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Critical two-point function for long-range models with
power-law couplings: The marginal case for d ≥ dc

Lung-Chi Chen∗†, Akira Sakai‡

January 17, 2019

Abstract

Consider the long-range models on Zd of random walk, self-avoiding walk, perco-
lation and the Ising model, whose translation-invariant 1-step distribution/coupling
coefficient decays as |x|−d−α for some α > 0. In the previous work [15], we have
shown in a unified fashion for all α 6= 2 that, assuming a bound on the “derivative”
of the n-step distribution (the compound-zeta distribution satisfies this assumed
bound), the critical two-point function Gpc(x) decays as |x|α∧2−d above the upper-
critical dimension dc ≡ (α ∧ 2)m, where m = 2 for self-avoiding walk and the Ising
model and m = 3 for percolation.

In this paper, we show in a much simpler way, without assuming a bound on the
derivative of the n-step distribution, that Gpc(x) for the marginal case α = 2 decays
as |x|2−d/ log |x| whenever d ≥ dc (with a large spread-out parameter L). This
solves the conjecture in [15], extended all the way down to d = dc, and confirms a
part of predictions in physics [10]. The proof is based on the lace expansion and
new convolution bounds on power functions with log corrections.
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1 Introduction and the main results

1.1 Introduction

The lace expansion has been successful in rigorously proving mean-field critical behavior
for various models, such as self-avoiding walk [11], percolation [19], lattice trees and
lattice animals [20], oriented percolation [26], the contact process [27], the classical Ising
and ϕ4 models [28, 29]. It provides (a way to derive) a formal recursion equation for the
two-point function Gp(x), which is similar to the recursion equation for the random-walk
Green function Sp(x) generated by the non-degenerate (i.e., D(o) < 1) 1-step distribution
D(x) and the fugacity p ∈ [0, 1]:

Sp(x) = δo,x + (pD ∗ Sp)(x), (1.1)

where, and in the rest of the paper, (f ∗ g)(x) ≡
∑

y f(y) g(x − y) is the convolution of

two functions f, g on Zd. The formal recursion equation for Gp(x) is of the form

Gp(x) = Πp(x) + (Πp ∗ pD ∗Gp)(x), (1.2)

where Πp(x) is a series of the model-dependent lace-expansion coefficients. It is natural
to expect that, once regularity of Πp (e.g., absolute summability) is assured for all p up
to the critical point pc, the asymptotic behavior of Gpc(x) should be the same (modulo
constant multiplication) as that for the random-walk Green function S1(x). If so, then
sufficient conditions for the mean-field behavior, called the bubble condition for self-
avoiding walk and the Ising model [1, 24] and the triangle condition for percolation [6],
hold for all dimensions above the model-dependent upper-critical dimension dc, which is
2m for short-range models, where m = 2 for self-avoiding walk and the Ising model and
m = 3 for percolation.

In recent years, long-range models defined by power-law couplings, D(x) ≈ |x|−d−α for
some α > 0, have attracted more attention, due to unconventional critical behavior and
crossover phenomena (e.g., [7, 10, 15, 23]). Under some mild assumptions, we have shown
[15, Proposition 2.1] that, for α 6= 2 and d > α∧2, the random-walk Green function S1(x)
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is asymptotically γα
vα
|x|α∧2−d, where

γα =
Γ(d−α∧2

2
)

2α∧2πd/2Γ(α∧2
2

)
, vα = lim

|k|→0

1− D̂(k)

|k|α∧2
≡ lim
|k|→0

∑
x∈Zd

1− eik·x

|k|α∧2
D(x). (1.3)

For short-range models with variance σ2 =
∑

x |x|2D(x) <∞, the asymptotic behavior of
S1(x) is well-known to be d

2
Γ(d−2

2
)π−d/2σ−2|x|2−d, which is consistent with (1.3) for large

α > 2. The crossover occurs at α = 2, where the variance σ2 diverges logarithmically and
S1(x) was believed to have a log correction to the above standard Newtonian behavior.

An example of D(x) ≈ |x|−d−α is the compound-zeta distribution (see (1.15) for the
precise definition). It has been shown [15] that this long-range distribution for α 6= 2 also
satisfies a certain bound on the “derivative” |D∗n(x)− 1

2
(D∗n(x+ y) +D∗n(x− y))| of the

n-step distribution. Thanks to this extra bound, we have shown [15, Theorem 1.2] in a
unified fashion for all α 6= 2 that, whenever d > dc ≡ (α ∧ 2)m (with a large spread-out
parameter L), there is a model-dependent constant A close to 1 (in fact, A = 1 for α < 2)
such that Gpc(x) ∼ A

pc
S1(x). One of the key elements to showing this result is (slight

improvement of) the convolution bounds on power functions [18, Proposition 1.7] that
are used to prove regularity of Πp in (1.2). However, since those convolution bounds are
not good enough to properly control power functions with log corrections, we were unable
to achieve an asymptotic result for α = 2, until the current work.

