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ABSTRACT  24 

 In many microorganisms the arginine biosynthesis first step is catalyzed by classical N-25 

acetylglutamate synthase (NAGS), an enzyme composed of N-terminal amino acid kinase (AAK) 26 

and C-terminal histone acetyltransferase (GNAT) domains that bind, respectively, the feed-back 27 

inhibitor arginine and the substrates. In NAGS three AAK domain dimers are interlinked by their 28 

N-terminal helices, conforming a hexameric ring, whereas each GNAT domain sits on the AAK 29 

domain of an adjacent dimer. Arginine inhibition of Pseudomonas aeruginosa NAGS was 30 

strongly hampered, abolished or even reverted to modest activation by changes in the 31 

length/sequence of the short linker connecting both domains, supporting a crucial role of this 32 

linker in arginine regulation. Linker cleavage or recombinant domain production allowed 33 

isolation of each NAGS domain. The AAK domain was hexameric and inactive, whereas the 34 

GNAT domain was monomeric/dimeric and catalytically active, although with 50-fold 35 

increased and 3-fold decreased Km
glutamate

 and kcat , respectively, with arginine not influencing its 36 

activity. Deletion of N-terminal residues 1-12 dissociated NAGS to active dimers catalyzing the 37 

reaction with identical substrate kinetics and arginine insensitivity as the GNAT domain. 38 

Therefore, the interaction between the AAK and GNAT domains from different dimers 39 

modulates GNAT domain activity, whereas the hexameric architecture appears essential for 40 

arginine inhibition. We proved the closeness of the AAK domains of NAGS and N-41 

acetylglutamate kinase (NAGK), the enzyme that catalyzes the next arginine biosynthesis step, 42 

shedding light on the origin of classical NAGS,  by showing that a double mutation 43 

(M26K/L240K) in the isolated NAGS AAK domain elicited NAGK activity.44 
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INTRODUCTION 45 

 In most microorganisms N-acetyl-L-glutamate synthase (NAGS), the enzyme encoded by 46 

argA, catalyzes the first step of arginine biosynthesis (Fig. 1A), producing  N-acetyl-L-glutamate 47 

(NAG) from glutamate and acetyl coenzyme A (acetyl-CoA), and being feed-back inhibited by 48 

arginine  (Fig. 1A) (8,10). Plants also use NAGS for making arginine (35). Although NAG is not 49 

a precursor of arginine in animals (2), NAGS is present in animals that make urea (8), since NAG 50 

is an essential activator of the urea cycle enzyme carbamoyl phosphate synthetase I (31) (Fig. 51 

1B). Consequently, human NAGS deficiency is an inborn error of the urea cycle that causes 52 

clinical hyperammonaemia (7). 53 

 Although the key role and widespread distribution of NAGS in all domains of life 54 

warrants study of this enzyme, most detailed data concern the bacterial forms of this enzyme (17, 55 

23,27,32,33) including the crystal structure of the NAGS from Neisseria gonorrhoeae 56 

(NgNAGS) in substrate-bound and arginine-bound forms (24,34). NgNAGS can be considered a 57 

typical example of classical bacterial NAGSs as defined by the early studied Escherichia coli and 58 

Pseudomonas aeruginosa enzymes (17, 23, 32, 33). These classical bacterial forms, encoded by 59 

argA, consist (Fig. 2A) of  a single polypeptide of 50 kDa mass that is composed of an N-60 

terminal 260-residue domain and a C-terminal 150-residue domain, belonging, respectively to 61 

the amino acid kinase  (AAK) and the histone acetyltransferase (GNAT) families (32). The 62 

NgNAGS structure proved that the GNAT domain binds both substrates (34), whereas the AAK 63 

domain was shown to host the site for the feed-back inhibitor arginine (24,34). As predicted from 64 

the  homology of classical bacterial NAGS with arginine-sensitive NAG kinase (NAGK) (28), 65 

the NgNAGS structure is nucleated by a ring-like hexameric trimer of dimers of AAK domains 66 

that resembles closely the NAGK hexamer (34) (Figs. 1A and S1). NAGK catalyzes the next step 67 
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in the route of arginine synthesis in many microbes and in plants (10,35) (Fig. 1A) and is 68 

considered a paradigm for the AAK domain family (28,29). In both NAGS and arginine-sensitive 69 

NAGK a kinked  helix emerging at the N-end of each AAK domain is interlaced with the 70 

corresponding N-helix of an adjacent dimer, linking the three AAK domain dimers into the 71 

hexamer (28,34) (Fig. S1). 72 

 In bacterial NAGS and arginine-sensitive NAGK the feed-back inhibitor arginine sits in 73 

the AAK domain (24,28). The arginine sites flank the junctions between the  AAK dimers, next 74 

to the kinked N-helices, with participation in each arginine site of the short N-helix segment 75 

following the kink. By binding at its site, arginine widens the hexameric ring of AAK domains 76 

(24,28).  In NAGK, this binding causes inhibition because it favors an open conformation of the 77 

AAK domain, where catalysis takes place, distorting  and widening the active center (28). 78 

However, in NAGS both substrates bind in the GNAT domain (34) and this inhibitory 79 

mechanism cannot apply. The globular GNAT domain of NgNAGS, connected to its cognate 80 

AAK domain by a 5-residue linker (Figs. 2B,C), sits on the AAK domain of an adjacent dimer 81 

(34) (Figs. 1A and S1A). Judged from site-directed mutagenesis studies (32), the AAK domain 82 

may play a regulatory role on NAGS activity. In agreement with this view, the NgNAGS crystal 83 

structures revealed that arginine dramatically changes the spacial relations between the AAK and 84 

GNAT domains (24). Thus, in the arginine-bound form of NgNAGS the GNAT domain interacts 85 

with the AAK domain of its own subunit and experiences a 109º rotation around its linker (Fig. 86 

2B), drastically altering its interactions with the AAK domain on which it lies (24). Our prior 87 

studies (33) on the effects of linker shortening or lengthening by up to two residues on P. 88 

aeruginosa NAGS (PaNAGS) kinetic parameters support the importance of this rotation around 89 

the linker. NAGS inhibition by arginine involves a decrease in Vmax as well as an increase in the 90 
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apparent Km for glutamate (33). The latter effect fits the observation that in the arginine-bound 91 

form of NgNAGS two loops of the glutamate site become disordered (24). It also fits the finding 92 

that two-residue linker shortening, expected to drag away the GNAT domain from its normal 93 

position, mimics arginine in increasing the Km for glutamate (33). 94 

 In the present work we subject to experimental corroboration using PaNAGS some key 95 

functional inferences that were based on the NgNAGS structure, as well as our earlier proposal 96 

