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Abstract

The transcriptional response driven by Hypoxia-inducible factor (HIF) is central to the adaptation to oxygen restriction.
Despite recent characterization of genome-wide HIF DNA binding locations and hypoxia-regulated transcripts in different
cell types, the molecular bases of HIF target selection remain unresolved. Herein, we combined multi-level experimental
data and computational predictions to identify sequence motifs that may contribute to HIF target selectivity. We obtained
a core set of bona fide HIF binding regions by integrating multiple HIF1 DNA binding and hypoxia expression profiling
datasets. This core set exhibits evolutionarily conserved binding regions and is enriched in functional responses to hypoxia.
Computational prediction of enriched transcription factor binding sites identified sequence motifs corresponding to several
stress-responsive transcription factors, such as activator protein 1 (AP1), cAMP response element-binding (CREB), or CCAAT-
enhancer binding protein (CEBP). Experimental validations on HIF-regulated promoters suggest a functional role of the
identified motifs in modulating HIF-mediated transcription. Accordingly, transcriptional targets of these factors are over-
represented in a sorted list of hypoxia-regulated genes. Altogether, our results implicate cooperativity among stress-
responsive transcription factors in fine-tuning the HIF transcriptional response.
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Introduction

Oxygen is essential for the survival of all eukaryotic cells, and

metazoans are heavily dependent on this element to meet their

large metabolic demands. At the cellular level, 90% of oxygen is

consumed in oxidative phosphorylation. Consistent with a central

role of oxygen in aerobic metabolism, all metazoan cells respond

to an imbalance between demand and supply of oxygen (hypoxia)

by activating a gene expression program aimed at restoring oxygen

supply and reducing its consumption. The cellular response to

hypoxia is mainly controlled by the evolutionarily conserved

Hypoxia Inducible Factor (HIF) family of basic helix-loop-helix

transcription factors. HIFs are heterodimers of a beta subunit

(HIFb, also known as ARNT), and an alpha subunit (HIFa) [1].
While ARNT levels are not sensitive to oxygen, both HIFa
stability [2] and its transcriptional activity [3] are regulated by

oxygen-dependent hydroxylation [4–6]. Under oxygen restriction,

HIFa subunits escape proteasomal degradation, heterodimerize

with HIFb subunits and translocate to the cell nucleus, where they

bind the RCGTG consensus sequence (termed Hypoxia Response

Element, HRE) within regulatory regions of target genes, leading

to their transcriptional activation in hypoxia [7]. Mammals

present three isoforms of HIFa (HIF1a, HIF2a and HIF3a) that
differ in their tissue distribution, HIF1a being the more ubiquitous

and best characterized [8].

A large number of studies focusing on single genes have

identified individual HIF targets that, collectively, account for the

functional responses to hypoxia, mainly metabolic adaptation and

induction of angiogenesis [7]. More recently, works employing

HIF1a and HIF2a chromatin immunoprecipitation coupled to

genomic microarrays (ChIP-chip) or high-throughput sequencing

(ChIP-Seq) have addressed the genome-wide identification of HIF

binding locations [9–12], thereby improving the existing knowl-

edge on the HIF-modulated transcriptome and largely confirming

the RCGTG HIF binding consensus. Additionally, these studies

have provided important insights into the global properties of

HIF1 binding and transactivation. First, these works reported

a significant association between the presence of a HIF binding site

(HBS) and hypoxic induction of the neighboring genes. The same

trend was not found for genes repressed by hypoxia, suggesting

that hypoxia-mediated repression is largely indirect or HIF-
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independent [9,12,13]. Furthermore, they have clearly shown that

only a small subset of about a hundred of all RCGTG-containing

genes is robustly regulated by hypoxia. Hence, and in agreement

with work on other transcription factors [14], HIFs bind a small

proportion of potential binding sites, albeit the basis of their

binding and target selectivity are incompletely understood.

Understanding the mechanisms that explain HIFs transactiva-

tion selectivity is of paramount importance to expand our

knowledge on transcriptional regulation and to improve the

sensitivity and specificity of genome-wide efforts to characterize

the HIF transcriptional response. DNA accessibility of transcrip-

tion factor binding sites (TFBSs) can clearly contribute to binding

selectivity [15]. For HIFs, recent evidence includes enhanced

HIF1 and HIF2 binding to normoxic DNAse hypersensitivity sites

[12] and enrichment of HIF1 binding in the proximity of genes

with a ‘‘permissive’’ transcriptional state in normoxia, as

evidenced by significant basal expression [11]. Additionally,

DNA methylation has been also shown to modulate HIF1 binding,

as originally demonstrated for the 39 enhancer of the erythropoi-

etin gene [16,17]. A further mechanism that can impact target

selectivity is direct or indirect cooperativity between transcription

factors (TFs). Models of direct cooperativity have been mainly

derived from developmental enhancers, and include the strict

enhanceosome model [18], where cooperative occupancy occurs

through extensive protein-protein interactions between TFs or

common cofactors, and the more flexible billboard model [19],

which suggests that enhancers contain submodules that interact

independently or redundantly with promoters. Conversely, in-

direct cooperativity is based on the equilibrium competition

between nucleosomes and DNA-binding proteins, thereby not

requiring protein-protein interactions [20]. In the case of HIF-

mediated transcription, the binding of cooperating transcription

factors has been demonstrated for several target genes. In

particular, HIF-mediated expression of the erythropoietin gene

requires an adjacent HNF4 binding site [21], both GATA2 and

AP1 binding sites are necessary for epithelial induction of ET-1

under hypoxia [22], and PAI-1 induction by hypoxia has been

linked to cooperative promoter activation by CEBPa, HIF1a and

EGR-1 [23]. Other examples include cooperation with Smads

[24], Sp1 [25] or CREB [26]. Additionally, USFs have been

shown to complement HIF binding either at neighbouring (LDHA

promoter) or identical sites (BNIP3) [27], while collaboration with

ETS transcription factors has been proposed to play a role in

HIF2a target selectivity [28,29]. Recent genome-wide approaches

relying on experimental [9–11] and computational [13,30]

identification of HIF binding sites have reported overrepresented

transcription factor binding sites in the flanking sequences that

might be indicative of transcriptional cooperativity. However,

significant differences exist in the overrepresented TFBSs pre-

dicted in each study, and the functional significance of these

enriched motifs remains unclear.

Gene expression profiling indicates that the expression of

thousands of genes changes with hypoxia, with vast cell-type

differences in the specific genes being regulated [31–38]. HIF1a
ChIP-chip binding locations have been reported in cell lines of

diverse tissue origin, namely HepG2 hepatocarcinoma cells [9],

MCF-7 breast cancer cells [10] and U87 glioma cells [11],

showing differences in the binding sites identified in each

experiment. In previous studies we integrated microarray expres-

sion profiling experiments and HIF binding site predictions in

a core set of tissue-independent HIF target genes [13]. To further

investigate the selectivity of HIF1 binding, in this work we

conducted HIF1a ChIP-chip in cervical carcinoma HeLa cells and

observed largely non-overlapping binding locations with previous

studies. To explore the role of cooperativity in HIF target

selection, we integrated HIF1 alpha ChIP-chip binding locations

across cell-types with a meta-analysis of gene expression profiles of

cells exposed to hypoxia [13]. Computational prediction of

enriched transcription factor binding sites in this integrated set

suggested several stress-responsive transcription factors as potential

HIF1 collaborators. Experimental validation of these predictions

in cell-based reporter assays indicates that binding sites for stress-

responsive transcription factors other than HIFs, such as CEBPs,

contribute to cooperative hypoxic activation of individual targets.

Materials and Methods

Gene-expression Profiling Analysis
Gene profiling experiments of hypoxic cell cultures were

downloaded from the Gene Expression Omnibus database

(GEO, http://www.ncbi.nlm.nih.gov/geo/) [39]. The average

raw signal from biological replicates was used in the analysis.