In this paper, we tackle the marginal case α = 2. The headlines are the following:

• S1(x) ∼ γ2

v2
|x|2−d/ log |x| whenever d > 2, where γ2 is in (1.3), but v2 is redefined as

v2 = lim
|k|→0

1− D̂(k)

|k|2 log(1/|k|)
. (1.4)

• Gpc(x) ∼ 1
pc
S1(x) whenever d ≥ dc (with a large spread-out parameter L). This

also implies that other critical exponents take on their mean-field values for d ≥ dc

(including equality).

The latter solves the conjecture [15, (1.29)], extended all the way down to d = dc. It
also confirms a part of predictions in physics [10, (3)]: the critical two-point function for
percolation was proposed to decay as |x|α∧(2−η)−d whenever α 6= 2 − η, where η = η(d)
is the anomalous dimension for short-range percolation and is believed to be nonzero for
d < 6, and as |x|2−η−d/ log |x| whenever α = 2− η.

We should emphasize that the proof of the asymptotic result in this paper is rather
different from the one in [15] for α 6= 2. In fact, we do not require the n-step distribution
D∗n to satisfy the aforementioned derivative bound. Because of this, we can cover a wider
class of models to which the same result applies, and can simplify the proof to some
extent. Although the same proof works for α < 2 (see Remark 3.7 below), we will focus
on the marginal case α = 2.

Before closing this subsection, we remark on recent progress in the renormalization
group analysis for the O(n) model, which is equivalent to self-avoiding walk when n =
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0 and to the n-component |ϕ|4 model when n ≥ 1. Suppose that the above physics
prediction is true for the O(n) model as well, and that η > 0 for d < 4. Then, we can
take a small ε > 0 to satisfy α = d+ε

2
∈ (d

2
, 2 − η) 6= ∅, hence d = 2α − ε < dc, and yet

Gpc(x) is proven to decay as |x|α−d [23]. This “sticking” at the mean-field behavior, even
below the upper-critical dimension, has been proven by using a rigorous version of the
ε-expansion.

In the next subsection, we give more precise definitions of the concerned models.

1.2 The models and the main results

1.2.1 Random walk

Let

|||x|||r =
π

2
(|x| ∨ r) [x ∈ Rd, 1 ≤ r <∞], (1.5)

where | · | is the Euclidean norm. We require the 1-step distribution D(x) to be bounded
as

D(x) � 1
Ld
||| x
L
|||−d−α1

def⇔ ∃c > 0, ∀x ∈ Zd, ∀L ∈ [1,∞) : c ≤ D(x)
1
Ld
||| x
L
|||−d−α1

≤ 1

c
, (1.6)

where L is the spread-out parameter.
Let D̂ and D∗n be the Fourier transform and the n-fold convolution of D, respectively:

D̂(k) =
∑
x∈Zd

eik·xD(x) [k ∈ [−π, π)d], (1.7)

D∗n(x) =

{
δo,x [n = 0],∑

y∈Zd D
∗(n−1)(y)D(x− y) [n ≥ 1].

(1.8)

We also require D to satisfy the following properties.

Assumption 1.1 (Properties of D̂). There is a ∆ = ∆(L) ∈ (0, 1) such that

1− D̂(k)

{
< 2−∆ [∀k ∈ [−π, π]d],

> ∆ [|k| > 1/L],
(1.9)

while, for |k| ≤ 1/L,

1− D̂(k) � (L|k|)α∧2 ×

{
1 [α 6= 2],

log π
2L|k| [α = 2].

(1.10)

Moreover, there is an ε > 0 such that, as |k| → 0,

1− D̂(k) = vα|k|α∧2 ×

{(
1 +O(Lε|k|ε)

)
[α 6= 2],(

log 1
L|k| +O(1)

)
[α = 2],

(1.11)

where the constant in the O(1) term is independent of L.
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Assumption 1.2 (Bounds on D∗n). For n ∈ N and x ∈ Zd,

‖D∗n‖∞ ≤ O(L−d)×

{
n−d/(α∧2) [α 6= 2],

(n log πn
2

)−d/2 [α = 2],
(1.12)

D∗n(x) ≤ n
O(Lα∧2)

|||x|||d+α∧2
L

×

{
1 [α 6= 2],

log ||| x
L
|||1 [α = 2].

