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ABSTRACT 23 

Kisspeptin is thought to have a major role in the control of the onset of puberty in vertebrates. 24 

However, our current understanding of its function in fish and how integrates with other 25 

hormones is incomplete due to the high diversity of this group of animals and a still limited 26 

amount of available data. This study examined the temporal and spatial changes in expression of 27 

kisspeptin, gonadotropins and their respective receptors in the Senegalese sole during a full 28 

reproductive cycle. Kiss2 and kiss2r expression was determined by qRT-PCR in the forebrain, 29 

and midbrain while expression of fshβ and lhβ was determined in the pituitary and fshr and lhr 30 

in the gonads. Plasma levels of testosterone (T), 11-ketotestosterone (11-KT) and estradiol-17β 31 

were measured by ELISA and gonadal maturation was assessed histologically. In males, kiss2 32 

and kiss2r expression in the brain areas examined was highest towards the end of winter, just 33 

before the spawning season, which took place the following spring. This coincided with 34 

maximum levels of pituitary fshβ and lhβ, plasma T and 11-KT and the highest number of 35 

maturing fish. However, these associations were not evident in females, since the highest 36 

expression of kiss2, kiss2r and gonadotropins were observed in the fall, winter or spring, 37 

depending upon the variable and tissue considered. Taken together, these data show not only 38 

temporal and spatial, but also sex-specific differences in the expression of kisspeptin and its 39 

receptor. Thus, while expression of kiss2 in Senegalese sole males agrees with what one would 40 

expect according to its proposed role as a major regulator of the onset of reproduction, in 41 

females the situation was not so clear, since kiss2 and kiss2r expression was highest either 42 

before or during the spawning season.  43 

44 
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1. Introduction 45 

Kisspeptin has emerged as a key player in the neuroendocrine control of reproduction in 46 

vertebrates (Roa et al., 2008; Tena-Sempere, 2010), and is thought to be particularly implicated 47 

in the control of the onset of puberty in mammals (de Roux et al., 2003; Seminara et al., 2003) 48 

and teleost fish (Oaklet et al., 2009; Taranger et al., 2010). Kisspeptin is a neuropeptide product 49 

of the KISS1 gene and forms a signaling system with its receptor, KISSR (Roa et al., 2008; 50 

Roseweir et al., 2009). In mammals, these genes are well conserved, with one ligand, KISS1, 51 

and its receptor, KISS1R (Oakley et al., 2009). However, several fish have two ligands, kiss1 and 52 

kiss2, and two receptors, kiss1r and kiss2r, as a result of gene duplications (Akazome et al., 53 

2010; Lee et al., 2009; Mechaly et al., 2010; Um et al., 2010; Tena-Sempere et al., 2012). In the 54 

Senegalese sole (Solea senegalensis), only kiss2 and kiss2r have been detected (Mechaly et al., 55 

2009, 2011) and thus this species appears to have lost kiss1 and kiss1r, probably as a 56 

consequence of the genome reduction characteristic of Pleuronectiformes. However, in the 57 

Seenegalese sole each gene produces two splice variants but one of them results in putative non-58 

functional products due to the presence of stop codons in the mRNA (Mechaly et al., 2009, 59 

2011). Thus, some teleosts have lost one of the two paralogous genes, either of the ligand, the 60 

receptor or both (Mechaly et al., 2010, 2011).  61 

 62 

Kisspeptin and its receptor (kissr) are expressed in several tissues, but due to their proposed role 63 

in reproduction (Tena-Sempere, 2010) the majority of studies have focused on the brain and 64 

gonads. In the medaka (Oryzias latipes), two populations of Kiss1 neurons were found in the 65 

hypothalamus, one in the nucleus posterioris periventricularis (NPPv), and another in the 66 

nucleus ventral tuberis (NVT) (Kanda et al., 2008; Kitahashi et al., 2009). In addition, in 67 

medaka and also in zebrafish (Danio rerio) the highest levels of kiss1 mRNA were found in the 68 

ventromedial habenula, whereas kiss2 mRNA was localized in the posterior tuberal nucleus and 69 

the periventricular hypothalamic nucleus (Kitahashi et al., 2009; Servili et al., 2011). Regarding 70 
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the kisspeptin receptor, expression profiles of kiss2r during development and sexual maturation 71 

have been determined in the brain of several fish species. In the Nile tilapia (Oreochromis 72 

niloticus), kiss2r mRNA levels were higher in gonadotropin-releasing hormone (GnRH) neurons 73 

of mature males when compared to those of immature males (Parhar et al., 2004). An increase of 74 

kiss2r expression before the onset or during early puberty was observed in the brain of cobia 75 

(Rachycentron canadum) (Mohamed et al., 2007), grey mullet (Mugil cephalus) (Nocillado et 76 

al., 2007), fathead minnow (Pimephales promelas) (Filby et al., 2008) and Atlantic halibut 77 