When fifty percent of the replicates had null values the average

signal was set to null. All probes mapping to a particular locus

were considered independently. A gene (identified by a particular

probe) was recorded as having no basal expression when the signal

for the probe under normoxic conditions had a null value. A gene

(probe) was considered to be induced by hypoxia when the log-

ratio of the hypoxic over normoxic signal values exceeded by 2.6

standard deviations the average log-ratio of all the probes in the

array. Genes (probes) with a null normoxic value and not-null

hypoxic values were also considered as induced by hypoxia. The

presence and absence of conserved RCGTG motifs at each locus

was determined as described previously [13].

Cell Culture
HeLa cells were maintained in Dulbecco’s modified Eagle

medium supplemented with 100 units/ml penicillin, 100 mg/ml

streptomycin and 5% (v/v) fetal bovine serum. Cells were grown at

37uC and 5% CO2. Hypoxic treatments were carried out in sealed

chambers flushed with a 1%O2/5%CO2/94%N2 gas mixture

(Billups-Rothenberg, Inc.; CA, USA).

Chromatin Immunoprecipitation
Chromatin immunoprecipitation was performed as previously

described [40]. Briefly, 107 HeLa cells were subjected to hypoxia

(1% oxygen) for six hours or left untreated (normoxic conditions,

21% oxygen). Following treatments, cells were crosslinked with

1% formaldehyde for 12 min at 4uC. Cross-linking was stopped by

the addition of glycine (0.125 M final concentration). Cell lysis was

achieved by scraping in 1 ml of lysis buffer (1% SDS,

10 mM EDTA, 50 mM Tris/HCl, pH 8.1, and a protease in-

hibitor cocktail, Roche). Cell lysates were incubated on ice for

10 min and then sonicated to shear DNA to fragments between

200 and 1500 bp. Only experiments that showed homogeneous

sonication across all samples (from normoxia and hypoxia

treatments) were continued. 50 ml of each sample was stored

(input), while 100 ml were diluted in 1 ml of immunoprecipitation

buffer (1% Triton X-100, 2 mM EDTA, 150 mM NaCl and

20 mM Tris/HCl, pH 8.1). Lysates were precleared with 200 mg
of a Salmon Sperm DNA/Protein A agarose 50% slurry (Upstate

Biotechnology, Lake Placid, NY, U.S.A.) for 1 h at 4uC; and then

immunoprecipitated twice, initially with whole rabbit serum for

6 h (IgG control) and then overnight at 4uC with a polyclonal anti-

HIF1 alpha antiserum (Abcam, ab2185). Immunocomplexes were

recovered by addition of 400 mg of Salmon Sperm DNA/Protein

A agarose 50% slurry, and then sequentially washed in Low Salt

Wash Buffer (0.1%SDS, 1%Triton X-100, 2 mM EDTA,
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20 mM Tris/HCl, pH 8.1, and 150 mM NaCl), High Salt Wash

Buffer (0.1% SDS, 1% Triton X-100,2 mM EDTA, 20 mM Tris/

HCl, pH 8.1, and 500 mM NaCl), LiCl buffer (0.25 M LiCl,1%

Nonidet P40, 1% deoxycholate, 1 mM EDTA and, 10 mM Tris/

HCl, pH 8.1), and twice in TE buffer (10 mM Tris, pH 8.0, and

1 mM EDTA). Elution of protein-bound DNA was performed

twice with 1% SDS 0.1 M NaHCO3. Eluates were pooled, and

crosslinking was reversed by the addition of 200 mM NaCl (final

concentration) and overnight incubation at 65uC. Protein and

RNA were removed by the addition of proteinase K (30 mg/
sample) and RNAse (200 mg/ml) for 2 hours at 42uC, and

immunoprecipitated DNA was purified by phenol-chloroform

extraction and ethanol precipitation. Successful ChIP was assayed

by standard PCR using two primer pairs, targeting the functional

EGLN3 HRE and a control region in the same locus [40].

Chromatin Immunoprecipitation on Microarray
The ChIP-chip method was carried out as previously described

[41]. First, purified DNA from chromatin immunoprecipitation

was amplified by ligation-mediated PCR. DNA ends were

extended by incubation with T4 DNA polymerase (New England

Biolabs), and blunted DNA was ligated to pre-annealed oligonu-

cleotide linkers (JW102 gcggtgacccgggagatctgaattc and JW103

gaattcagatc) using T4 DNA ligase (New England Biolabs), and

subsequently amplified by two rounds of PCR using JW102 as

primer, to yield 2–5 mg of amplified DNA. An aliquot of this

material was run in a microfluidics platform (Agilent 2100

Electrophoresis Bioanalyzer) to accurately measure size distribu-

tion of amplified material and discard gross amplification bias.

Additionally, quantitative PCR against both a Hypoxia-Response

Element (HRE) in the EGLN3 locus [40] and a control negative

region in the same locus was routinely performed to assess loss of

enrichment during amplification.

Amplified DNA from normoxic and hypoxic chromatin

immunoprecipitation samples was labelled with Cy3 and Cy5

fluorescent dyes, respectively, and hybridized to microarrays

following guidelines from the microarray manufacturer (Agilent

Mammalian ChIP-on-chip Protocol v.10). Hybridized microarray

slides were scanned in an Agilent DNA microarray scanner

(Agilent Technologies, CA, USA) at 5 mm resolution, and

acquired microarray images were quantified with GenePix 6.0

software (Molecular Devices, CA, USA). A total of six hybridiza-

tions were conducted, corresponding to four biological replicates.

The two technical replicates were dye-swap experiments, where

normoxic samples were labelled with Cy5 and hypoxic samples

with Cy3.

Analysis of ChIP-chip Data
A custom alternative promoter microarray was used for ChIP-

chip hybridizations [42]. Probes in the array cover 34000 known

or putative promoters representing about 7000 human genes, and

tile a region from 2200 to +200 of known or predicted

transcription start sites, with an average probe spacing of 80 bp.

Genomic coordinates of the probes in the array (hg17, May 2004)

were updated to the hg19 assembly using the alignment tool

Exonerate [43] with 97% sequence identity. Probes having non-

unique matches to this version of the Human Genome were

excluded from ChIP-chip analysis.

The R/Bioconductor packages ‘‘Ringo’’ and ‘‘limma’’ were

used to analyze ChIP-chip readouts [44,45]. Limma analysis was

performed after normalization of ChIP-chip data with the

variance-stabilizing method. A separate linear model was fitted

to each biological replicate, which comprised a single readout or

two in the case of dye-swap experiments, and these models were

averaged to obtain a single linear model that includes estimation of

moderated t-statistic p values. The Benjamini-Hochberg correc-

tion for multiple comparisons (False Discovery Rate) was applied

to these p values. Ringo analysis was performed essentially as

described [46], using the parameters indicated below. Raw data

were again normalized with the variance-stabilizing method. First,

for the calculation of the average smoothed signal across replicates,

we used: winHalfSize = 100 (based on probe density and spacing

in the array) and quant = 0.75. To obtain a threshold intensity

value for bound probes, a 0.99 quantile was used as upper bound

for the null distribution. For the identification of ChIP-enriched

regions on the smoothed signal, distCutOff = 200 (maximum

probe spacing within a single ChIP-enriched region) and

minProbesInRow=4 (minimum number of probes per region)

were used. Minor modifications to Ringo functions ‘‘cherByThres-

hold’’ and ‘‘findChersOnSmoothed’’ were made to take into

account probe-wise p values (as previously calculated by limma)

for ranking of ChIP-enriched regions. Specifically, ChIP-enriched

regions found by Ringo were required to harbour one or more

probes with an FDR-adjusted p value lower than 0.02 (2% false

discovery rate). Finally, ChIP-enriched regions in poorly covered

regions of the array (having less than 8 total probes, 4 inside the

region and 4 surrounding it) and those mapping to repetitive

regions were identified with in-house Perl scripts and taken out of

the analysis.

The microarray experiments described above have been

deposited in ArrayExpress under accession number E-MEXP-

3499.