(1.13)

It has been shown [12, 14, 15] that the following D is one of the examples that satisfy
all the properties in the above assumptions:

D(x) =


|||x|||−d−αL∑

y∈Zd\{o} |||y|||
−d−α
L

[x 6= o],

0 [x = o].

(1.14)

Another such example is the following compound-zeta distribution [15]:

D(x) =
∑
t∈N

U∗tL (x)Tα(t) [x ∈ Zd], (1.15)

where, with a probability distribution h on [−1, 1]d ⊂ Rd and the Riemann-zeta function
ζ(s) =

∑
t∈N t

−s,

UL(x) =
h(x/L)∑

y∈Zd\{o} h(y/L)
[x ∈ Zd], (1.16)

Tα(t) =
t−1−α/2

ζ(1 + α/2)
[t ∈ N]. (1.17)

We assume that the distribution h is bounded, non-degenerate, Zd-symmetric and piece-
wise continuous, such as h(x) = 2−d1{‖x‖∞≤1}.

Since the proof of (1.12) for α = 2 is only briefly explained in [15, (1.19)], we will
provide a full proof in Section 2.

Let Sp be the random-walk Green function generated by the 1-step distribution D:

Sp(x) =
∑
ω:o→x

p|ω|
|ω|∏
j=1

D(ωj − ωj−1) [x ∈ Zd], (1.18)

where o ∈ Zd is the origin, p ≥ 0 is the fugacity and |ω| is the length of a path ω =
(ω0, ω1, . . . , ω|ω|). By convention, the contribution from the zero-step walk is the Kronecker
delta δo,x. It is convergent as long as p < 1 or p = 1 with d > α ∧ 2. One of the main
results of this paper is completion of the asymptotic picture of S1 for all α > 0, as follows.

Theorem 1.3. Let d > α ∧ 2 and suppose D satisfies Assumptions 1.1–1.2. Then, for
any p ∈ [0, 1],

Sp(x)− δo,x ≤
O(L−α∧2)

|||x|||d−α∧2
L

×

1 [α 6= 2],
1

log ||| x
L
|||1

[α = 2].
(1.19)
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Moreover, there are ε, η > 0 such that, for L1+η < |x| → ∞,

S1(x) =
γα/vα
|x|d−α∧2

×


(

1 +
O(Lε)

|x|ε

)
[α 6= 2],

1

log |x|

(
1 +

O(1)

(log |x|)ε

)
[α = 2],

(1.20)

where the constant in the O(1) term is independent of L.

1.2.2 Self-avoiding walk

Self-avoiding walk (sometimes abbreviated as SAW) is a model for linear polymers. Taking
into account the exclusion-volume effect among constituent monomers, we define the SAW
two-point function as

Gp(x) =
∑
ω:o→x

p|ω|
|ω|∏
j=1

D(ωj − ωj−1)
∏
s<t

(1− δωs,ωt), (1.21)

where the contribution from the zero-step walk is δo,x, just as in (1.18). Notice that the
difference between (1.18) and (1.21) is the last product, which is either 0 or 1 depending
on whether ω intersects itself or does not. Because of this suppressing factor, the sum
called the susceptibility

χp =
∑
x∈Zd

Gp(x) (1.22)

is not bigger than
∑

x∈Zd Sp(x), which is (1 − p)−1 when p is smaller than the radius of
convergence 1, and therefore the critical point

pc = sup{p : χp <∞} (1.23)

must be at least 1. It is known [24] that, if the bubble condition

G∗2pc
(o) =

∑
x∈Zd

Gpc(x)2 <∞ (1.24)

holds, then

χp � (pc − p)−1, (1.25)

meaning that the critical exponent for χp takes on its mean-field value 1.

1.2.3 Percolation

Percolation is a model for random media. Each bond {u, v} ⊂ Zd is assigned to be either
occupied or vacant, independently of the other bonds. The probability of a bond {u, v}
being occupied is defined as pD(v − u), where p ≥ 0 is the percolation parameter. Since
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D is a probability distribution, the expected number of occupied bonds per vertex equals
p
∑

x 6=oD(x) = p(1−D(o)). Let Gp(x) denote the percolation two-point function, which
is the probability that there is a self-avoiding path of occupied bonds from o to x. By
convention, Gp(o) = 1.