(Hippoglossus hippoglossus) (Mechaly et al., 2010). In zebrafish, kiss2r mRNA levels peaked 78 

coinciding with the onset of puberty in the female brain but those of kiss1r increased before the 79 

onset of puberty and remained high thereafter in both sexes (Biran et al., 2008). Thus, most 80 

studies have analyzed the expression of these genes either in whole brains or specifically in the 81 

hypothalamus due to its direct involvement in reproduction. Nevertheless, there is still limited 82 

knowledge on the neuroendocrine mechanism that controls puberty in teleost fish (Taranger et 83 

al., 2010).  84 

 85 

The Senegalese sole is a highly prized fish with a great potential for aquaculture (Anguis et al., 86 

2005; Imsland et al., 2003). Although in some cases cultured males co  lete s er ato enesis 87 

and s er   aturation  it  nor al le els o  andro en in  las a   arc a-L  e  et al       b  88 

Cabrita et al., 2006), recent studies observed low sperm quality caused by some cellular damage 89 

in the spermatozoa of the F1 fish (Beirao et al., 2008), together with alterations in protease 90 

inhibition, iron and glucose metabolism. Further,  rotection a ainst o idati e stress  a  cause 91 

t e lo   roduction o  t e s er  and  oor  ertili ation ca acit  b   1  ales   orn  et al       ). 92 

In females, administration of GnRHa induced oocyte maturation and spawning. However, 93 

GnRHa administration was not completely effective in avoiding poor fertilization of the eggs 94 

produced by F1 females (Guzmán et al., 2009a). In addition, previous studies analyzed the 95 

influence of abiotic factors, particularly the lunar and daily changes of natural (Oliveira et al., 96 
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2009) and artificial photoperiods (García-López et al., 2006a), on the spawning of this species. 97 

In fish, melatonin contributes to synchronize neuro-hormonal changes and behavior with daily 98 

and annual variations of photoperiod (Falcón et al., 2010). In the Senegalese sole, the 99 

relationship between the lunar cycle, melatonin, and sex steroids is thought to facilitate 100 

spawning during the darkest nights as an adaptation to escape predators and thus increase the 101 

chances of survival of the offspring (Dinis et al., 1999; Oliveira et al., 2010). Furthermore, 102 

another abiotic factor, water temperature, plays a crucial role in the reproductive cycle of this 103 

species by determining when gonadal maturation can take place (Anguis et al., 2005; García-104 

López et al., 2006a; 2007). Additionally, injection of GnRHa during the spring induces multiple 105 

spawns but these treatments were ineffective in inducing sperm production in males (Agulleiro 106 

et al., 2006). Moreover, blockage of an endogenous dopamine (DA) inhibitory system stimulates 107 

spermatogenesis and sperm production in mature males (Guzmán et al., 2011). In the pituitary, 108 

follicle-stimulating hormone and luteinizing hormone β subunit (fshβ and lhβ, respectively) gene 109 

expression increased in males during winter and spring, coinciding with a peak of androgens in 110 

plasma and development of testicular germ cells and spermatozoa, suggesting that these genes 111 

regulate spermatogenesis in the semi-cystic, asynchronous testis type characteristic of this 112 

species (Cerdà et al., 2008). In the gonads, mRNA levels of fshr and lhr during the reproductive 113 

cycle were consistent with earlier observations showing that fshr regulates ovarian growth and 114 

spermatogenesis, whereas lhr triggers gamete maturation, suggesting a role of the lhr in the 115 

differentiation of spermatids into spermatozoa (Chauvigné et al., 2010). Thus, Senegalese sole is 116 

an excellent model for the study of the expression patterns of several key genes related to the 117 

onset of puberty or at the beginning of the reproductive cycle, and these results can be related 118 

with situations where spermatogenesis progression is unaffected. 119 

 120 

In fish, very few studies analyzed the expression pattern of the kisspeptin system genes during 121 

the different seasons of the year. In the grass puffer (Takifugu niphobles) kiss2 and kiss2r 122 
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mRNA levels in the brain and pituitary of both sexes were higher during the spawning season 123 

when compared to the non-reproductive season, suggesting an important role of the kisspeptin 124 

system in the regulation of reproductive function (Shahjahan et al., 2010). A recently study in 125 

red seabream (Pagrus major) examined the influence of kiss2 neurons on GnRH1 neurons and, 126 

similar to what was observed in grass puffeer, kiss2 mRNA was higher during the spawning 127 

period (Shimizu et al., 2012). In a previous study with Senegalese sole, we found some 128 

differences in expression of kiss2 and kiss2r between pubertal and mature fish (Mechaly et al., 129 

