/2)™, in which case u; > 0. Now ITE requires

Pi(t) € uilgi(¢),t]. This and (33) imply

(%>MZ UI[QI'(t];aAt] + kA

or, equivalently,

log(uq + kA) — log(kA)
log(2)
Now consider the limit as A — 0. If u; = 0 then M =0. If u; >0 (but
bounded) then, noting that 1/N = O(A!~%), we have

M <

M
— < O(-A""log Q).
N SOl og A)
Hence, % — 0. This proves the claim.
By symmetry, the same result holds for player 2. Hence, as & — 0, most

time periods t + nA € Ty are characterized by

u1[ge(t + nd),t +nA |
(1+rA)y <wlqi(t) ] + kA (34)
us[qi(t +nA), t +nAl !

By concavity, (34) implies

uy [qa(t + nd), ¢ + nd|
(1+rA)"

< ugfge(t + nA), t]

+q(t) = qaft + nA)]aul[(h(t;q- na).Y + kA.
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‘This can be rewritten
g2(t +nd) < q(t) + Ry(t,t + nA, A),

where Ry(t,t +nd,A) is defined to make the statements equivalent.
We know ga(t+nd) is bounded and u, is continuous with a bounded time

derivative. As nA < h, it follows that |Ri(t,t +nd,A)| = O(A?®). Similarly,
ql(t + nA) 2 (h(t) + RQ(t,t + TLA, A)

where | Ry(t, t+nA, A)| = O(A®) (note that the inequality is reversed because
Bu,/Bq < 0 < Buy/dq). Subtracting,

g(t+nA) —q(t+nA) < =[g(t) —a®)] 4+ Ry(t, t+nA, )= Ro(t,t+n4, A).

But ¢2(t) — q1(t) > 0 and is O(A?), where a < b. Hence, as A — 0, there
must exist many time periods t+nA € Ty where g2(t+nl)—q(t+nd) <0,

which is a contradiction. This completes the proof. O

Proof of Theorem 4: The generalized versions of (8) and (9) are

1-MA )
uilqi(t), t] = 1+rIA {W1U1[<12(t+A)>t+-A]+7f2u1[fh(t+A))t+A]}

7A + AAb
1+ T’lA
1—- X4

wla(t).] = 15 (mulalt+ A0 Al + mmlgi(t + A),¢ + Al}

+ 0(A)

’)‘QA + /\gAbg

A
1+1‘2A +O( )7
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where 0(A) appears because \;A + o(A) is the probability of a breakdown,
by the Poisson assumption. For any t, let ¢ = miq1 + m2q2 and € = ¢ — §2-

Notice that gy —q = T1€ and gg—q = —T2¢. Then, as in the proof of Theorem

1, approximate the above equations around ¢:

duilg(tht]. - 1= MA
o T 1+ﬁAm@u+U¢+u

urlq(t),t] + me

’YlA + /\1Ab1
1+ TlA

E@u?_[q(t), ] 1-XA
dq T 14 mA

+o(d)

ulq(t), t] — m2 uglqlt +1),t + 1]

’)’QA + /\2Ab2
1+ T2A
Multiply the first by m2du2(g(t), t]/0g and the second by 7;8u1(q(t), t]/9q,

then add to get the following generalization of (13):

+ o(A).

’71A + /\1Ab1 1-— AlA 8u2[q(t), t]
- - t+ AL t+ Aly—

A+ MAb  1-XA ' duq(q(t), t]
em{uala() ] = Py o ualg(t + A), e+ A g

= o(A).
(36)
Finally, multiply (36) by (14 rA)(1+ roA), divide by A, let A — 0, and
simplify to arrive at the differential equation (24). O

Proof of Theorem 5: In a steady state where q is constant, (36) implies
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v+ Aby
r+ A

M2t Aabe

7['2(7‘1 +A1) (ﬁl - ) X
2 2

)ﬁ'2+7r1(r2+/\2) (ﬂq )ﬁl]=0 (37)
Comparing this with (25), the desired result follows immediately. O

Proof of Theorem 6: For these preferences (14) implies
g=0(p2—Tz) = (1= 0)(pr = Th), (38)
while (24) implies
q - [71'2(7‘1 -+ )\1) + 71'1(7‘2 + /\2)](] = 7T2[(T‘1 + /\1)g01 - (,01] (39)
—m(ra + M)z — 2] — maln + Mbi] + [y2 + Agbal.
We want to know when we can find a solution to (39) of the form (38).
Notice (39) is linear and first order, and can be integrated using an inte-
grating factor. In general, such a solution will be a complicated integral of
future values of ¢; and ¢;. However a special case arises when q, ¢1 and ¥
have the same integrating factor, which requires 1y + Ay = T2+ A2 =7+ A
In that case, (39) simplifies to
= (r+Ng=ml(r+ N1 — &1 = mlr + A2 = o]
— malm + Mibi] + mi[72 + dabal.
Integrating, applying Lemma 1, and assuming that 7; does not depend on t

yields
q = M2 — Top1 + /tw e RO [y (1 + Miba) — T (72 + Aeba)] dT,

where R(t,7) is defined in the statement of the theorem. Comparing this
with (38) yields the desired threat points and bargaining power. The special

case where the parameters.are time-invariant follows from simplification. O
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y states, one source and one saddle.

Figure 2: Two monetary stead
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Figure 3: Stable limit cycle around the steady state which is a source.

- Figure 4:Cycle collapses into steady state, which becomes 3 sink.
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