Quantitative PCR
Purified DNA from chromatin immunoprecipitation samples

was used in quantitative PCR with SYBR green-based detection

(Applied Biosystems) following the manufacturer’s recommenda-

tions. Primers targeting candidate ChIP-enriched regions were

designed with Primer Express software v2.0 (Applied Biosystems)

and Primer3 (http://frodo.wi.mit.edu/primer3/). All measure-

ments were carried out in triplicate. Threshold cycle (Ct) values for

each sample were interpolated in a standard curve of input DNA

dilutions to obtain % of input absolute values. Enrichment of

HIF1 alpha binding to target loci was calculated as the ratio of the

amounts of target sequence (measured as % of input) detected in

hypoxic vs noxmoxic ChIP samples (% of input hypoxia/% of

input normoxia). For validation of ChIP-chip candidates, three

negative control regions (in the EGLN3, IRS4 and HIPEV1 loci,

[13]) were used to estimate an average background enrichment,

and a 90% confidence interval was applied on these values to set

a threshold for successful validation of candidate regions.

Obtaining a High-confidence Set of Core HIF Binding
Regions and a Background Set of Control Regions
Custom scripts written in Perl were used to indentify

evolutionarily conserved HIF binding sites (HBSs) within ChIP-

chip regions and to select HBSs that showed evolutionary

conservation. Conservation of the HIF binding consensus

RCGTG in four mammalian species, including mouse, was

required for the evolutionary conservation filter. HBSs were

further selected to map to genes robustly induced by hypoxia, as

indicated by the results of a meta-analysis of gene expression

profiling experiments in hypoxic cell cultures [13], using a p value

threshold of 0.02 (FDR). Finally, HBS coordinates were extended

into HIF binding regions (HBRs) that spanned surrounding non-

coding conserved sequences, as determined by .50% presence of

phastCons elements [47], and the corresponding multiple

sequence alignment of each HBR was retrieved. Multiple

Cooperativity in HIF Binding Regions

PLOS ONE | www.plosone.org 3 September 2012 | Volume 7 | Issue 9 | e45708



sequence alignments were downloaded from the UCSC Genome

Browser’s Table Browser [48].

To obtain a set of background (control) genomic regions,

custom perl scripts were used to exploit the microarray meta-

analysis results for the identification of genes harbouring conserved

RCGTG motifs but that are unlikely to be modulated by hypoxia.

To this end, gene loci that contained conserved RCGTG motifs in

their non-coding sequences were first selected. For these genes,

each of their probes was examined, and only genes for which all of

their associated probes exhibited a mean fold value within 0.25

standard deviations of the global mean in each of the 19 datasets

employed in the meta-analysis were considered as not induced by

hypoxia. The selected coordinates of conserved RCGTG motifs

mapping to these loci were extended as previously described for the

set of core HIF binding sites. Genomic regions from this collection

were further selected to match the frequency of genomic locations

(relative to the TSS) found in the core HBR set. Briefly, Perl scripts

were used to annotate core HBRs as promoter, 59UTR, intronic

or 39UTR genomic locations and to choose, from the whole

collection, a random sample according to the proportions of

genomic locations found in the core HBR set. Similarly as with the

set of core HIF binding regions, multiple sequence alignments

corresponding to the selected control regions were retrieved.

In silico TFBS Prediction
In silico transcription factor binding site predictions were carried

out employing custom scripts written in Perl. Position-weight

matrices (PWMs) collections were downloaded from the public

databases JASPAR (2010 release) and Transfac (7.0 version)

[49,50]. Raw frequency matrices were transformed into log-odd

matrices to take into account the background nucleotide

frequencies found in the whole collection of HIF binding regions

(core and background together), and the information content of

each matrix position was calculated as proposed by Stormo [51].

The formulae used for these calculations are detailed below.

PWM conversion:

The weight of base b in position i is calculated as:

Wb,i~log2
p(b,i)

p(b)
,

where p(b,i) is the corrected probability of base b in position i and

p(b) the background probability of base b.

The corrected probability is obtained from the raw matrix by

adding a pseudocount:

p(b,i)~
f (b,i)z 1

N

N
,

where f(b,i) are the counts of base b in position i and N the number

of sites used to construct the matrix.

Information content calculation:

Di~
X

b

p(b,i):log2
p(b,i)

p(b)

Subsequently, log-odd matrices were used to screen core HIF

binding regions and genomic-matched background regions for the

presence of putative TFBSs or other sequence motifs. Perl scripts

were employed to split each sequence into overlapping fragments

of length equal to that of the PWM under analysis. For each

fragment, a score value was calculated by summing up the log-odd

frequencies obtained by substitution of nucleotides found in the

fragment in the corresponding position of the PWM. The

contribution of each base to the score was weighted by the

information content of its position in the matrix, as detailed below.

Score calculation:

Sc~
X

i

Di
:Wb,i,

where Di is the information content of position i and Wb,i the log-

odd weight of base b in position i.

Finally, the resulting score was normalized by subtraction of the

minimum score and division by the score range, and compared

with a threshold value. Fragments showing a score above the

threshold were considered as putative TFBSs, and the evolution-

ary conservation of nucleotides in each motif was evaluated for

matrix positions with information content over 60%. Putative

TFBSs showing evolutionary conservation in four mammalian

species (including mouse) and whose score was over the threshold

value were recorded as present (respresented as 1). Otherwise, they

were considered absent from the analyzed sequence (represented

as 0).

For each PWM, the three strategies proposed in MATCH [52]

were used for the calculation of threshold values. The minFN

strategy aims at minimizing false negative predictions (low

stringency), and was obtained by setting the threshold value that

detects 90% of cases in a randomly generated sample of sequences

in which the probability of nucleotides at each position is dictated

by the matrix frequencies. Conversely, the minFP threshold

focuses on minimizing false positives (high stringency), and its

calculation is based on the assumption that coding sequences in

the Genome are impoverished in functional TFBSs. We used the

threshold value that results in a single hit (on average) per

10000 bp when the matrix is used on all human coding sequences.

Finally, the minSum threshold was obtained by estimating the false

positive and false negative rate for all threshold values between

minFN and minFP, and then choosing the value that minimizes

the sum of both (medium stringency).

Statistical Analysis of Enriched TFBSs
Fisher’s exact test was used to identify PWMs showing

significant enrichment in the set of core HIF binding regions

versus the background collection. In particular, we considered

significant PWMs with a p value lower than 0.05. No correction

for multiple comparisons was applied to these p values.

Additionally, the Weka machine learning workbench [53] (3.6

version) was used to identify the most informative PWMs, that

were better able to distinguish core HIF binding regions from the

background set. To this end, the correlation-based feature

selection variable selection procedure was used. The algorithm

was run 10 times using stratified 10-fold cross-validation in each

iteration. Finally, the number of times that each variable had been

selected was recorded. This number ranges from zero (never

chosen) to a hundred (corresponding to every cross-validation fold

and every iteration).

Plasmid Construction
Human genomic DNA extracted from HeLa cells was used as

template for PCR amplification of the CA9 promoter region (hg19

coordinates chr9:35673508–35673956), which was subcloned into

the pGL3-Basic plasmid (Invitrogen). The Human GYS1 reporter

construct (hg19 chr19:49496421–49496978) has been previously

described [54]. The mouse LDHA promoter construct (mm9

chr7:54101027–54101258) and the derived HRE and CREB

Cooperativity in HIF Binding Regions
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binding site mutations were a kind gift from Peter Ratcliffe [26].

The remaining HRE, predicted AP1 or CEBPB binding sites and

control mutations were generated by site-directed mutagenesis,

employing QuikChange Site-directed mutagenesis kit (Stratagene).

The introduced mutations are detailed in Table S1. The identity

of all constructs was verified by sequencing.