2009, 2011). Furthermore, showed that fasting stimulated kiss2 and kiss2r expression, which 130 

was followed by a concomitant increase in pituitary fshβ and lhβ gene expression, suggesting a 131 

link between nutritional status and reproduction mediated by hypothalamic kisspeptin and 132 

hypophysary gonadotropins (Mechaly et al., 2011). However, the expression pattern of kiss2 and 133 

kiss2r in different parts of the brain-pituitary-gonad (BPG) axis and throughout a full 134 

reproductive cycle is not known in this and the vast majority of fish species. 135 

 136 

The present study was undertaken to gain a better understanding of the spatial and temporal 137 

changes of kisspeptin and its receptor and their relationship with the gonadotropins in fish. With 138 

this purpose, biometric parameters, plasma sex steroids, and gene expression patterns of kiss2 139 

and kiss2r in different brain areas (including hypothalamus, telencephalon and optic tectum), 140 

fshβ and lhβ in the pituitary and fshr and lhr in the gonads, were determined in male and female 141 

Senegalese sole during a full reproductive cycle.  142 

 143 

2. Experimental Procedures  144 

2.1. Source of the animals and sample collection 145 

Senegalese sole (F1 generation) were reared from eggs spawned by different stocks of wild fish 146 

(F0) and acclimated to captivity at the facilities of the IFAPA research center in El Puerto de 147 

Santa María (Cádiz, SW Spain). A group of those fish (range: 25–40 cm; 256–994 g) were 148 
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transported and maintained at the Experimental Aquarium Facilities of the Institute of Marine 149 

Sciences, Barcelona  41º 3’13”N   º11’4 ”E) under simulated conditions of natural temperature 150 

and photoperiod and fed once a day with a commercial diet (Skretting, Spain). The animals were 151 

treated according to the approved institutional guidelines on the use of animals for research 152 

purposes, and in agreement with the European regulations of animal welfare (ETS No. 153 

123,01/01/91). Fish were sampled during a full reproductive cycle during spring (SP1, 4 June 154 

2008), summer (SM, 10 July 2008), fall (FL, 25 November 2008), winter (WT, 17 February 155 

2009) and again the following spring (SP2, 4 May 2009). For sampling, fish  (usually sample 156 

size was 7–9 fish per sampling with a maximum range of 3–11 depending upon sex and/or 157 

season) were anesthetized with an overdose of neutralized MS-222 (Sigma-Aldrich, St. Louis, 158 

MO, USA) and sacrificed by decapitation. Tissues were quickly removed under RNase-free 159 

conditions, flash frozen in liquid nitrogen and stored at -80ºC until used. For tissue distribution 160 

analysis, the pituitary was separated from the brain and the brains were dissected into six 161 

regions: Olfactory bulb, Telencephalon, Optic tectum, Cerebellum, Medulla oblongata and 162 

Hypothalamus. For gene expression analysis, and because of the low levels of the targeted 163 

genes, brain areas considered were the forebrain (including telencephalon and hypothalamus) 164 

and midbrain (optic tectum). Fragments of testis and ovary  ere fi ed in 4%  ara or alde  de 165 

(PAF) for histological analysis. Biometric information, including standard length (SL) 166 

(precision 0,1 cm) body weight (BW) (precision 1 g) and gonad weight (GW) (precision 0,01 g) 167 

were assessed in all sampled fish. The gonadosomatic index (GSI) was determined according to 168 

the formula: GW (g)/BW (g)* 100. 169 

 170 

2.2. Histological analyses 171 

After fixation in 4% PAF for approximately 24 h at room temperature, gonads were washed for 172 

an additional 24 h in phosphate buffer (PB) (pH 7.4), dehydrated in a series of increasing 173 

alcohols, embedded in para last  sectioned at 7 μ   and stained  it   e ato ilin-eosin 174 
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following conventional histological procedures. Stages of spermatogenesis and oogenesis were 175 

determined according to the germ cell types present in the testes (García-López et al., 2006b) 176 

and ovaries (García-López et al., 2007), and the fish were classified as their sexually stages of 177 

gonadal development as immature, maturing or mature.  178 

 179 

2.3. Determination of plasma levels of sex steroids 180 

At each sampling, approximately 1 ml of blood was withdrawn from the caudal vein with the aid 181 

of a heparinized syringe, centrifuged, and the plasma stored at -20°C until analysis. Plasma 182 

levels of testosterone (T) and 11-ketotestosterone (11-KT) were determined in males, whereas 183 

estradiol-17ß (E2) plasma levels were determined in females, using commercially available 184 

enzyme immunoassay (EIA) kits (Cayman Chemical, Inc. Ann Arbor, Michigan, USA) 185 

following the manufacturer's instructions. Extra samples were spiked with known amounts of 186 

the corresponding tritiated steroid (New England Nuclear, Boston, MA) to calculate percent 187 

recovery, which typically was ≥   %, to adjust measured values. Plasma samples were assayed 188 

in duplicate using two 96-well plates. The assay coefficients of variation were 11.0 ± 1.8% for 189 