(33) that the interdomain linker plays a paramount role on NAGS functionality. We (Fig. 2C) 97 

engineer this linker, cleave it, isolate and study the properties of the individual domains, and also 98 

produce recombinantly the two domains in isolated form, showing that the GNAT domain alone 99 

can catalyze the reaction but exhibits low affinity for glutamate, and that this isolated domain is 100 

insensitive to arginine. We also prove that the AAK domain is closely related to NAGK by 101 

restoring some NAGK activity by mutating two residues of this domain. The importance of the 102 

hexameric organization is demonstrated  by rendering the enzyme dimeric by deletion of the N-103 

terminal helix up to the expected site for its kink (Fig. 2C). Our findings dissect functionally 104 

classical bacterial NAGS and help generate an integrated picture that may contribute to 105 

understand also mammalian NAGS, reported to have the same domain organization as the 106 

bacterial enzyme (27,32). In fact, by engineering the linker of PaNAGS, we manage to convert 107 

arginine from a potent inhibitor to a modest activator, rendering the effect of arginine on enzyme 108 

activity reminiscent of the more potent activation triggered by arginine on the NAGSs of 109 

terrestrial animals including humans (3, 6,36).  110 

  111 

112 
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MATERIALS AND METHODS 113 

Preparation of cloned DNA sequences encoding wild-type and engineered PaNAGS forms.114 

 We previously reported the cloning in pET22b (from Novagene) of argA (gene PA5204, 115 

http://cmr.jcvi.org/tigr-scripts/CMR) from P. aeruginosa encoding wild type (WT) NAGS with a 116 

GSLEH6 tail (Fig. 2A, top) (32). This plasmid will be called here pET
NAGS

. Single and double 117 

point mutations (Fig. 2C) at adjacent positions in the interdomain linker were introduced by site-118 

directed mutagenesis in pET
NAGS

, using the Quickchange kit (from Stratagene) and utilizing 119 

appropriate mutagenic forward and reverse oligonucleotides (Table S1). The same approach was 120 

used to produce the isolated recombinant AAK domain (rAAK) (Fig. 2A) by replacing codon 287 121 

of argA  by a stop codon. Two further rounds of site-directed mutagenesis on the latter plasmid 122 

introduced into rAAK  the M26K/L240K double mutation. The preparation of  PaNAGS having 123 

283
EAQAF replacing 

283
EQF  was reported earlier (33). The pET22b plasmid carrying this 124 

mutated argA form was used for preparation of other engineered enzyme forms having a linker of 125 

increased length (Fig. 2C). Thus, a single round of site-directed mutagenesis on this plasmid 126 

allowed the change of the mutant sequence from 
283

EAQAF to 
283

EAQGP. The resulting mutant 127 

plasmid was mutated further to the sequence 
283

LFQGP (PScore form), and this last plasmid was 128 

used for insertion of three extra residues "en bloc" in a single mutagenic round to give the linker 129 

sequence 
283

LEVLFQGP (PSsite mutant), which is engineered to host the entire PreScission 130 

protease [an engineered derivative of human rhinovirus 3C protease (9) provided by GE 131 

Healthcare] cleavage site. All these changes were carried out with the Quickchange system as 132 

above, using the primers indicated in Table S1. 133 

 The DNA sequence encoding the GNAT domain was cloned into pET26b (from 134 

Novagene) after PCR-amplification of codons 287-432 of argA from pET
NAGS 

using a forward 135 

primer (Table S1) that introduced an initial ATG codon as part of an NdeI site, and a reverse 136 
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primer introducing a XhoI site [the same primer used (32) for cloning of argA into pET
NAGS

, 137 

called "GNAT reverse" in Table S1], allowing directional insertion by ligation into the 138 

corresponding sites of pET26b digested with these enzymes. BL21 (DE3) cells (from Novagene) 139 

transformed with this plasmid failed to express the GNAT domain. This plasmid was used as a 140 

template for PCR amplification of the GNAT domain-encoding sequence in a way permitting its 141 

fusion to the C-terminus of SUMO (the protein chimera encoded by this construction is called 142 

here rGNAT) (Fig. 2A). The primers used for this amplification (Table S1) restore the stop codon 143 

at its normal site (thus, the C-terminal His6 tag was eliminated, although the SUMO moiety 144 

carries one such tag) and introduce respective BsaI and BamHI sites before and after the coding 145 

sequence, allowing directional insertion into the corresponding sites of pSUMO (from 146 

LifeSensors Inc). 147 

 The same strategy used for cloning into pET26b of the GNAT domain was used for 148 

pET22b cloning of argA carrying a deletion of codons 1-12 (called from here on Δ1-12) (Fig. 149 

2A). For this purpose, we used in the PCR-amplification step a forward primer corresponding to 150 

nucleotides 20-51 of the coding sequence in which four nucleotides were changed to include a 151 

NdeI site (Table S1). In this way, the engineered gene encodes residues 13-432 of PaNAGS 152 

preceded by a methionine and followed by the C-terminal GSLEH6 tail. 153 

 PCR-amplification was carried out with a high-fidelity thermostable DNA polymerase 154 

(Deep-Vent, from New England Biolabs). The correctness of all the constructs and mutants 155 

prepared here was confirmed by DNA sequencing. 156 

 157 

Expression and purification of the protein constructs. We produced wild-type PaNAGS and 158 

its mutant forms including Δ1-12 as reported earlier (32) for the wild enzyme. The procedure 159 

used includes growing the transformed BL21(DE3) cells at 37ºC, to OD
600

 ≈ 0.5 in Luria-Bertani 160 
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medium containing 0.1 mg/ml ampicillin, then keeping the culture standing 45 min in ice, 161 

followed by adding 2% (v/v) ethanol and 0.02 mM isopropyl---thiogalactoside (IPTG) and 162 

continuing the culture with aeration overnight at 15ºC. However, for production of rGNAT and 163 

rAAK, either wild type or with the M26K/L240K double mutation, the induction was for 3 hours 164 

at 37ºC with 1mM IPTG. 165 

 Cells were harvested by centrifugation and subsequent steps were at 4ºC. They were 166 

disrupted by sonication in a solution of 20 mM Na phosphate pH 8, 1 mM dithiothreitol (DTT), 167 

0.5 M NaCl and 20 mM imidazole. Insoluble material was centrifuged away. There was an 168 

abundant production of the recombinant proteins in soluble form, allowing purification to 169 

essential homogeneity (Fig. 2D; point and linker mutants are not shown) by Ni-affinity 170 

chromatography. His-Spin Trap centrifugal columns (GE Healthcare) were used when small 171 

amounts of protein were required (32). For larger amounts, the cell pellet from a 0.5-L culture 172 

was suspended in 15 ml of  sonication buffer and the centrifuged sonicate was applied to a 1-ml 173 