Reporter Assays
Reporter assays were performed using the human cervical-

carcinoma cell line HeLa. Cells were seeded on six-well plates

(2.5?105 cells/well) 6 h prior to transfection. Per well, a 4.5 mg
DNA mixture containing 1.5 mg of the indicated reporter

construct or empty plasmid and 0.25 mg of a plasmid encoding

for Renilla (sea pansy) luciferase under the control of a null

promoter (Promega, Madison, WI, U.S.A.) was used for trans-

fection using the calcium phosphate method. 16 h after trans-

fection, cells where washed, replated in 24-well plates, and

incubated in normoxia, in the presence of DMOG (dimethylox-

aloylglycine, 500 mM) or in hypoxia for an additional 16 hours.

After treatments, cells were lysed and the firefly and Renilla

luciferase activities of the lysate were determined using a dual-

luciferase system (Promega, Madison, WI, U.S.A.). The firefly

luciferase activity was normalized to that of Renilla luciferase.

Each experimental condition was assayed in duplicate. Hypoxia or

DMOG fold induction values for each experiment were analyzed

by repeated measures ANOVA with a Dunnet posthoc correction,

comparing values of the wild-type promoter construct to each of

the introduced mutations.

Gene-set Enrichment Analysis
Gene-set enrichment analysis (GSEA) was carried out as

previously described ([55] and http://www.broadinstitute.org/

gsea/index.jsp). We employed a ranked list of core hypoxia-

regulated genes derived from a meta-analysis of 16 hypoxia gene

expression experiments [13], where genes are sorted by their mean

hypoxic induction across cell lines/tissues represented in the meta-

analysis. We studied the distribution of transcription factor targets

in this list employing 3000 gene-sets from the GSEA molecular

signatures database, which includes experimentally derived lists of

targets for specific transcription factors. GSEA analysis provides

and enrichment score (ES) for each gene-set across the ranked list

of hipoxia-responsive genes. In order to compare several gene-sets,

enrichment scores are normalized to produce NES values

(normalized enrichment scores). Comparison with NES values

obtained from random gene-sets allows estimation of statistical

significance. We used an FDR-adjusted p-value of 0.05.

Results

1. Basal Gene Expression is Necessary but not Sufficient
for HIF Target Selection
Previous studies have proposed that chromatin accessibility and

basal gene expression mediate HIF target selectivity [11,12]. In

order to independently assess the contribution of this mechanism

to HIF target selection, we exploited publicly available genome

profiling experiments of hypoxic cell cultures [13] to look at the

association of basal expression and hypoxic induction. We

analyzed the basal expression of a list of well-characterized HIF

targets [7] and correlated it with their response to hypoxia. In

agreement with previous reports [11,12], we found that the

response to hypoxia, scored as the percentage of HIF-target genes

induced by the treatment, was significantly higher among genes

that were already expressed in the basal (normoxic) condition

(Figure 1A, p,0.01 Wilcoxon matched test). Moreover, when the

HIF target genes across all datasets were pooled and categorized

according to their basal expression and response to hypoxia, the

distribution was significantly different to that expected by chance

(Table S2, p,0.001 Chi-square test). These results further suggest

that chromatin accessibility contributes to HIF target selectivity by

modulating the availability of RCGTG motifs. However, given the

large number of genes with basal (normoxic) expression and the

widespread distribution of the RCGTG motifs, it is expected that

many RCGTG motifs would lie within open chromatin regions.

To look at the contribution of chromatin accessibility in more

detail, we next studied the response to hypoxia of all the genes with

detectable normoxic values represented in each array. To this end,

within the group of genes with basal gene expression, we identified

those harbouring conserved HIF-binding motifs in their non-

coding sequences (Figure 1B, HBS) and categorized them

according to their induction by hypoxia. For each microarray

dataset, the large majority of genes harbouring a conserved

RCGTG motif were not induced by hypoxia (Figure 1B, yellow

bar segments) in spite of proximity of the motif to genes with

significant normoxic expression. This observation strongly suggests

that although basal gene expression correlates with hypoxia

inducibility of a gene, additional mechanisms are needed to specify

HIF target selection.

2. Comparative Analysis of HIF1 Alpha Binding Locations
in Cell Lines of Diverse Tissue Origin
The binding of additional transcription factors in proximity of

HIFs constitutes a plausible mechanism that could contribute to

HIF target selection. In this regard, previous works have addressed

the identification of sequence motifs overrepresented in collections

of HIF binding regions obtained from ChIP-chip datasets or

combinations of computational predictions and gene expression

profiling experiments [9,10,30]. A recent work failed to identify

clearly overrepresented sequences [9], while the predictions

reported in two other studies showed very small overlap [10,30].

On the other hand, the wealth of HIF1 alpha binding and hypoxic

gene expression data obtained in different cell types provides

a unique opportunity to construct integrated sets of HIF1 binding

sites that may overcome the limitations of datasets based on a single

experiment. In order to study the role of cooperativity in HIF

target selectivity, we determined the genome-wide pattern of HIF1

alpha binding sites in cervical carcinoma HeLa cells and

compared our results to previously published HIF1 ChIP-chip

experiments in hepatocellular carcinoma HepG2 cells [9], breast

cancer MCF-7 cells [10] and U87 glioma cells [11], as detailed

below.

For the determination of HIF binding sites in HeLa cells, we

performed HIF1a chromatin immunoprecipitation in HeLa cells

exposed to normoxia or hypoxia (1% oxygen) for six hours.

Amplified samples from normoxic and hypoxic cells were

competitively hybridized to a proximal promoter microarray that

tiles a subset of human 7000 genes [42]. ChIP-chip data was

analyzed with the R/Bioconductor packages Ringo [44] and

limma [45] to identify hypoxic HIF1-bound genomic regions.

Stringent statistical thresholds (2% FDR) were applied to

normalized signals from four biological replicates (Figure 2A,

all). ChIP-enriched regions were required to harbour four or more

probes above background average signal (Figure 2A, blue

horizontal line) and one or more probes robustly induced by

hypoxia in a linear model of the four replicates (Figure 2B, red

dots, 2% FDR). This analysis produced a ranked list of 57 HIF1

binding regions (Table S3), spanning the coordinates of previously

characterized HIF binding sites [7] and including many potentially

novel HIF1 binding sites and HIF1 targets. Quantitative PCR

Cooperativity in HIF Binding Regions
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validation of the ChIP-chip results in independent HIF1 alpha

chromatin immunoprecipiations confirmed hypoxic enrichment of

the majority of tested candidates (Figure 2C).

Next, we compared HIF1a ChIP-chip predictions in the four

cell lines by analyzing the overlap of reported binding locations

(Figure 2D). The majority (36 sequences) of HeLa HIF1a binding

locations did not overlap with ChIP-chip results obtained in other

cell types, although many were also found in at least one of the

previous reports. A similar trend was observed taking any of the

other studies as reference, suggesting that most HIF1 binding is

cell-type specific. To test the role of cooperativity in dictating

HIF1 target selection, we focused on HIF1a ChIP-chip binding

locations common to two or more studies as a bona-fide set of core

HIF1 binding regions. Analysis of evolutionary conservation in

these sequences, defined as RCGTG motifs within PhastCons

elements [47] and conserved in at least four mammalian species

including human and mouse, showed a strong enrichment of

conserved sequences in the core set of common HIF1 binding sites,

versus those found uniquely in a single ChIP-chip study (Table

S4). Since HBSs identified in more than one study are more likely

to correspond to functional sites, this analysis suggest that

evolutionary conservation of HIF binding motifs can be predictive

of functionality as has been shown for other TFBSs [56,57].