T, 6.4 ± 3.4% for 11-KT and 7.9 ± 2.7% for E2. 190 

 191 

2.4. RNA isolation and cDNA synthesis 192 

Total RNA was isolated from frozen brain and gonads with TRIZOL Reagent (Invitrogen, 193 

Carlsbad, USA), its quality was checked in a 1.5% agarose gel stained with SYBR safe (Syber 194 

Sa e™  In itro en  USA) and its quantit   easured in a Nanodro ® ND-1000 195 

spectrophotometer (Nanodrop® Technologies Inc, Wilmington, DE, USA). All RNAs were 196 

treated with DnaseI (Invitrogen, Carlsbad, USA) to remove any possible genomic DNA 197 

contamination. In all cases, 500 ng of RNA were used and reverse transcribed using SuperScript 198 

VILO cDNA synthesis kit (Invitrogen) and first strand cDNA was directly used for PCR into a 199 

   μl reaction  olu e  200 
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 201 

2.5. RT–PCR analysis of gene expression 202 

mRNA levels of kiss2 and kiss2r in different brain areas of male and female Senegalese sole in 203 

summer were assessed by previously validated Reverse Transcriptase PCR (RT-PCR) (Mechaly 204 

et al., 2009, 2011). Total RNA from six brain areas (olfactory bulb, telencephalon, optic tectum, 205 

cerebellum, medulla oblongata and hypothalamus) plus the pituitary were extracted as described 206 

above. One negative control (without cDNA sample) was included in each determination to 207 

ascertain that no cross-contamination took place. The PCR was carried out with 1 µl of the RT 208 

reaction in a total volume of 20 µl containing 1X PCR buffer plus, 3 mM Mg2
+
, 0.2 mM dNTPs, 209 

0.2 mM of each forward and reverse primers, and 1 IU of Platinum Taq DNA Polymerase 210 

(Invitrogen). The specific primers for amplification of kiss2 and kiss2r cDNAs were designed 211 

according to the nucleotide sequences of the full-length cDNAs (Table 1). Amplification of the 212 

ßactin was used as RNA quality control using a combination of appropriate primers (Table 1). 213 

The PCR cycling conditions were: 5 min at 95°C followed by 35 cycles of 30 s at 95°C, 30 s at 214 

60°C, 1 min at 72°C and a final extension of 7 min at 72°C. PCRs were performed with an 215 

initial cycle at 95°C for 5 min; then variable number of cycles was applied: 95°C for 30s; 65°C 216 

for 30s; 72°C for 1 min and a final extension cycle at 72°C for 7 min. An aliquot of the PCRs 217 

product was electrophoresed on 1.5% agarose gel containing ethidium bromide, and products 218 

were visualized and photographed. 219 

 220 

2.6. Seasonal changes in mRNA levels of kiss2 and kiss2r in different brain areas and mRNA 221 

levels of fshβ, lhβ in pituitary and fshr and lhr in the gonads 222 

The expression patterns of several genes were analyzed in males and females in the forebrain 223 

(hypothalamus plus telencephalon), midbrain (optic tectum), pituitary and gonads at the five 224 

different samplings stated above (SP1, SM, FL, WT and SP2) comprising a full reproductive 225 

cycle by quantitative real-time PCR (qRT-PCR). RNA and cDNA were obtained following the 226 
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protocol described above including the DNAse treatment step. The primers used for qRT-PCR 227 

were based on the sequences reported in previous studies (Cerdà et al., 2008; Chauvigné et al., 228 

2010; Mechaly et al., 2009, 2011) and are summarized in Table 1. 229 

 230 

The qRT-PCR amplification reaction mixture contained 2 µl of diluted cDNA (1:10) (freshly 231 

synthesized from 500 ng of RNA), 4 µM of each primer, and 10 µl of Power SYBRs Green PCR 232 

Master Mix (Applied Biosystems) in a final volume of 10 µl. Thermal cycling conditions 233 

comprised heating to 95°C for 10 min followed by 40 cycles at 95°C for 10 s and 60°C for 30 s. 234 

The qRT-PCR products were immediately analyzed using a dissociation curve step to confirm 235 

that only a single product was amplified. No-template control reactions for every primer pair 236 

were also included on each reaction plate to check for external DNA contamination. The 237 

amplification efficiency (E) of each primer set/gene target was assessed as E = 10
(-1/slope) 

as 238 

determined by linear regression of serial dilutions of the input RNA. To calculate relative 239 

changes in gene expression, we analyzed the data using the comparative Ct method (Schmittgen 240 

and Livak, 2008; also known as the ΔΔCt method). Fold change (the relative quantification, 241 

RQ) was calculated from the ΔΔCt and normalized by the endogenous reference gene ßactin. 242 