His Trap-HP column mounted on an ÄKTA FPLC system (both from GE Healthcare), eluting the 174 

His6-tagged protein with a 30-ml linear gradient of 20 mM-500 mM imidazole-containing buffer. 175 

The different proteins were placed in storage buffer [10 mM sodium phosphate pH 7.0, 15% (v/v) 176 

glycerol, 1 mM EDTA, 1 mM DTT, 20 mM NaCl and 10 mM NAG; based on (23)], by either 177 

centrifugal desalting through PD SpinTrap G-25 columns (from GE Healthcare) or, for larger 178 

volumes, by repeated cycles of centrifugal ultrafiltration (Amicon Ultra of 10K cutoff, from 179 

Millipore) and dilution using the same buffer.  180 

 For purification of the rAAK domain and its double mutant, which had no His6 tag, 0.5-L 181 

cultures were used, the sonication buffer was 15 ml of 20 mM Na phosphate pH 8/1mM DTT, 182 

and the postcentrifugal supernatant was subjected to sequential precipitations with ammonium 183 
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sulphate at 30% and 60% saturation, dissolving the final precipitate in 15 ml of sonication buffer 184 

followed by desalting by repeated centrifugal ultrafiltration as above using the same buffer. The 185 

protein solution was then applied to a 1-ml HiTrap Q HP column (GE Healthcare)  mounted on 186 

an AKTA FPLC system equilibrated with sonication buffer, followed by washing and by elution 187 

of essentially pure rAAK (Fig. 2D) with a 35-ml linear gradient of  0-1 M NaCl in the same 188 

buffer. The protein was concentrated to 25 mg/ml by centrifugal ultrafiltration.  189 

  190 

Cleavage with PreScission protease and separation of the two domains.  PreScission protease 191 

(from GE Healthcare) and the wild type or the engineered PScore or PSsite forms of PaNAGS 192 

(Fig. 2C), at the indicated concentrations, were incubated 5 hours at 15ºC in a solution containing 193 

50 mM Tris-HCl pH 7.1, 0.15 M NaCl, 1 mM EDTA, 1 mM DTT, monitoring the cleavage by 194 

SDS-PAGE. At the end of the incubation, the mixture was either centrifuged through a His Spin 195 

Trap column or, for separation of the two domains, 0.3 ml of the digestion or of an equivalent 196 

non-digested mixture were applied to a Superdex 200HR (10/300) column (GE Healthcare) 197 

mounted on an AKTA fast protein liquid chromatography system. The column was equilibrated 198 

and run (flow rate, 0.50 ml/min) with a solution at 4ºC of 50mM Tris-HCl, pH 8.5/0.1M NaCl, 199 

monitoring the absorbance of the effluent at 280 nm and collecting 0.5-1 ml fractions over ice. 200 

The fractions corresponding to the AAK domain peak or to the GNAT domain peak from two 201 

identical chromatographic experiments were pooled together and concentrated by centrifugal 202 

ultrafiltration to ~1 mg protein/ml. 203 

  204 

Enzyme activity assays. NAGS activity was determined colorimetrically with Ellman´s reagent, 205 

as CoA release (12) at 37ºC, as previously reported (32), in a solution of 0.2 M Tris-HCl pH 9 206 

containing, in the standard assay, 30 mM L-glutamate (sodium salt), 4 mM acetyl-CoA, and, 207 
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when used, the indicated concentration of arginine hydrochloride. For estimation of the kinetic 208 

parameters for the substrates, the acetyl-CoA concentration was fixed at 4 mM while varying 209 

glutamate, or the glutamate concentration was fixed at 30 mM (except where indicated) and 210 

acetyl-CoA was varied. For assay, the enzyme was appropriately diluted in storage buffer lacking 211 

both NAG and NaCl and supplemented with 30 mg/ml bovine serum albumin (albumin 212 

concentration in the assays, 1.5-3 mg/ml). Reactions were carried out at least in duplicate, and 213 

blanks in which the enzyme was replaced by dilution solution were run in parallel and were 214 

subtracted. One enzyme unit produces 1 μmol CoA min
-1

. Results (mean  SE) were fitted with 215 

GraphPadPrism (GraphPad Software, San Diego) to either hyperbolic kinetics or to substrate 216 

inhibition kinetics as reported (33).  217 

 NAGK activity was determined at 37ºC and pH 7.5 as previously described (13), using 218 

the hydroxylamine-containing colorimetric assay of Haas and Leisinger (18). One enzyme unit is 219 

the amount of enzyme that generates 1 mol of product in 1 min. 220 

 221 

Other techniques. SDS-PAGE (20) was carried out in 15% polyacrylamide gels. Protein was 222 

determined by the Bradford assay (4) using bovine serum albumin as standard. The structures of 223 

E. coli NAGK (Protein Databank, PDB, file 1GS5) (29) and of the AAK domain of NgNAGS 224 

(PDB file 2R8V) (34) were superposed with program Coot (Crystallographic Object-Oriented 225 

Toolkit) (11) using default parameters. Figures representing protein structures were generated 226 

using PyMOL (http://www.pymol.org).  227 

228 
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RESULTS AND DISCUSSION 229 

Influence of the interdomain linker on arginine modulation of NAGS activity 230 

 To adscribe functions to the GNAT domain,we engineered the interdomain linker (Fig. 231 

2A,C; and see Materials and Methods) to introduce a cleavage site for the highly specific 232 

PreScission protease by replacing the EQF sequence within the linker connecting both domains 233 

by LEVLFQGP (Fig. 2A,C). The enzyme with this replacement, called here PSsite form, was 234 

expressed and purified similarly to the recombinant wild-type enzyme (not shown). This form 235 

was  catalytically active, with kinetic parameters not too different from those of wild-type 236 

PaNAGS (Table 1), but it failed to be inhibited by arginine whereas the wild type enzyme is 237 

nearly totally inhibited by 2 mM arginine (Fig. 3A and Table 1). This observation confirms our 238 

prior conclusion (33) that the interdomain linker is highly important for arginine modulation of 239 

NAGS activity. 240 

Surprisingly, when we engineered the linker sequence to replace the wild-type EQF linker 241 

sequence by LFQGP (called here PScore form) and particularly by EAQGP (Fig. 2C), a form 242 

prepared as an intermediate in the stepwise engineering of the linker from wild-type to PSsite 243 

form, the enzyme was modestly but significantly activated by arginine rather than being inhibited 244 