3. Binding Sites for Diverse Stress-responsive
Transcription Factors are Enriched in bona fide HIF
Binding Regions
We employed the previous set of core, bona fide HBSs to

computationally identify enriched TFBSs that could be indicative

of transcription factor cooperation. To focus on binding locations

for which there is evidence of transcriptional modulation of nearby

genes in hypoxia, we sought to combine the core set of HIF1

binding locations with HIF transactivation data. To this end, we

employed our previous microarray meta-analysis study [13] of 16

gene expression profiling experiments comparing normoxic and

hypoxic cell cultures. This integrated gene-expression dataset was

used to select, from the binding dataset, HIF1 binding locations

that mapped close to genes showing robust hypoxic induction

(p,0.02, false discovery rate) (Figure 3A, right). Lastly, and in

order to reduce the number of spurious predictions in in silico

sequence analyses, we focused on HIF binding sites whose

sequence showed evolutionary conservation in mammalian species

(Figure 3A). These selection criteria produced an integrated set of

core HIF binding sites (Table S5). A gene annotation enrichment

analysis of the sites in this integrated set revealed enriched

annotation terms clearly associated with functional responses to

hypoxia, such as glycolysis, 2-oxoglutarate dioxygenase activity

and glycogen metabolism [7,58] (Table S6), strongly suggesting

that it faithfully represents bona fide HIF binding locations.

We next sought to identify putative TFBSs enriched in the vicinity

of the selected core HIF binding sites (Figure 3B). For this purpose,

Figure 1. Basal gene expression is not sufficient for HIF transactivation. (A) A list of well-characterized HIF target genes (from ref. 7) present
in individual gene expression profiling (microarray) datasets (see B for GEO IDs) were categorized according to their basal (normoxic) expression level
into two groups: Null, no detectable basal expression; Significant, detectable basal expression. In addition, for each microarray experiment, HIF-target
genes were further classified into those whose expression was significantly induced by hypoxia (ratio hypoxia/normoxia greater than 2.6Sd above the
mean) and non-responsive genes. The graph represents the percentage of HIF target genes in each category that were induced by hypoxia. Each pair
of joined dots represents the data from a single microarray experiment. Box and whisker plots represent the distribution of values in each category.
**: p,0.01 (Wilkoxon matched test) (B) For each of the indicated microarray datasets (GEO identifiers in horizontal axis), we identified all the genes
showing a significant basal (normoxic) expression. Then, we classified them according to their response to hypoxia (‘‘Induced’’ and ‘‘notInduced’’, see
A) and the presence of conserved RCGTG motifs in their regulatory regions (‘‘HBS’’ and ‘‘NoHBS’’, respectively). The graph depicts cumulative
percentages (vertical axis) of genes in each of the four combinations of the two categories: no conserved HIF binding motifs and no hypoxic
induction (blue, NoHBS_notInduced), no conserved HIF binding motifs but hypoxic induction (green, NoHBS_Induced), conserved HIF binding motifs
but no hypoxic induction (yellow, HBS_notInduced) and conserved HIF binding sites and hypoxic induction (red, HBS_Induced).
doi:10.1371/journal.pone.0045708.g001
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we obtained the sequences flanking each HBS (Table S5). The

length of flanking non-coding sequences was based on evolutionary

conservation, as indicated by genomic annotation of PhastCons

elements [47]. Statistical assessment of sequence motif enrichment

in this set of sequences requires comparison with a background set,

the election of this set greatly influencing the results of the analysis

[59].We constructed a set of sequences resembling those in the set of

core HIF binding regions by screening the non-coding Human

Genome for evolutionarily conserved HIF binding consensus

sequences, and extended these motifs to span the flanking conserved

sequence (Figure 3B and Figure S1). From this set, we selected

regions that are unlikely to be transcriptionally modulated by

hypoxia, as judged by no differential expression in any of the 16

hypoxia experiments included in our previously reported genome

profiling meta-analysis [13]. Finally, a subset from these sequences

was chosen that matched the genomic locations and base

composition found in the core set (Figure S1). We thereby obtained

a custom set of circa 3500 background sequences containing

a RCGTG HIF binding consensus.

The sequences in the core HIF binding regions and background

sets were screened for TFBSs employing the mammalian position-

weight matrixes from the public Transfac 7.0 and Jaspar (2010

Figure 2. Comparative analysis of HIF1A ChIP-chip data in cell lines of different tissue origin. (A) Visualization of HIF1A ChIP-chip
readouts for the GAPDH promoter region in HeLa cells. The plot represents normalized intensities (log fold change hypoxia/normoxia, vertical axis)
along the hg19 genomic coordinate (horizontal axis). Vertical black bars (top of the graph) mark the center position of array probes. The signal of four
independent biological replicates is indicated in different colors (BR1 to 4). The smoothed black line corresponds to the averaged signal across
replicates. The horizontal blue line indicates the intensity threshold for bound probes. (B) Volcano plot of HeLa ChIP-chip data (linear model across
the four biological replicates). Spots in the plot correspond to individual probes in the array. Probes significantly enriched in hypoxic samples
(p,0.02, FDR) are highlighted as red spots. (C) Quantitative PCR validation of HeLa ChIP-chip candidates. The official Gene Symbol corresponding to
each region is indicated in the horizontal axis. Four control regions (one positive and three negative) were used as reference to estimate the
successful validation of the indicated ChIP-chip candidates (candidate ranks in parenthesis). Bars represent the average fold enrichment in hypoxic
versus normoxic ChIP samples (vertical axis), as obtained in three independent experiments. Error bars represent the standard deviation. The
horizontal black line indicates the threshold for successful validation (90% confidence interval). (D) 4-way Venn diagram indicating the overlap of
HIF1A bound regions as reported by ChIP-chip studies in hepatoma (HepG2 cells, ref. 9), mammary gland (MCF-7 cells, ref. 10), glioma (U87 cells, ref.
11) and cervix (HeLa cells, this study) origin.
doi:10.1371/journal.pone.0045708.g002
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release) databases and custom scripts based on the MATCH

algorithm [52], recording the presence or absence of a total of 605

sequences motifs in each sequence by using three different

stringencies (Table 1). In order to reduce spurious hits, we only

considered as positive hits those motifs that were conserved in

mammalian species. Fisher’s exact test was applied to these

datasets to identify motif predictions enriched in the set of core

HIF binding regions. Enriched motifs were consistently found

across different stringencies and database sets. In addition to HIF

PWMs, we found a significant enrichment for PWMs associated to

CREB1, FOS/AP1 and NFY (Table 1).

As an independent assessment of enriched motifs that is less

dependent on the composition of the core set, we compared the

results of the previous analysis with a variable selection approach

implemented in the Weka machine learning software [53].

Correlation-based feature selection was applied to the complete

set of high-stringency predictions to detect non-redundant variables

(PWMs) able to distinguish between the core and background sets.

As expected, a number of the top-ranked PWMs, such as those for

HIF1, AP1/ATF3 or NFY were coincident with the Fisher’s exact

test predictions (Table 2). However, additional enrichedmotifs were

found (such as CEBPB or NFAT), probably reflecting an increased

predictive power after stratified cross-validation.

We next asked whether the TFs associated to the enriched

TFBSs may share any common characteristics. Gene annotation

enrichment analysis (Table S7) of these enriched transcription

factors pointed at stimulus-responsive transcription factors as

significantly enriched in core HIF binding regions, and indeed

most of the identified DNA-binding proteins have been reported

to function as transcription factors of stress responses [60],

including hypoxia-responsive TFs [61]. On the whole, our results

suggest that binding sequences of several additional TFs other

than HIFs, and in particular diverse stress-responsive TFs, are

enriched in bona fide HIF binding regions.