The RQ values for each sample were averaged and the standard error of the mean (S.E.M.) was 243 

calculated, yielding the average fold change of the target gene. Determinations were carried out 244 

in technical triplicates for all the genes studied. 245 

 246 

2.7. Data representation and statistical analyses 247 

Prior to analysis of data, GSI levels were arcsine-transformed to ensure homoscedasticity of 248 

variances. Normality of data was assessed by the Shapiro-Wilks W test. Differences in the GSI, 249 

plasma steroid and gene expression levels during the different seasons were analyzed by a one-250 

way analysis of variance (ANOVA). Only in the case of significant differences, ANOVA was 251 

followed by the Fisher's least significant difference (LSD) test. Statistical analyses of data were 252 
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performed using the SPSS 15.0 package. Differences were accepted as statistically significant 253 

when P < 0.05. Data are expressed as mean ± standard error of the mean (S.E.M). 254 

 255 

3. Results 256 

3.1 Biometric parameters and gonadosomatic indices of males and females (GSI)  257 

According to previously published studies, Senegalese sole reach first sexual maturity when 258 

they attain an average SL of ≈ 30 cm, although there is a well known large interindividual 259 

variability (Dinis et al., 1999; García-López et al., 2006b). The fish used in this study had a 260 

similar range of length and weight for both sexes. However, maturing males were alwa s ≥  5 261 

c  and ≥  5      ile  aturin   e ales  ere al a s ≥ 3  c  and ≥ 48      urt er ore  262 

regardless of season, the GSI range of males was independent of the degree of gonadal 263 

maturation while the GSI range of females increased with maturation. Changes in the GSI of 264 

males (P = 0.010) and females (P = 0.005) were observed during the different seasons. The GSI 265 

significantly increased (P < 0.05) after the fall, with maximum values observed in the winter in 266 

males (Fig. 1A) and during following spring in females (Fig. 1B).  267 

 268 

3.2 Plasma steroid hormone levels  269 

In males, plasma levels of the two major androgens (T and 11-KT) followed the same pattern as 270 

the GSI, with a clear and significant (P = 0.045 and P = 0.024, respectively) peak in winter (Fig. 271 

1C and Fig. 1E). In females, E2 plasma levels remained low until the fall and then sharply 272 

increased through winter and the following spring (P = 0.005) (Fig. 1D). Thus, in both sexes the 273 

GSI and plasma levels of the major sex steroids shared a similar pattern, with maximum values 274 

observed in winter for males and in the following spring for females (Fig. 1). 275 

 276 

3.3 Gonadal development 277 
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Based on microscopic evaluation, three developmental stages of spermatogenesis in males (Fig. 278 

2A, C and E) and of oogenesis in females (Fig. 2B, D and F) were identified. Males with testis 279 

filled only with spermatogonia (Spg) were considered as immature (Fig. 2A); males which in 280 

addition had spermatocytes (Spc) and spermatids (Spd) were classified as maturing (Fig. 2C), 281 

whereas males with testis containing spermatozoa (Spz) were classified as sexually mature (Fig. 282 

2E). Females with only previtellogenetic oocytes were considered immature (Fig. 2B); with 283 

early and intermediate vitellogenic oocytes were considering maturing (Fig. 2D), whereas 284 

mature females were characterized by the presence of fully developed oocytes (Fig. 2F). In 285 

accordance with previous observations showing that once Senegalese sole males reach a certain 286 

size can remain mature throughout the year, maturing males were found in all seasons, with a 287 

maximum in winter.  288 

 289 

3.4 Tissue distribution of kiss2 and kiss2r mRNA in adult Senegalese sole 290 

The presence of kiss2 and kiss2r mRNAs was investigated by specific RT–PCR in six different 291 

brain areas and in the pituitary of males and females in summer. Sex- and seasonal-dependent 292 

changes were readily observed for both genes (Fig. 3). 293 

 294 

3.5 Seasonal changes on the expression of kiss2 and kiss2r in different brain areas, fshβ and 295 

lhβ in the pituitary and fshr and lhr in the gonads of the Senegalese sole 296 

In the forebrain of males, kiss2 (Fig. 4A) and kiss2r expression (Fig. 4C) increased after summer 297 

and peaked in winter (P = 0.027 and P = 0.002, respectively).  In females, in contrast, kiss2 (Fig. 298 

4B) and kiss2r expression (Fig. 4D) progressive increased and the maximum mRNA levels were 299 

observed in the following spring (P = 0.0040 for both genes). In the midbrain of males, changes 300 

in both kiss2 (P = 0.004) and kiss2r (P = 0.016) mRNA levels were observed, with a clear peak 301 

of expression in winter (Fig. 5A and C). In females, in contrast, kiss2 mRNA levels started to 302 

increase in the fall and reached maximum levels in winter (P = 0.002), and then started to 303 
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slightly decrease, whereas kiss2r mRNA levels kept increasing until they reached maximum 304 

values in the following spring (P = 0.008) (Fig. 5B and D).  305 

 306 

Regarding the expression levels of gonadotropin genes in the pituitary, lhβ in males peaked in 307 

winter (P = 0.003) (Fig. 6C) and fshβ of females during the following spring (P = 0.001) (Fig. 308 