(Fig. 3A and Table 1). This effect, which is somewhat reminiscent of the activation by arginine of 245 

the NAGSs from terrestrial animals (6,19), suggests that the linker sequence might determine 246 

whether arginine is an inhibitor or an activator. The importance not only of the linker length (33) 247 

but also of the linker sequence in determining the effect of arginine is illustrated by the 248 

observation that the replacement in the modified linker of EAQGP by EAQAF (Fig. 2C) resulted 249 

in enzyme inhibition by arginine although with less potency and at higher arginine concentrations 250 

than in the case of the wild-type sequence EQF (Fig. 3A, and Table 1). Since all these linker 251 
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changes reduced somewhat Vmax (Table1), the linker influences also the efficiency of the enzyme 252 

as a catalyst in the absence of arginine. 253 

 We attempted to replicate without success the arginine activation of the human enzyme by 254 

replacing the Q and F of the PaNAGS wild type linker sequence (EQF) by R and M, respectively, 255 

the two residues found at these positions in human NAGS (Fig. 2C). This change prevented 256 

enzyme inhibition by arginine, with perhaps a slight  trend towards activation (Fig. 3B and Table 257 

1). When enzyme forms with only one or the other of these mutations was studied, it was found 258 

that the EQF-to-EQM change (the changed residue is underlined) virtually abolished arginine 259 

inhibition, although without any evidence of arginine-triggered activation, whereas the EQF-to-260 

ERF change failed to abolish inhibition by arginine, although the arginine concentration needed 261 

for inhibition was increased (Fig. 3B). In contrast, the replacement by A of the E residue that is 262 

common to human and bacterial NAGSs (change, EQF to AQF, Fig. 2C) did not alter the 263 

sensitivity of the enzyme to arginine (Fig. 3B and Table 1). These results clearly show that the 264 

phenylalanine found in the bacterial linker is essential for arginine inhibition. The crystal 265 

structures of NgNAGS (24,34) with and without arginine (Fig. 2B) support the importance of this 266 

phenylalanine, which would act as an end lever, stabilizing the orientations of the GNAT domain 267 

relative to the AAK domain across the linker in the arginine-free and arginine-bound enzyme 268 

conformations. Thus, the phenylalanine bencenic ring makes in the arginine-free form extensive 269 

and close contacts with the GNAT domain (Fig. 2B, left panel), whereas in the arginine-bound 270 

form it makes extensive contacts with the AAK domain (Fig. 2B, right panel). Our observation 271 

that the F285M mutation, although abolishing arginine inhibition, had virtually no effect on the 272 

kinetic parameters of the enzyme in the absence of arginine (Table 1), strongly supports the view 273 

that the methionine cannot fulfill this lever function, failing to stabilize the arginine-bound 274 
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conformation. In any case, our results show that the mere replacement of this phenylalanine or of 275 

the Q preceding it by its human counterparts is not enough for rendering arginine an activator. 276 

 We examined the reasons for the activation by arginine of the enzyme with the EAQGP 277 

linker sequence. In the presence of 30 mM arginine the glutamate dependency of the activity 278 

(Fig. 3A, top inset) revealed that only when glutamate concentrations exceeded 20 mM was the 279 

activity higher with arginine than without arginine. Below this glutamate concentration arginine 280 

was an inhibitor, revealing that arginine can be an inhibitor or an activator depending on the 281 

glutamate concentration. The effective glutamate concentration at which the enzyme reaches its 282 

experimental activity maximum is higher with arginine than without arginine, and substrate 283 

inhibition also appears to occur at increased glutamate concentrations when arginine is present 284 

(Fig. 3A, top inset). These changes are qualitatively similar to those triggered by arginine on the 285 

kinetics of wild-type PaNAGS [Fig. 3A, bottom inset and (33)], but their magnitude is smaller 286 

with the EAQGP form than with  the wild type enzyme. However, in the case of the modified 287 

enzyme, arginine does not appear to trigger a reduction in the apparent Vmax for glutamate, 288 

whereas kinetic results with the wild type enzyme were consistent with a nearly 7-fold reduction 289 

in Vmax triggered by as little as 2 mM arginine [Fig. 3A, insets, and (33)]. This different effect on 290 

Vmax appears to be the main reason for the observed activation by arginine of the enzyme with the 291 

modified linker.  292 

 293 

Influence of linker cleavage on activity and arginine inhibition 294 

 PreScission protease cleaved the PSsite enzyme form at its interdomain linker, but it 295 

failed to cleave wild type PaNAGS (Fig. 4A) or the PScore  form (not shown), as shown by SDS-296 

PAGE, which  revealed bands with the expected masses for the AAK (31 kDa) and GNAT (18 297 

kDa) domains in the digestion of the PSsite form. Linker cleavage did not lead to immediate 298 
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dissociation of the two domains, since only a small fraction (~25%, Fig. 4B, unretained) of the 299 

cleaved AAK domain was not retained by centrifugation through a Ni-affinity column, whereas 300 

the majority was retained (Fig. 4B, retained), being eluted together with the His6-tag-containing 301 

GNAT domain by the application to the centrifugal column of 0.5 M imidazole. 302 

 Linker cleavage did not inactivate the enzyme, but it caused a very large increase in the 303 

concentrations of glutamate required for activity (diamonds in Fig. 5A). Given the lack of 304 

immediate dissociation of the two domains, this strongly suggests that the physical continuity 305 

across the linker is crucial to endow the enzyme with its normal affinity for glutamate. Similarly 306 

to the uncleaved form of the PSsite form, the cleaved form remained insensitive to arginine (data 307 

not shown), suggesting that the physical continuity between both domains provided by the linker 308 

is a requisite for arginine modulation of enzyme activity.  309 

 310 

Gel filtration separates the AAK and GNAT domains of the cleaved enzyme 311 

 Application of the PreScission-cleaved PSsite enzyme form (Fig. 2A) to a gel filtration 312 

column (Fig. 4C) resulted in the separation as individual peaks of the AAK and GNAT domains 313 

(Figs. 2D and 4C). We also succeeded in producing recombinantly the AAK domain by replacing 314 

codon 287 of the pET22b-encoded PaNAGS by a stop codon (Q287X mutation) (Figs.2A,D). 315 

The AAK domain generated by PreScission cleavage or produced recombinantly was eluted 316 

identically from the column, at a volume corresponding to hexamers (Fig. 4C). Similarly, as 317 

reported already (23,32), the uncleaved enzyme was also eluted as expected for an hexamer (Fig. 318 

4C). These findings agree with the observation made in the crystal structure of NgNAGS (24,34) 319 

(Figs. 1A and S1A) of a hexameric enzyme architecture nucleated by a hexameric ring of AAK 320 

domains that resembles closely the hexameric ring of AAK domains forming the structure of 321 

arginine-sensitive bacterial NAGK (28) (Figs. 1A and S1B). In contrast to the hexameric 322 
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oligomerization of the enzyme and the AAK domain, the GNAT domain produced by 323 