4. Functional Impact of Transcription Factor Binding Sites
Proximal to Hypoxia Response Elements
In order to address the functional relevance of the enriched

TFBSs identified in silico, we next set out to validate some of these

predictions experimentally. To this end, we selected hits for

Figure 3. Integrative strategy for prediction of cooperativity in HIF binding regions. (A) HIF1 binding locations common to at least two
out of four different ChIP-chip studies in HeLa, HepG2, MCF-7 and U87 cells (left), mammalian sequence conservation of the HIF binding regions
(center) and regions close to genes robustly induced in hypoxia in a meta-analysis of 16 gene expression experiments (right) were integrated into
a set of bona-fide core HIF binding regions (B) Stepwise diagram for prediction and validation of TFBSs enriched in core HIF binding regions:
collection of a set of core HIF binding regions and a background set of control sequences (left), in silico prediction of transcription factor binding sites
present or absent in the sequences of core and background sets (center), statistical analyses of enriched TFBSs in sequences from the core set (right,
top) and experimental validation of these predictions (right, bottom).
doi:10.1371/journal.pone.0045708.g003
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enriched TFBSs focusing on: 1) HREs located close to the TSSs of

genes, to be able to study these promoter regions in in cellulo

reporter assays, and 2) TFBS predictions located close to the

Hypoxia Response Element (HRE). According to these criteria, we

evaluated a CREB binding site prediction in the LDHA promoter

(Figure 4A), a CEBPB binding site identified in silico in the GYS1

promoter (Figure 4B), and a predicted AP1 site in the CA9

promoter (Figure 4C). The selected promoters were cloned

upstream of a firefly luciferase gene, either in their wild-type

version or harbouring mutations in the predicted TFBSs. We then

compared the effect of these mutations with that of the hypoxia

response element (HRE). Finally, and in order to evaluate non-

specific effects of the introduced changes, we also generated

control mutations in these promoters by altering randomly-

selected DNA motifs in the vicinity of the HRE (Figure 4). These

control mutations lay in non-conserved (LDHA and GYS1

CONTROL 2) as well as conserved (CA9 and GYS1 CONTROL

1) genomic regions.

We next measured the luciferase activity of these constructs in

normoxia, hypoxia (1% oxygen) and upon treatment with the

prolyl hydroxylase inhibitor DMOG (500 mM). As expected,

mutation of the HRE in all the studied promoters completely

abrogated induction by either hypoxia or DMOG treatment

(Figure 4). Importantly, mutation of the predicted CREB site in

the proximity of the HRE within the LDHA promoter led to

a partial reduction in the inducibility of the construct, while

introduction of a random mutation had a negligible effect in the

response of the promoter to either hypoxia or DMOG. Similarly,

mutation of the CEBPB binding site proximal to the GYS1 HRE

led to a partial abrogation of the hypoxic induction when

compared to mutation of the HRE core (Figure 4B). This

reduction was not consistently recapitulated when two distinct

control mutations were introduced in the promoter (Figure 4B,

Control 1 and Control 2), strongly suggesting that it is a specific

effect. Importantly, similar results were obtained upon DMOG

treatment (Figure 4B). Finally, in contrast to the two previous

cases, directed mutagenesis of the AP1 site proximal to the CA9

HRE led to slightly increased inducibility of the construct by either

hypoxia or DMOG (Figure 4C), reaching statistical significance

only for the latter. This effect was distinct from that of a control

mutation or the expected abrogation of the induction produced by

mutation of the HRE.

Collectively, these results indicate that at least some of the

TFBSs computationally predicted as enriched in a core set of bona

Table 1. Enriched TFBSs in core HIF binding regions (Fisher’s exact test).

PWM Collection Stringency Overrepresented PWM Hits Transcription factor P value

JASPAR CORE 2010 minFN (low) MA0033.1_FOXL1 53 FOXL1 0,001

MA0259.1_HIF1A::ARNT 54 HIF1 0,0076

minFP (high) MA0018.2_CREB1 7 CREB1 0,0203

MA0060.1_NFYA 9 NFYA 0,0234

MA0259.1_HIF1A::ARNT 44 HIF1 6E215

minSum (intermediate) MA0032.1_FOXC1 36 FOXC1 0,0065

MA0060.1_NFYA 14 NFYA 0,0218

MA0099.1_Fos 20 FOS 0,0305

MA0259.1_HIF1A::ARNT 52 HIF1 3E206

JASPAR PHYLOFACTS 2010 minFN (low) PF0014_TGACGTCA 4 FOS/AP1 0,0377

PF0032_TGASTMAGC 3 NF-E2 0,0268

minFP (high) PF0014_TGACGTCA 4 FOS/AP1 0,0445

PF0032_TGASTMAGC 3 NF-E2 0,0308

minSum (intermediate) PF0014_TGACGTCA 4 FOS/AP1 0,0383

PF0032_TGASTMAGC 3 NF-E2 0,0272

TRANSFAC 7.0 minFN (low) M00055_V$NMYC_01 34 NMYC 0,0174

M00244_V$NGFIC_01 5 NGFIC 0,0425

M00246_V$EGR2_01 5 EGR2 0,0499

M00251_V$XBP1_01 19 XBP1 0,02

minFP (high) M00185_V$NFY_Q6 6 NFY 0,0284

M00188_V$AP1_Q4 7 AP1 0,0096

minSum (intermediate) M00040_V$CREBP1_01 6 CREBP1 0,0465

M00185_V$NFY_Q6 14 NFY 0,0244

M00244_V$NGFIC_01 5 NGFIC 0,0437

M00287_V$NFY_01 14 NFY 0,0248

M00394_V$MSX1_01 16 MSX1 0,0229

Enriched sequence motifs in core HIF binding regions, as indicated by statistical analysis (Fisher’s exact test, p,0.05 with no correction for multiple comparisons). For
each overrepresented sequence motif/PWM, the table indicates the following: the database collection (PWM collection), the stringency used in in silico TFBS
identification (Stringency), the number of hits obtained in the set of core HBRs (Hits), the transcription factor (Tr. Factor) associated to the PWM and the p value of the
enrichment (p value). Robust predictions across different stringencies and PWM datasets are highlighted in bold.
doi:10.1371/journal.pone.0045708.t001
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fide HIF binding regions play a functional role in the transactiva-

tion by hypoxia or DMOG treatment of HIF-responsive

promoters. Moreover, our data also suggests that diverse stress-

responsive transcription factors, probably through modulation of

basal transcription or recruitment of common cofactors, contrib-

ute to the specification of HIF target selectivity.

5. Transcriptional Targets of Stress-responsive
Transcription Factors are Enriched Among HIF Target
Genes
The results in the previous section were restricted to a limited

set of validated promoters. However, if the involved transcription

factors are of general relevance to HIF mediated transcription,

some of their targets would be expected to be common with HIFs.

To judge the potential generality of the involvement of CEBPs,

CREB and AP1 in modulation induction of HIF transcriptional

targets, we employed a gene-set enrichment analysis (GSEA) [55]

as an unbiased way to explore the distribution of other

transcription factor targets among hypoxia inducible genes. For

this analysis, we employed a list of over 11000 genes sorted

according to their response to hypoxia, and derived from our

previous meta-analysis of gene expression profiles [13]. This sorted

list was then queried against the curated collection (C2) of the

GSEA molecular signatures database (http://www.broadinstitute.

org/gsea/index.jsp). This collection comprises over 3000 gene sets

from various sources including experimentally derived lists of

targets for specific transcription factors. Thus, this analysis

identifies sets of functionally related genes, such as those co-

regulated in response to specific genetic and chemical perturba-

tions, that are significantly enriched in the top positions of a list of

genes induced by hypoxia.

As expected, GSEA analysis revealed a statistically significant

enrichment of well-characterized HIF targets in this sorted list

(Figure 5A, black circles). Moreover, enrichment of CEBPA/B

targets was also significant for three different gene-sets (Figure 5A,

purple circles, and Figure 5B). These gene sets derive from

independent expression profiling experiments performed in cells

overexpressing different members of the CEBP family [62–64]. In

addition, the analysis also revealed enrichment for two gene sets

containing targets regulated by the ATF/CREB family (Figure 5A,

orange circles), albeit the FDR-adjusted p-values did not reach

statistical significance (0.106 and 0.229 respectively). Finally,

enrichment of AP1 targets was not statistically significant

(Figure 5A, green circle). Altogether, these results suggest, at least

for the case of CEBPs (Figure 5B), that transcription factor

collaboration can be a general mechanism contributing to HIF

target selectivity.