6B). No significant differences were  observed in fshβ mRNA levels in males (Fig. 6A), as well 309 

as in lhβ mRNA levels in females (Fig. 6D), probably due to insufficient sample size in this 310 

case. In the gonads, mRNA levels of fshr and lhr remained low during most part of the study, but 311 

were consistently higher in winter. However, the inverse situation was found with respect to the 312 

levels of mRNA for fshβ and lhβ observed in the pituitary, i.e., differences were observed for 313 

fshr in the testis (P = 0.031) (Fig. 7A) and lhr in the ovaries (P = 0.001) (Fig. 7D). The lack of 314 

differences in fshβ of levels in females (Fig. 7B) and lhr levels in males (Fig. 7C) is probably 315 

due to large interindividual variations and/or too small sample sizes in these cases. Nevertheless, 316 

maximum values were observed in winter, as seen for many of the variables analyzed in this 317 

study. 318 

 319 

4. Discussion  320 

The Senegalese sole is a multiple-spawning fish, with a main spawning period during spring and 321 

a secondary period during the fall according to studies based on captive breeders (Anguis et al., 322 

2005; García-López et al., 2006a, 2007). In this study, we investigated the relationship between 323 

the expression profiles of several key genes of the BPG axis and maturation status during a full 324 

reproductive cycle in this species.  325 

 326 

We actually measured the expression of each one of the two splice variants of each of the two 327 

genes of the kisspeptin system, the ligand and the receptor, previously characterized (Mechaly et 328 

al., 2009; 2011). However, analysis of the mRNAs leading to the truncated isoforms during the 329 
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annual cycle showed that, although changes could be measured between seasons, no defined 330 

pattern could be observed (data not shown). Thus, only the functional splice variant is considered in 331 

the present study. Whether changes in the transcription of these mRNAs through changes in the 332 

alternative splicing towards one or the other isoform contributes to control the abundance of the 333 

mRNA producing the functional protein has not been investigated.  334 

 335 

In this study, the major brain areas implicated in the control of reproduction (Zhang et al., 2009; 336 

Zohar et al., 2010) were examined together with the pituitary and the gonads. In males, telltale 337 

signs of the initiation of reproduction could be observed in winter, as evidenced by the highest 338 

GSI, peak plasma levels of T and 11-KT and maximum number of observed maturing males. 339 

These changes were also evident at the gene expression level since the highest mRNA levels of 340 

kiss2 and kiss2r in the forebrain and midbrain, lhβ in the pituitary and fshr in testis were also 341 

observed in winter (see data summarized in Fig. 8). This is probably related to the initiation of 342 

testicular meiosis that implies an increase of spermatocytes in winter (Anguis et al., 2005) and 343 

subsequent highest levels of spermatozoa production in spring (Cerdà et al., 2008). This 344 

situation is similar in Atlantic halibut, with an increase of testicular mass together with increased 345 

GSI and plasma levels of T and 11-KT during winter (Weltzien et al., 2002). 346 

 347 

In females, the tight association observed in males between the winter and the maximum values 348 

of many of the measured variables was not evident. However, many measured variables 349 

exhibited a tendency to increase their values with time, peaking in the second spring, and thus in 350 

agreement with the fact that ovarian development reaches its maximum between the end of the 351 

winter and the beginning of spring, when the main spawning season begins in Senegalese sole 352 

(Anguis et al., 2005; García-López et al., 2006, 2007).  353 

 354 
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During the characterization of Senegalese sole kiss2 and kiss2r we did measurements of these 355 

genes in maturing vs. mature animals, showing no differences in kiss2 regardless of sex and only 356 

a decrease of kiss2r in mature females with respect to maturing females (Mechaly et al., 2009, 357 

2011). Those preliminary results contrast with the ones presented here. A possible explanation 358 

of these discrepancies can be attributed to the fact that in the previous studies whole brains were 359 

used whereas in the present study different brain areas were examined separately. Furthermore, 360 

in previous studies fish were combined based on their reproductive status regardless of season of 361 

the year, whereas here samplings during specific seasons were carried out. Finally, the changes 362 

of kiss2 and kiss2r observed during the different seasons in this study agree with the results 363 

observed in both sexes of grass puffer and read seabream, where higher levels of kiss2 and 364 

kiss2r mRNAs in the whole brain (Shahjahan et al., 2010) and kiss2 in the hypothalamus 365 

(Shimizu et al., 2012) where observed during the spawning season, although no differences 366 

between sexes were observed (Shahjahan et al., 2010) in contrast to the present study. 367 