PreScission cleavage appeared late in the effluent from the gel filtration column, at a position 324 

intermediate between those expected for monomers and dimers (Fig. 4C), although somewhat 325 

closer to that of the monomer (mass estimate by interpolation in the calibration line, 25.6 kDa, 326 

corresponding to 1.4 protomers). A monomeric architecture would agree with the lack of 327 

interactions between GNAT domains in the crystal structure of the NgNAGS hexamer (24,34).  328 

 329 

The isolated GNAT domain catalyzes the NAGS reaction and is insensitive to arginine. 330 

 In agreement with the observation made on the NgNAGS structure that the sites for both 331 

substrates are located in the GNAT domain (34), only this domain exhibited NAGS activity 332 

(Figs. 5A,B, inverted closed triangles). However, the concentrations of glutamate required for 333 

activity with the isolated GNAT domain were much higher than those for the uncleaved PSsite 334 

form (~25-fold higher; compare in Fig. 5A, the main panel and the inset), agreeing with the 335 

results obtained (see previous section) with the cleaved PSsite form in which the two domains 336 

had not been separated (Fig. 5A, diamonds). In addition, as expected from the binding of arginine 337 

in the AAK domain of PaNAGS (32) and NgNAGS (24), the isolated GNAT domain was 338 

insensitive to arginine  (Fig. 5C). Identical results were obtained, within experimental error (Fig 339 

5, open circles), for the substrate dependency of the activity and lack of arginine sensitivity with 340 

the recombinant GNAT domain that we finally succeeded in producing as a chimera with SUMO 341 

(Figs. 2A and 2D).  342 

 343 

The deletion of the N-terminal helix renders PaNAGS dimeric 344 

 The present results indicate that the AAK domain, when connected covalently to the 345 

GNAT domain by the normal or by mutated versions of the interdomain linker (including 5-346 
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residue longer versions as in the engineered linker of the PSsite form), triggers on the GNAT 347 

domain a very important increase in the apparent affinity for glutamate. The structure of 348 

NgNAGS (34) reveals that each GNAT domain is connected to two or even to three [in the 349 

arginine bound-form (24)] AAK domains, one belonging to the same subunit, to which the 350 

GNAT domain is covalently linked, and the others from an adjacent dimer on which the GNAT 351 

domain lies in the hexameric structure. Therefore, we sought to clarify whether it was the cognate 352 

AAK domain or the ones from an adjacent dimer which are responsible for triggering the 353 

increased affinity for glutamate of the GNAT domain. 354 

 We decided to dissociate the PaNAGS hexamer to dimers by deleting the N-terminal 355 

helix, which, by interlacing with the corresponding N-helix from another dimer, links the three 356 

dimers into the hexamer (34) (Fig. S1A). In this way, the connection of each GNAT domain with 357 

its cognate AAK domain of the same subunit would be preserved, while the interaction with the 358 

AAK domains from another dimer would be lost if the hexamer were dissociated to its three 359 

composing dimers. We actually deleted only residues 1 to 12 (Fig. 2A), which should correspond 360 

to the larger and more N-terminal portion of the N-terminal helix, down to the kink before the 361 

second portion of the helix (34), which is shorter and is involved in arginine binding (24,33), thus 362 

expectedly preserving the arginine binding site. The resulting protein (called 1-12 form) was 363 

expressed as the wild-type enzyme, it was soluble and was purified easily (Fig. 2D), and it 364 

behaved in gel filtration (Fig. 6) as dimers, as expected, although with some skew towards larger 365 

elution volumes that may indicate coexistence with a small fraction of monomers. Thus, these 366 

results reveal hexamer dissociation, and therefore abolition of interdimeric contacts. The peak of 367 

dissociated enzyme exhibited enzyme activity (Fig. 6) with a constant ratio, within experimental 368 

error, of activity versus protein concentration (monitored as OD
280

, Fig. 6, and confirmed by 369 
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SDS-PAGE, not shown), indicating that the wole peak consists of a single species in terms of 370 

specific activity. The substrate kinetic parameters for this enzyme form (Fig. 5A, B, open 371 

squares) appear identical, within experimental error, to those of the isolated recombinant or 372 

PreScission-cleaved GNAT domain when velocities are expressed as turnover number per 373 

polypeptide chain. Thus, single concentration-activity curves for glutamate and acetyl-CoA were 374 

fitted to the pooled values for these enzyme forms (Figs. 5A,B). The curve for glutamate, 375 

adjusted to hyperbolic kinetics with substrate inhibition, corresponds to ~50-fold increase and ~2-376 

fold decrease in Km and kcat, respectively, relative to the wild-type enzyme (Fig. 5A, inset). The 377 

hyperbola fitted to the pooled data for acetyl-CoA (Fig. 5B), shows a modest (~2-fold) increase 378 

in Km
Acetyl-CoA

 relative to wild-type. The identical kinetic properties of dimeric PaNAGS and of 379 

the isolated GNAT domain indicate that the modulatory effect of the AAK domain on the activity 380 

of the GNAT domain results from the interactions that occur in the hexamer between GNAT 381 

domain from one dimer and AAK domains from another dimer. Furthermore, arginine had no 382 

effect on the activity of the enzyme with the helix deletion (Fig. 5C). Since the portion of the 383 

helix that is deleted is not involved in arginine binding (24), arginine would be expected to bind 384 

to the dimeric enzyme. Therefore, the lack of influence of arginine on enzyme activity possibly 385 

reflects the requirement of an hexameric organization for inhibition in classical NAGS. 386 

 387 

The AAK domain of NAGS derives from an ancestral NAGK domain, as shown by  388 

triggering NAGK activity by a double point mutation  389 

 As already indicated, the isolated AAK domain did not exhibit NAGS activity, as 390 

expected. However, the similarity of this domain of NgNAGS with the enzyme NAGK (34), with 391 

preservation of the active center crevice (Fig. 7A), led us to investigate whether this domain had 392 

any NAGK activity. In fact, a bifunctional NAGS/NAGK has been identified in Xanthomonas 393 
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campestris (27), although its NAGK activity is quite low when compared with its own NAGS 394 

activity or with the NAGK activities of classical bacterial NAGKs (13,22). 395 

We failed to detect any NAGK activity with PaNAGS, even at very high enzyme 396 

concentrations (up to 0.16 mg/ml in the assay; at this concentration the X. campestris enzyme 397 

would have consumed all the NAG in the assay). This lack of NAGK activity might have been 398 

expected, since P. aeruginosa has a separate gene (argB) that encodes a highly active arginine-399 

sensitive NAGK (28). Similarly, we failed to detect any NAGK activity with the isolated 400 

recombinant AAK domain of PaNAGS, even at concentrations of 0.3 mg/ml in the assay (closed 401 

circle in Figs. 7B and 7C) excluding that the lack of NAGK activity of the complete enzyme were 402 

due to some inhibitory effect of the GNAT domain on that activity. However, when we mutated 403 

to lysine two residues of the putative NAGK active center of the AAK domain of PaNAGS 404 