Discussion

The complete elucidation of the molecular principles governing

the translation of genomic information to gene regulation remains

a central question in biology. In particular, understanding the

mechanisms dictating target selection by HIF transcription factors

is of fundamental importance to truly dissect the genes directly

modulated by HIFs, and therefore to completely characterize the

transcriptional response to hypoxia that these factors orchestrate,

and its interactions with other transcriptional pathways. Several

mechanisms have been proposed to contribute to selective DNA

binding and gene regulation by transcription factors with largely

generic DNA binding domains [65], among them the co-binding

of several transcription factor molecules [14,66,67]. In order to

dissect these mechanisms, high-quality collections of binding sites

are an obvious pre-requisite. The recent development of high-

throughput chromatin immunoprecipitation experiments [41,68]

has spurred knowledge on the genome-wide DNA binding

locations of transcription factors, and these techniques hence

constitute an essential tool to explore mechanisms of transcrip-

tional regulation on a global scale [69–71]. In this work, we

employed an integrative approach to identify additional transcrip-

tion factors that could contribute to HIFs binding and target

selectivity. This strategy was based on computational prediction of

enriched sequence motifs in a set of core HIF binding regions

constructed through selection of HIF1 alpha binding locations

derived from genome-wide chromatin immunoprecipitation ex-

periments in HeLa (this study), HepG2 [9], MCF-7 [10] and U87

cells [11]. During preparation of this manuscript, a fourth study

employing ChIP-Seq in MCF-7 cells was published [12], pro-

viding high-resolution data on genome-wide HIF binding locations

independently of gene architecture.

Chromatin accessibility has been shown to play an important

role in dictating transcription factor binding [72–74]. In this

regard, integration of HIF1 alpha binding locations in U87 and

HepG2 cells with gene expression data in the same cell types

revealed a preference for HIF1 binding to map to transcriptionally

active genes in normoxia [11], therefore suggesting that chromatin

accessibility, as indirectly evidenced by basal transcriptional

activity, determines HIF1 binding. As an independent approach

to test this hypothesis, we looked at the correlation of normoxic

gene expression and induction of known HIF targets in publicly

available microarray datasets of hypoxic cell cultures [13]. In

agreement, we found a statistically significant association between

basal expression and hypoxia inducibility of known targets

(Figure 1A and Table S2). Furthermore, comparison of HIF1a
and HIF2a binding locations in MCF-7 cells with DNAse

Table 2. Enriched TFBSs in core HIF binding regions (variable
selection).

Overrepresented PWM Number chosen Transcription factor

MA0259.1 100 HIF1

PF0146 86 unknown (RRCCGTTA)

PF0032 82 NFE-2

M00222 80 Hand1:E47

M00188 77 AP1

PF0096 67 unknown (YGCANTGCR)

PF0014 58 ATF3

M00109 57 CEBPB

M00185 45 NFY

M00246 36 EGR2

M00244 20 NGFIC

MA0154.1 15 EBF1

PF0009 13 ATF3

M00302 11 NFAT

M00002 10 E47

The Table indicates sequence motifs/PWMs identified as discriminative of core
HBRs employing correlation-based feature selection in 10 iterations of 10-fold
stratified cross-validation. The results are ranked according to the total number
of folds (up to a hundred) in which the variable was chosen by the algorithm
(Number chosen). The associated transcription factor, were known, is indicated
along with the PWM (Tr. factor). Predictions coincident with Fisher’s exact test
(Table 1) are highlighted in bold.
doi:10.1371/journal.pone.0045708.t002
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Figure 4. Effect of stress-responsive transcription factor binding sites in the proximity of hypoxia-response elements on hypoxic
induction of HIF-responsive promoters. HeLa cells were transfected with reporter plasmids containing promoter regions of mouse LDHA (A),
human GYS1 (B) and human CA9 (C) in their wild-type form or harbouring the indicated mutations. Diagrams to the left of each graph indicate the
location of the different mutations in the employed promoter constructs (grey blocks, highlighted with red border). Effects on reporter induction by
hypoxia and the hypoxia mimetic DMOG are summarized in the central columns: -, no hypoxic/DMOG induction; +, ++, +++: increasing strength of
hypoxic/DMOG induction. Graphs represent the fold induction over normoxia of the wild-type promoter (WT) upon hypoxia or DMOG treatment,
compared to that of promoter versions harbouring mutations in the hypoxia response element (HRE), in CREB (A), CEBPB (B), or AP1 (C) binding sites
proximal to the HRE, or in control genomic regions (CONTROL). Bars represent average values in four to six independent experiments, and error bars
the standard deviation. Statistical significance of observed activity compared to the wild-type promoters are indicated: n.s.: not significant, *: p,0.05,
**: p,0.01 (repeated measures ANOVA with Dunnet post-hoc correction).
doi:10.1371/journal.pone.0045708.g004

Cooperativity in HIF Binding Regions

PLOS ONE | www.plosone.org 11 September 2012 | Volume 7 | Issue 9 | e45708



hypersentitivity data in the same cell type [12] also revealed

a significant association of HIF binding with normoxic DNAse

hypersensitive sites, again pointing at an important role of open

chromatin regions in dicating HIF binding. However, when

conserved RCGTG HIF binding consensus motifs are identified in

non-coding regions of genes showing basal expression, a majority

of these are not induced by hypoxia (Figure 3B). Therefore,

although chromatin accessibility clearly favors HIF1 binding,

additional mechanisms are likely needed to fully specify HIF target

selectivity.

DNA methylation of a HIF binding site was originally shown to

block HIF1a binding to the 39 erythropoietin enhancer [16], and

indeed erythropoietin expression appears to be restricted to cell

types in which the hypoxia response element is unmethylated.

Altered HIF binding due to methylation changes in HREs has

been further validated in additional target genes, such as BNIP3

[75] or HIF1A [76], and is often associated with cancer

progression. However, a global view on the effects of DNA

methylation in HIF binding selectivity is lacking, and may be

challenging to analyze in view of recent evidence arguing for

dynamic DNA methylation in hypoxia [77].

Additional transcription factors binding in the proximity of

a HIF1 binding site could impact either HIF1 binding or

transcriptional modulation of the target gene. In agreement with

this possibility, a recent study addressing the functional validation

of common genetic variants at a renal cancer susceptibility locus

[78] found HIF2 binding to be dependent on a polymorphism

falling outside the RCGTG HIF binding consensus, strongly

suggesting that sequences outside the HIF binding site can be

functionally important in determining HIF binding. We tested this

hypothesis by computational prediction of transcription factor

binding sites enriched in a core set of bona fide HIF binding regions

(Figure 3B). These were obtained through integration of HIF1a
ChIP-chip data with a gene expression meta-analysis of hypoxic

cell cultures [13] (Figure 3A), thereby combining multiple HIF

DNA binding and hypoxic gene expression datasets. Our

approach has the advantage of using an integrated set of sequences

that could overcome the limitations of analyses based on a single

dataset [10,30], where a proportion of binding sites could

potentially correspond to false positives or non-functional sites.

In addition to HIF matrices, we observed additional sequence

motifs that were enriched in core HIF binding regions (Tables 1

and 2) and that could potentially impact HIF binding and

transactivation selectivity. Of note, the transcriptional activity of

several of these proteins, such as AP-1, CREB, EGR-2 or CEBPB

is known to be induced by hypoxia [61]. Nevertheless, and in

agreement with previous predictions of enriched TFBSs in the

vicinity of experimentally [10] or computationally [30] identified

HIF binding sites, the statistical significance of these predictions is

relatively low and, even on an integrated dataset, no single

collaborating TF stands out. In fact, HIF PWMs are the most

enriched in core HIF binding regions. Since sequences in the

background set used for comparison also contain RCGTG motifs

(Figure S1), this enrichment likely arises from the well known

preference for A versus G in the first position of the HIF binding

consensus. These results collectively suggest that several additional

transcription factors could influence HIF transcriptional activity.

Importantly, we noted that most of the enriched TFBSs

corresponded to stress-responsive transcription factors. Varied

stress-responsive TFs have been shown to coordinately regulate

the same genes [23,79], and indeed several transcription factors

are activated by the same stresses in mammalian cells [61,80,81].