 368 

Like in the BPG axis of mammals, in fish GnRH is a major target of kisspeptin signaling (Parhar 369 

et al., 2004). Like in the rest of vertebrates, fish GnRHs are involved in gonadotropin secretion 370 

and gonad maturation (Amano et al., 2008). In the grass puffer, increased GnRH1 expression 371 

resulted from kiss2 and kiss2r increased expression (Shahjahan et al., 2010). Similar results 372 

were found concerning GnRH3, kiss2 and kiss2r expression in the zebrafish brain (Kitahashi et 373 

al., 2009), where recently it was shown that kiss2 fibers innervate GnRH3 neurons (Servili et al., 374 

2011). It is important to state that at present the Senegalese sole mRNAs of the GnRHs have not 375 

been characterized and therefore changes in their expression levels could not be correlated with 376 

kiss2 and kiss2r expression. However, despite this shortcoming we could study kisspeptin 377 

signaling and gonadotropin expression in an effort to put kisspeptin effects into a more general 378 

context, as shown in the present study. 379 

 380 
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It is becoming well established that kisspeptins released in the pituitary induce gonadotropin 381 

secretion (Oakley et al., 2009), although Kiss1r might be involved in additional roles, e.g., in the 382 

stimulation of growth hormone (GH) and prolactin (PRL) secretions via endocrine, and/or 383 

paracrine mechanisms (Richard et al 2009). In the goldfish, Kiss1 stimulated the synthesis and 384 

release of lh, prl and gh (Yang et al., 2010), although no effects on lh were detected in another 385 

study using the same species (Li et al., 2009). In the grass puffer, kisspeptin and its receptor 386 

expression peaked during the spawning season, in both brain and the pituitary (Shahjahan et al., 387 

2010). Regarding the gonadotropins, our data show that in males fshβ and lhβ mRNA levels 388 

mirrored the expression changes of kiss2 in the brain, although significant differences were 389 

observed only for lhβ, supporting the role of kisspeptin in triggering reproduction. In our study, 390 

fshβ levels were higher in winter and the second spring when compared to the previous seasons 391 

in agreement with a previous report showing increased levels of fshβ in the pituitary of 392 

Senegalese sole males in winter and spring (Cerdà et al., 2008). However, in that report lhβ 393 

levels paralleled those of fshβ (Cerdà et al., 2008), while in the present study lhβ levels in males 394 

dropped after winter. On the other hand, in females gonadotropins did not follow the expression 395 

pattern of kiss2 or kiss2r, and fshβ did not increase until the second spring, which is in 396 

agreement with the role in the regulation of ovarian maturation as observed in other studies in 397 

this species (Guzmán et al., 2009b).  398 

 399 

In the present study, mRNA levels of both fshr and lhr increased in winter, similar to the 400 

situation observed in the Atlantic salmon (Salmo salar) (Maugars et al., 2008), and probably in 401 

response to seasonal dynamics of their ligands, as described elsewhere (Mittelholzer et al., 402 

2009). In any case, the role of kisspeptin signaling in fish gonads deserves further research. 403 

 404 

In summary, the present study provides information on the changes in expression of kisspeptin 405 

and its receptor in the brain of the Senegalese sole, relating them with other histological, 406 
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biochemical and gene expression changes known to occur during the reproductive cycle. The 407 

major finding of this study is that, in males, kiss2, kiss2r and most variables analyzed changed 408 

synchronously and peaked in winter, coinciding with the highest number of maturing animals, 409 

and just before the spawning season, which took place the following spring. Thus, expression of 410 

kiss2 in Senegalese sole males agrees with what one would expect according to its proposed role 411 

as a major regulator or trigger of the onset of reproduction. In females, such synchrony was not 412 

so evident and, furthermore, the highest levels of kiss2 and kiss2r were observed in the spring, 413 

coinciding with the reproductive season, when all females were already fully mature. To the best 414 

of our knowledge, the present study is the first one in fish that considers kisspeptin signaling 415 

including several brain areas, accounts for sex differences and covers a full reproductive cycle. 416 

Thus, the origin and physiological significance of the observed sex-specific differences in 417 

kisspeptin signaling, which could also apply to other fish, deserve further investigation in order 418 

to contribute to firmly establish the role of kisspeptin in the control of reproduction. Also, and in 419 

the particular case of the Senegalese sole, whether these sex differences have any relationship 420 

with the recurring poor reproductive performance of captive F1s is at present unknown.  421 

 422 
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Table 1. Gene-specific primers used for RT-PCR and qPCR in this study 

Gene 

 

GenBank 

Acc. No. 
Pri er sequence  5’→3’) 

Amplicon 

size (bp) 