(M26K/L240K double mutation), rAAK became active as a NAGK. These residues were chosen 405 

because they are the counterparts in PaNAGS of two invariant NAGK active center lysines (K8 406 

and K217 of E. coli NAGK, Fig. 7A) that play key catalytic roles in acetylglutamate  407 

phosphorylation (16,29). Whereas no activity was observed when only one of the two mutations 408 

was introduced in rAAK (results not shown), the double mutant exhibited clear although low 409 

NAGK activity (Fig. 7B, C). The activity depended hyperbolically on the ATP concentration 410 

(Fig. 7B), and also presented a non-linear dependency on the concentration of NAG (Fig. 7C), 411 

although the apparent affinity for this substrate was too low to approach saturation. The apparent 412 

Km
ATP

 of the double mutant (1.6 ± 0.2 mM) was in the typical range for a bacterial NAGK in the 413 

same type of hydroxylamine-based assay (13,18). In contrast, the Km
NAG

 could not be estimated 414 

accurately given its high value, since the range of NAG concentrations used did not reach the 415 

levels needed for saturation. In any case, from the data of Fig. 7C it appears evident that the  416 

Km
NAG

 and the activity at saturation of this substrate are >0.225 M and >0.5 U/mg, respectively. 417 
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Actually, the best hyperbolic fit for the NAG data gives apparent Km
NAG

 and Vmax values of ~0.8 418 

M and ~1 U/mg, respectively. The Vmax value is not too far from the activity exhibited by the 419 

bifunctional X. campestris enzyme (27). However, the Km
NAG

 is much higher than for genuine 420 

NAGKs (13,18), possibly reflecting a high tendency towards a closed conformation of the NAG 421 

site of the AAK domain of NAGS, as revealed by the lowered position of the lid for this site (the 422 

3-4 hairpin, Fig. 7A) in the NgNAGS structure (24), despite the emptiness of this site, whereas 423 

in NAGK this site only closes down when NAG is bound (15).  424 

. 425 

How and why two-domain  NAGSs emergerd? 426 

The closeness of the AAK domains of NAGS and NAGK goes beyond the overall domain 427 

fold, extending to the similarity of the NAGK active center crevice (Fig. 7A) and even to the 428 

conservation of a key NAG-binding arginine (R66 of E. coli NAGK; R85 of NgNAGS, Fig. 7A; 429 

R82 of PaNAGS) (29,34). Indeed, although with low affinity, the AAK domain of NAGS binds 430 

NAG, as attested by the NAGK activity of its M26K/L240K double mutant despite the fact that 431 

these mutations do no affect NAG site residues. An invariant aspartate  (D162 in E. coli NAGK) 432 

that in NAGKs has a key active center-organizing role by coordinating the two catalytic lysines 433 

and by binding MgATP (16,29), is also preserved in many NAGSs as a glutamate (E185 of 434 

PaNAGS), although not in NgNAGS  (34). The NAGK activity of the M26K/L240K double 435 

mutant indicates that classical NAGS lost its ancestral NAGK activity primarily because of the 436 

mutation of these two catalytic lysines (16,22,29). Indeed, as expected from its NAGK activity, 437 

the bifunctional NAGS/NAGK of X. campestris has these two lysines preserved (27).  438 

Since Mycobacterium tuberculosis NAGS merely is a GNAT domain and yet it is feed-439 

back inhibited by arginine (12), the AAK-GNAT domain organization of classical bacterial 440 
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NAGS is clearly unessential for arginine-regulated NAG synthesis from acetyl-CoA and 441 

glutamate. The proposal of Labedan's group (37) that the classical two-domain NAGSs arose 442 

from the fusion of a NAGS similar to that found in M. tuberculosis and an arginine-sensitive 443 

NAGK, is supported very strongly by our finding that a mere two-residue mutation in the AAK 444 

domain of PaNAGS can render this domain a NAGK. This proposal is also supported by the 445 

closeness of the structures of NAGK (28,29) and the AAK domain of  NgNAGS (34) (Fig. 7A), 446 

and by the discovery of bifunctional NAGS/NAGKs having the same domain organization as 447 

PaNAGS (27). A question remaining to be answered concerning the evolutionary process from 448 

single domains to two-domain NAGS is whether the arginine sensitivity of M. tuberculosis 449 

NAGS (12) was a late evolutionary acquisition or whether this trait of the GNAT component was 450 

originally present and has been lost over the course of evolution of two-domain NAGSs. 451 

A major advantage of associating AAK and GNAT domains into a two-domain NAGS 452 

that has become patent in our studies is that, because of the important modulatory role of the 453 

AAK domain on the activity of the GNAT domain, the Km for glutamate is brought down from 454 

the very high values of the M. tuberculosis enzyme (12) to the mM range that is characteristic for 455 

the canonical microbial enzymes (17,23,24,27,32). This value is in these enzymes closer to the 456 

range of glutamate concentrations present in bacteria [see for example (25)], thus increasing the 457 

efficiency of the enzyme in the catalysis of the reaction in vivo. Another potential reason for 458 

shifting from a single-domain to a two-domain NAGS may be related to NAG channelling 459 

between NAGS and NAGK, since such channelling would prevent unwanted NAG hydrolysis by 460 

aminoacylases such as those being prevalent in animals (30) or existing (although nowadays in 461 

the periplasmic space) in P. aeruginosa (14). This channelling requires the direct interaction of 462 

the GNAT domain of one subunit with the AAK domain of another subunit, as observed in 463 

hexameric NAGS. A reminiscence of such channelling might be the association in yeasts of 464 
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NAGS and NAGK, both having the two-domain composition of PaNAGS (27), to form a 465 

metabolon when NAG is produced by NAGS (1,26). It would be important to clarify whether 466 

such channelling occurs in this metabolon and/or in the bifunctional NAGS/NAGKs. 467 

 A third potential advantage of the two-domain organization of NAGS is the possibility of 468 

modulating easily the arginine regulation of the NAGS activity. In two-domain NAGS, arginine  469 

regulation results from primary arginine-triggered changes on the architecture of the AAK 470 

domain hexamer (24). These changes are similar to those observed in hexameric NAGK upon 471 

arginine binding to this enzyme (28). Since with this latter enzyme a signalling protein, PII, was 472 

shown to modulate the sensitivity of the enzyme to arginine inhibition (21), it cannot be excluded 473 

that analogous regulatory mechanisms may exist for modulating the arginine sensitivity of 474 

canonical hexameric NAGSs. Furthermore, the key role of the interdomain linker as a mediator 475 

of the arginine effect that is revealed by our previous (33) and present studies provides the basis 476 

for adapting arginine regulation by mere changes in the 5-residue linker sequence. This endows 477 