Figure 5. Transcriptional targets of stress-responsive transcription factors are enriched among core hypoxia-responsive genes. (A)
Gene-set enrichment analysis on a set of 11673 genes sorted by their response to hypoxia according to a meta-analysis of hypoxia gene expression
experiments (ref. 13). The graph depicts the normalized enrichment score of 3174 gene sets from the curated collection (C2) of the GSEA molecular
signatures database v3.0, that includes sets of transcription factor target genes. Solid circles highlight gene-sets derived from studies on HIF1 (black,
ELVIDGE_HYPOXIA_UP and SEMENZA_HIF1_TARGETS), CEBPA/B (purple, GERY_CEBP_TARGETS, HALMOS_CEBPA_TARGETS_UP and TAVOR_CEBPA_-
TARGETS_UP), CREB1/ATF5 (orange, GHO_ATF5_TARGETS_DN and MCCLUNG_CREB1_TARGETS_UP) and AP1 (green, OZANNE_AP1_TARGETS_UP)
transcriptional targets. The vertical blue line corresponds to an FDR-adjusted p-value of 0.05. (B) GSEA analysis of hypoxia-responsive genes (see A)
against the GERY_CEBPA_TARGETS (M12338, derived from the GEO dataset GSE2188) gene-set. Hypoxic response is rank-ordered in the horizontal
axis (Rank in ordered dataset). Black bars indicate the position of individual targets in the CEBPA gene-set. The graph on top (green curve) represents
enrichment scores of CEBPA targets across hypoxia responsive genes, indicating positive correlation between the two. The gradient color bar
indicates positive (red) and negative (blue) correlation boundaries.
doi:10.1371/journal.pone.0045708.g005
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However, it is unclear whether this cooperation among stress-

responsive pathways translates at the genomic level. In order to

evaluate the functional significance of the TFBSs enriched in core

HIF binding regions, we carried out an experimental validation by

disrupting selected sequences in bona fide HIF-responsive promo-

ters (Figure 4). Importantly, no experimental confirmation had

been attempted on previously reported predictions [10,30], and

therefore the biological significance of those findings remained

unclear. In spite of being limited to three selected promoters, our

results clearly indicate that, compared to control mutations,

alteration of binding sequences of transcription factors enriched in

HIF binding regions, and different from HIFs themselves, have

a specific effect on the transcriptional activation of HIF-responsive

promoters. In particular, we found negative effects on hypoxic

induction of LDHA and GYS1 promoters upon disruption of CREB

and CEBPB binding sites proximal to the HRE, whereas mutation

of an AP1 site proximal to the CA9 HRE led to a slightly

augmented hypoxic induction of the promoter. In agreement with

our results, mutation of the same CREB binding site was been

previously shown to alter LDHA hypoxic induction [26]. In-

terestingly, USF binding to a palindrome CACGTG HRE in the

LDHA promoter was suggested to complement HIF binding [27].

However, our results do not allow us to corroborate these findings,

as mutation of this HRE was not evaluated in our experiments

(Materials and Methods and Table S1). Furthermore, hypoxic CA9

expression has been linked to cooperation between AP1 family

member ATF4 and HIF1a [82]. In this study, ATF4 over-

expression led to an augmented CA9 induction in hypoxia, with

reduced hypoxic expression of CA9 being observed upon ATF4

knock-down. Chromatin immunoprecipitation experiments

mapped ATF4 binding to the 21400/21000 region of the CA9

promoter, which falls outside of the promoter region employed in

our experiments. Nevertheless, the apparent paradox with our

results argues for careful interpretation of the role of AP1 in the

HIF transcriptional response. In fact, both positive and negative

effects of AP1 have been reported on hypoxic gene expression [81]

and, given the number of AP1 family members, these probably

arise from compositional differences in AP1 complexes.

Importantly, the effects observed upon mutation of CREB,

CEBPB or AP1 binding sites (Figure 4) were always moderate

when compared to mutation of the HIF binding consensus

RCGTG, suggesting that rather than being an absolute re-

quirement for hypoxic induction, the integrity of these neighboring

TFBSs fine-tunes the HIF-mediated transcriptional response.

Thus, it is possible that multiple independent factors contribute,

in an additive fashion, to HIF-mediated transcription. This model

could also explain why we found a relatively large number of

enriched TFBSs in HIF binding regions, but all of them sharing

a modest statistical significance. On the whole, these observations

indicate that several of the enriched TFBSs identified in our

approach are of functional relevance for HIF-mediated transcrip-

tion. Nevertheless, it should be noted that other TFs for which

collaboration with HIFs has been previously suggested [61] are not

recovered as enriched in our approach. An inherent assumption in

our method is that such TFBSs will be enriched in bona fide HIF

binding regions (Figure 3), which may not hold true if cooperation

is specific to a small number of target genes. Furthermore, the

employed HIF binding data in this study is for the HIF1a subunit

only, whereas transcription factor cooperativity may well apply to

other HIF subunits. In fact, several reports have implicated the

ETS family of transcription factors in target selection by HIF2a
[28,29].

We observed very similar tendencies when transcriptional

activation of reporter constructs was elicited by DMOG or

hypoxia treatment (Figure 4), additionally suggesting that, at least

in our experimental conditions, the contribution of these factors

could occur mainly in basal conditions, as it is unlikely that

hypoxia and DMOG treatment induce completely overlapping

cellular responses. Several recent reports [11,12] have suggested

that chromatin accessibility determines HIF1 binding, although

this mechanism may not fully explain HIFs binding and target

selectivity (Figure 1). Our results indicate that an additional layer

of specificity comes from proximal co-binding of other transcrip-

tion factors and HIFs to open chromatin regions, thereby

facilitating or restricting HIF-mediated transcription. Elucidation

of the underlying molecular mechanisms falls outside the scope of

our work, although it is tempting to speculate that transcription

factors binding in proximity of HIFs may be involved in

recruitment of co-activator or co-repressor proteins. Of note,

a recent mammalian two-hybrid survey of protein-protein

interactions for human and mouse TFs [83] reported a physical

association between HIF1A and AP-1 family member JUN, as well

as the previously known interaction between CEBPB and p300

[84]. p300/CBP is a master co-activator of HIF-mediated

transcription whose recruitment can also be mediated by CREB

[85]. In this regard, evidence from a synthetic transactivation

screen on the EGLN1 promoter [86] pointed to ETV4 as an

additional p300-dependent coactivator of HIF-mediated tran-

scription. Moreover, HIF1 is known to interact with Jab1/CSN5

[87,88], a protein originally identified as a transcriptional co-

activator for AP1 [89]. Future investigations on protein compo-

sition of HIF-bound enhancers should be pivotal in supporting this

model.

The associations between HIFs and AP1, CREB and CEBPs

analyzed in our reporter results could be general across many HIF

targets or be restricted to individual targets. To judge the

generality of these results, we conducted a gene-set enrichment

analysis (GSEA) of transcription factor targets in a sorted list of

genes regulated by hypoxia [13]. The results of this analysis

showed a significant enrichment of CEBP targets among hypoxia-

inducible genes (Figure 5), suggesting that at least for this family of

transcription factors, the functional association with HIFs could be

relatively general. Of note, recent works have reported a direct

protein-protein interaction between HIF1a and CEBPa [90,91],

and have implicated CEBPa activity in regulation of the HIF

target genes galectin-1 [92] and PAI-1 [23]. Hypoxic induction of

both galectin-1 and PAI-1 was found to be synergistically dependent

on both HIF1a and CEBPa activity and their co-binding to the

promoter region. Our results further suggest that this functional

association may be general across a wider collection of HIF

targets.

In conclusion, the data presented herein demonstrates that

integration of high-throughput chromatin immunoprecipitation

and gene expression data is a successful approach to select high-

quality core HIF binding regions, and provides experimental proof

of principle for the biological relevance of enriched transcription

factor binding sites other than the HIF binding consensus in HIF-

mediated transcription. Specifically, our results suggest that diverse

stress-responsive transcription factors, in particular CEBPs,

contribute to fine-tuning of the HIF-mediated transcriptional

response.
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