Primer name 
Reference 

βactin DQ485686 ACACCCAACAACTTCAGCTCTGT 120 Ss βactin-F1 Mechaly et al., 2009 

  GAGTCAAGCGCCAAAATAATGA  Ss βactin-R1  

kiss2r EU136710 TATGTGACAGTGTATCCTCTGAAATCC 89 Ss kiss2r_v1-F1  

  AAGGAGCCAATCCAAATGCA  Ss kiss2r_v1-R1  

kiss2 HM116743 TGGATCTGCACGATATGACA 50 Ss kiss2_v1-F1 Mechaly et al., 2011 

  GTCTGACCCTGTTGCTCG  Ss kiss2_v1-R1  

fshβ EU100409 TGATCTGTAACGGGGACTGG 153 Ss fshβ-F Cerdà et al., 2008  

  GACAGCTGGCAATCTCTCCA  Ss fshβ-R  

lhβ EU100410 AGCATGTGTGCACGTACCAG 180 Ss lhβ-F  

  TGTCGTTCATGCAGATGTCG  Ss lhβ-R  

fshr GQ472139 GGCGACTGGACTGAGTTTCG 186 Ss fshr-F Chauvigné et al., 2010 

  TCTTCACAACACGTGGGAGAG  Ss fshr-R  

lhr GQ47140 GCTGTGCACTGCTGAACTGG 376 Ss lhr-F  

  GGCACCGTCATCTTGCTTCT  Ss lhr-R  



 

 

23 

Figure legends 1 

 2 

Fig. 1. Changes in the gonadosomatic index (GSI) arcsine-transformed of male (A) and female 3 

(B) Senegalese sole, and C, plasma levels of testosterone (T); E, 11-ketotestosterone (11-KT) in 4 

 ales  and D   las a le els o  estradiol−17β (E2) in females during one full reproductive cycle. 5 

Data as mean ± S.E.M. (n= 3-7). Abbreviations: SP1, spring 1; SM, summer; FL, fall; WT, 6 

winter; SP2, spring 2. Different letters indicate statistically differences (P < 0.05). 7 

 8 

Fig. 2. Photomicrographs of histological sections representing different stages of sexual 9 

maturation in Senegalese sole: immature (A), maturing (C) and mature (E) testis, and immature 10 

(B), maturing (D) and mature (F) ovaries. Abbreviations: Spg, spermatogonia; Spc, 11 

spermatocyte; Spd, spermatid; Spz, spermatozoa; Og, oogonia; Pno, perinucleolar oocyte; Voc, 12 

vitellogenic oocyte; Moc, mature oocyte; Oc, ovarian cavity. The scale bar, 100 µm, applies to 13 

all photomicrographs. N= 5-9. 14 

 15 

Fig. 3. Tissue distribution of kiss2 and kiss2r in different brain areas in male and female 16 

Senegalese sole in summer. βactin was included as a reference gene to verify the presence of 17 

mRNA in each sample. No-template (NTC) was used as a negative control. 18 

 19 

Fig. 4. Changes in kiss2 (A, B) and kiss2r (C, D) mRNA levels in the forebrain of Senegalese 20 

sole males (A, C) and females (B, D) during different seasons of the year as determined by 21 

quantitative real–time PCR (qRT-PCR). βactin was used as reference gene. Different letters 22 

indicate statistically differences (P < 0.05). Abbreviations as in Fig. 1. Data as mean ± S.E.M. 23 

(n= 3-9). 24 

 25 

Fig. 5. Changes in kiss2 (A, B) and kiss2r (C, D) mRNA levels in the midbrain (optic tectum) of 26 
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Senegalese sole males (A, C) and females (B, D) during different seasons of the year as 27 

determined by qRT-PCR. βactin was used as reference gene. Different letters indicate 28 

statistically differences (P < 0.05). Abbreviations as in Fig. 1. Data as mean ± S.E.M. (n= 3-9). 29 

 30 

Fig. 6. Changes in fshβ (A, B) and lhβ (C, D) mRNA levels in the pituitary of Senegalese sole 31 

males (A, C) and females (B, D) during different seasons of the year as determined by qRT-PCR 32 

βactin was used as reference gene. Different letters indicate statistically differences (P < 0.05). 33 

Abbreviations as in Fig. 1. Data as mean ± S.E.M. (n= 3-9). 34 

 35 

Fig. 7. Changes in fshr (A, B) and lhr (C, D) mRNA levels in the testis (A, C) and ovaries (B, 36 

D) of Senegalese sole during different seasons of the year as determined by qRT-PCR. βactin 37 

was used as reference gene. Different letters indicate statistically differences (P < 0.05). 38 

Abbreviations as in Fig. 1. Data as mean ± S.E.M. (n= 3-9). 39 

 40 

Fig. 8. Summary of the histological, biochemical and gene expression changes observed in the 41 

variables measured in the BPG axis of the Senegalese sole used in this study. Within each sex, 42 

the five boxes correspond, from left to right, to spring (SP1), summer (SM), fall (FL), winter 43 

(WT) and the following spring (SP2). In each box, the level of shading  is related to the levels of 44 

the variable being considered: white, low or intermediate levels; grey, higher levels but without 45 

significant differences; black, significantly higher levels. Notice the evident differences between 46 

sexes.  47 
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