AAK-GNAT domain NAGSs with an enormous potential for adapting to the specific 478 

physiological needs of different organism. The best example of this ability to adapt is provided 479 

by the change in the effect of arginine on NAGS from inhibition to activation with the shift of 480 

animals from marine life to terrestrial ureotelism (19), a change that we have partially reproduced 481 

by linker manipulation in the present studies.  482 
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Figure legends 602 

Fig.1. Roles of  N-acetyl-L-glutamate synthase (NAGS) and of its homologous enzyme N-acetyl-603 

L-glutamate kinase (NAGK) in arginine biosynthesis. Two arrows in succession indicate the 604 

existence of two steps that are not detailed. Double and triple green arrows and green encircled 605 

plus signs denote activation, whereas double red arrows and red encircled minus signs denote 606 

inhibition. OTC, ornithine transcarbamylase. ARG1, arginase 1. (A) Schematic representation of 607 

the arginine biosynthetic pathway of P. aeruginosa and of many other bacteria and plants. The 608 

dotted arrows for the NAGS reaction indicate an anaplerotic role of NAGS in those organisms 609 

like P. aeruginosa in which the N-acetyl group is recycled by transacetylation from 610 

acetylornithine to glutamate (10). However, some organisms like E. coli deacetylate 611 

acetylornithine hydrolytically, and in these cases NAGS makes one NAG molecule per arginine 612 

molecule synthesized (10). The structures of the NAGS from N. gonorrhoeae (34) (PDB file 613 

2R8V) and of NAGK from P. aeruginosa (28) (PDB file 2BUF)  are shown next to the steps 614 

catalyzed by them to illustrate grossly their structural similarity.  They are viewed along their 615 

threefold axes, with each dimer colored differently and with both subunits of each dimer in 616 

different color hues. NAGK and the AAK domain of NAGS are shown in cartoon  representation. 617 

In NAGS, to avoid occluding the view of the AAK domains, the GNAT domains are shown in 618 

surface semi-transparent representation, and those in the background are fainter. (B) Arginine and 619 

urea biosynthesis in urea-making terrestrial animals such as humans. Animals do not make 620 

ornithine through N-acetylated intermediates and they lack NAGK and other enzymes of the 621 

route except NAGS (2). The large triple green arrow in (B) stresses the essentiality of the 622 

activation of carbamoyl phosphate synthetase (CPS I)  by NAG.  623 

 624 
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Fig. 2.  Engineered and mutant forms of PaNAGS. (A) Schematic representation of the PaNAGS 625 

polypeptide, illustrating the constructions prepared in the present work, giving the abbreviated 626 

denomination used here for each construction. The figures above the wild type form correspond 627 

to the first and last residues of each domain. (B) Detail of the interdomain linker (in string 628 

representation and yellow) of a subunit of NgNAGS in arginine-free form (left panel) (PDB file 629 

2R8V) (34) and arginine-bound form (right panel) (PDB file 3D2P) (24), showing the AAK and 630 

GNAT domains that are connected by this linker in semi-transparent surface representation and 631 

colored blue and brown-orange, respectively. The side-chain of the linker residue F286 632 

(corresponding to F285 of PaNAGS) is shown in sticks representation with its Van der Waals 633 

suface in yellow dots. (C) Linker mutants, shown below the alignment of the region 634 

encompassing the last and first  strands (shown as arrows) of the AAK and GNAT domains, 635 

respectively, of NgNAGS and the corresponding sequences of human NAGS (HuNAGS) and 636 

PaNAGS. Amino acid identities and conservative replacements are highlighted in black and grey 637 

backgrounds, respectively, with lettering in white. All the mutant sequences replace the EQF 638 

sequence of the wild-type form. In the PSsite mutant the cleavage by PreScission protease should 639 

take place immediately before the two underlined residues. (D) Coomassie-stained SDS-PAGE of 640 

the purified wild type enzyme, of the rAAK and rGNAT domains and of the 1-12 engineered 641 

form (see panel A for the composition of these forms) as well as of the gel-filtration separated 642 

AAK and GNAT domains prepared by PreScission cleavage of the PSsite form. St, molecular 643 

mass standard markers, with masses given at the side.  644 

 645 

Fig. 3. Influence of linker mutations on the effect of arginine on PaNAGS activity (expressed as a 646 

percentage of that for each form in the absence of arginine). See Fig. 2C for the key to each 647 
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mutant form. (A) and (B), mutant forms having or not having a lengthened linker, respectively, 648 

are compared with the wild-type form (EQF). The activation by arginine of the EAQGP and 649 

LFQGP forms is statistically significant for the points marked with double stars ( p<0.001) or 650 

single stars (p<0.01) (tested with ANOVA, followed by the Bonferroni test for individual points; 651 

n=4-8). The insets to the right of (A) show the glutamate concentration dependency of the 652 

velocity  for the form with the EAQGP linker sequence (top inset) and for the wild-type enzyme 653 

(bottom inset). The curves drawn in these insets are those for hyperbolic kinetics with substrate 654 

inhibition for the following Km
Glu

, KI
Glu

 (both in mM units) and Vmax (as U/mg), respectively: 655 

EAQGP without arginine, 4.9, 69 and 67; EAQGP with 30 mM arginine, 37, 103 and 136; EQF 656 

(wild type) without arginine, 5.2, 72 and 136; and EQF with 2 mM arginine, 85,   (no substrate 657 

inhibition) and 22.  658 

 659 

Fig. 4. Linker cleavage with PreScission protease and size exclusion chromatography of the 660 

digested enzyme and of the recombinant AAK domain. (A) SDS-PAGE analysis (Coomassie 661 

staining) reveals that wild type PaNAGS (WT) is not cleaved, whereas the enzyme engineered to 662 

include in the linker the PreScission cleavage site (PSsite, see Fig. 2A and C) is cleaved. 663 

PaNAGS and PreScission concentrations, 0.5 mg/ml and 167 U/ml, respectively. Note that a 664 

large excess of protease was added and that the polypeptide mass of this protease is very close to 665 

that of PaNAGS. St, protein markers of the indicated masses. (B) Of a digestion of PSsite form of 666 

PaNAGS (1 mg/ml) with 30 U/ml of PreScission protease, 95 l were centrifuged through a 0.1 667 

ml His Spin Trap column, followed by a 0.2 ml wash with  Na phosphate 20 mM pH 8/1 mM 668 

DTT/0.5 M NaCl/20 mM imidazole, and with elution with two lots of the same buffer 669 

supplemented with 0.5 M imidazole, collecting separately each eluate from the sample, the 670 
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washing and the two-lot elutions. The figure shows the result of SDS-PAGE analysis of the 671 

various fractions. AAK and GNAT denote the bands corresponding to these individual domains. 672 

(C)  Size exclusion chromatography of cleaved (continuous line) or uncleaved (broken line) 673 

PaNAGS and of the recombinant AAK domain (dotted line). For details see Materials and 674 

Methods. 0.3 mg of each protein were injected. The digestion was that shown in panel (B). The 675 

upper line is the semilogarithmic plot of the masses of marker proteins (closed circles) versus 676 

their elution volumes. The open symbols correspond to the protein peaks below them, for the 677 

following sequence-deduced masses: () whole enzyme, assuming it is hexameric, 294.4 kDa; 678 

() AAK domain, either recombinat or produced by cleavage, assuming that it is hexameric, 679 

189.1 kDa; (, ) GNAT domain, assuming that it is monomeric (18.1 kDa) () or dimeric (36.2 680 

kDa) (). The following protein standards were used (with masses given in kDa): thyroglobulin, 681 

669 (not shown), ferritin, 440; T. maritima acetylglutamate kinase, 182 (28); E. coli UMP kinase, 682 

165 (5); bovine serum albumin, 66.4; carbonic anhydrase, 29; ribonuclease, 13.7.  683 

 684 

Fig. 5. Dependency of NAGS activity on the concentration of both substrates (A and B) and of 685 

arginine (C) for WT,  PSsite form (either uncleaved or PreScission protease-cleaved) and ∆1-12 686 

form of PaNAGS, and of the GNAT domain either isolated after cleavage (GNAT cleaved) or 687 

produced recombinantly (rGNAT). When acetyl-CoA was varied the concentration of glutamate 688 

was fixed at 100 mM, except for the WT and the uncleaved PSsite forms, with which it was kept 689 

at 30 mM. When glutamate was varied, acetyl-CoA was fixed at 4 mM.To allow meaningful 690 

comparison of the activity of various enzyme forms having different masses, velocities are given 691 

as turnover numbers per polypeptide chain (units are s
-1

). Similar concentration-dependency of 692 

the PSsite cleaved form, the ∆1-12 form and the isolated GNAT domains is evident for each 693 
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substrate. Therefore, single curves were fitted for the results with all these forms for glutamate 694 

(A) and for acetyl-CoA (B). The curve for glutamate corresponds to hyperbolic kinetics with 695 

substrate inhibition and respective values for Km
Glu

, KI
Glu

 and apparent kcat at infinite glutamate,  696 

of  240  45 mM, 1254   480 mM and 66  8 s
-1

. The curve for acetyl-CoA (B) is a hyperbola 697 

with values of Km
Acetyl-CoA

 and apparent kcat at infinite acetyl-CoA of 190  30 M and 20.0  0.7 698 

s
-1

, respectively. The Km
Glu

, KI
Glu

 and Km
Acetyl-CoA

 for the WT and for the uncleaved PSsite forms 699 

of the enzyme are those of Table 1, and the apparent kcat values (in s
-1

) are, for [glutamate] = , 700 

111  16 for WT and 69  7 for the uncleaved PSsite form (see inset in A); and for [acetyl-CoA] 701 

= , 65  1 for WT and 46  1 for the PSsite form (see B). (C) Influence of arginine 702 

concentration on enzyme activity. Results are expressed as a percentage of the activity of the 703 

same enzyme form in the absence of arginine. A single line corresponding to no inhibition has 704 

been fitted to the results for all forms except the wild type enzyme. Substrate concentrations in 705 

these assays were 4 mM acetyl-CoA and either 30 mM glutamate for WT and uncleaved PSsite 706 

forms or 100 mM for all other forms.  707 

 708 

Fig. 6. Size exclusion chromatography of the ∆1-12 form of PaNAGS. The chromatographic 709 

profile (continuous line) is compared with that of the wild type enzyme (broken line), both 710 

injected in 0.2 mg amounts. The procedure and system are descibed in the section on "cleavage 711 

with PreScission protease and separation of the two domains" in the Materials and Methods. In 712 

the case of ∆1-12, enzyme activity was measured in 1-ml collected fractions (closed circles, 713 

bottom plot). The upper line is the semilogarithmic plot of the masses of marker proteins (closed 714 

circles) versus their elution volumes.. The open symbols correspond to the protein peaks below 715 

them, for the following sequence-deduced masses: () whole enzyme, assuming it is hexameric 716 
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(294.4 kDa); () ∆1-12 enzyme form, assuming that it is dimeric (95.5 kDa). The protein 717 

standards used and their masses in kDa are: ferritin, 440; β-amylase, 224; T. maritima 718 

acetylglutamate kinase, 182 (28); aldolase, 158; alcohol dehydrogenase, 147; bovine serum 719 

albumin, 66.4; carbonic anhydrase, 29; ribonuclease, 13.7.  720 

 721 

Fig. 7. The AAK domain of NAGS is an ancestral NAGK. (A) Stereo view of the 722 

superimposition of the structure of the active center of E. coli NAGK (in green) bound to NAG 723 

and the ATP inert analog AMPPNP (PDB file 1GS5) (29) with the corresponding region of 724 

NgNAGS (in orange-brown) (PDB 2R8V). The main chain of the structural elements (labeled)  725 

that make the site are shown. A few important residues are illustrated in the same color as the 726 

main chain (except the N atoms of the side chains, that are colored blue) and are labeled. NAG 727 

and AMPPNP are shown in sticks representation, with C, P, O and N atoms colored yellow, 728 

green, red and blue, respectively. (B) and (C), dependency of the activity of the M26K/L240K 729 

double mutant (squares) of rAAK on ATP and NAG concentrations. The circle illustrates the lack 730 

of activity of the wild type enzyme (0.3 mg/ml) assayed under the same conditions at 20 mM 731 

ATP and 100 mM NAG concentrations. The hyperbola fitted to the points for variable ATP 732 

yields Km
ATP

 and V
[ATP] = ∞

 values of 1.6 ± 0.2 mM and 0.122 ± 0.003 U/mg. The nearly linear 733 

NAG concentration-dependency of the activity indicates that the Km
NAG

 and the V
[NAG] = ∞

 734 

exceed, respectively, 0.225 M and 0.5 U/mg. The curve fitted over the points would correspond 735 

to the hyperbola for Km
NAG

 and V
[NAG] = ∞

 values of 0.83 M and 1.1 U/mg, respectively. 736 

 737 