For percolation, the susceptibility χp in (1.22) equals the expected number of vertices
connected from o. It is known [6] that there is a critical point pc defined as in (1.23) such
that χp is finite if and only if p < pc and diverges as p ↑ pc. It is also known that, if the
triangle condition

G∗3pc
(o) =

∑
x∈Zd

Gpc(x)G∗2pc
(x) <∞ (1.26)

holds, then χp diverges in the same way as (1.25).
There is another order parameter θp called the percolation probability, which is the

probability of the origin o being connected to infinity. It is known [2, 16, 25] that pc in
(1.23) can be characterized as inf{p ≥ 0 : θp > 0} and that, if the triangle condition
(1.26) holds, then

θp � p− pc, (1.27)

meaning that the critical exponent for θp takes on its mean-field value 1, i.e., the value
for the survival probability of the branching process.

1.2.4 The Ising model

The Ising model is a model for magnets. Let Λ ⊂ Zd and define the Hamiltonian (under
the free-boundary condition) for a spin configuration ϕ = {ϕv}v∈Λ ∈ {±1}Λ as

HΛ(ϕ) = −
∑
{u,v}⊂Λ

Ju,vϕuϕv, (1.28)

where Ju,v = Jo,v−u ≥ 0 is the ferromagnetic coupling and is to satisfy the relation

D(x) =
tanh(βJo,x)∑
y∈Zd tanh(βJo,y)

, (1.29)

where β ≥ 0 is the inverse temperature. Let

〈ϕoϕx〉β,Λ =
∑

ϕ∈{±1}Λ
ϕoϕx e

−βHΛ(ϕ)

/ ∑
ϕ∈{±1}Λ

e−βHΛ(ϕ). (1.30)

Using p =
∑

x∈Zd tanh(βJo,x), we define the Ising two-point function Gp(x) as a unique
infinite-volume limit of 〈ϕoϕx〉β,Λ:

Gp(x) = lim
Λ↑Zd
〈ϕoϕx〉β,Λ. (1.31)

7



It is known [22] that the susceptibility χp defined as in (1.22) is finite if and only if
p < pc and diverges as p ↑ pc. It is also known [3, 16] that pc is unique in the sense that
the spontaneous magnetization

θp =
√

lim
|x|→∞

Gp(x) (1.32)

also exhibits a phase transition at pc. (Unlike the case for percolation, the continuity of
θp in p has been proven for all dimensions, as long as Jo,x satisfies a strong symmetry
condition called the reflection positivity [4].) Furthermore, it is known [1, 5] that, if the
bubble condition (1.24) holds for the critical Ising model, then

χp � (pc − p)−1, θp �
√
p− pc, (1.33)

meaning that the critical exponents for χp and θp take on their mean-field values 1 and
1/2, respectively.

1.2.5 The main results

Let

dc = (α ∧ 2)×m, m =

{
2 [SAW and Ising],

3 [percolation],
(1.34)

where m is the number of Gpc involved in the bubble/triangle conditions (1.24) and (1.26).
In the previous paper [15], we investigated asymptotic behavior of Gpc(x) for α 6= 2,

d > dc and L � 1 (see Theorem 1.7). In the current paper, we investigate the marginal
case α = 2, for which the variance of D diverges logarithmically, and prove the following:

Theorem 1.4. Let α = 2 and d ≥ dc (including equality) and suppose that D satisfies
Assumptions 1.1–1.2. Then there is a model-dependent L0 <∞ such that, for any L ≥ L0,

Gpc(x) ≤ δo,x +
O(L−2)

|||x|||d−2
L log ||| x

L
|||1
. (1.35)

Moreover, there is an ε > 0 such that, as |x| → ∞,

Gpc(x) =
1

pc

γ2/v2

|x|d−2 log |x|

(
1 +

O(1)

(log |x|)ε

)
, (1.36)

where the O(1) term is independent of L.

Due to the log correction to the standard Newtonian behavior in (1.35)–(1.36), we
can show that the bubble/triangle conditions hold, even at the critical dimension d = dc.
For example, the tail of the sum in the bubble condition (1.24) can be estimated, for any
R > 1, as ∑

x:|x|>R

Gpc(x)2 ≈
∫ ∞
R

dr

r

r4−d

(log r)2
, (1.37)
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which is finite even when d = 4, due to the log-squared term in the denominator. Also, by
the convolution bounds in Lemma 3.5 below, which is one of the novelties of this paper,
we can show that G∗2pc

(x) for d ≥ 4 is bounded above by a multiple of |x|4−d/ log |x|.
Therefore, the tail of the sum in the triangle condition (1.26) can be estimated as

∑
x:|x|>R

Gpc(x)G∗2pc
(x) ≈

∫ ∞
R

dr

r

r6−d

(log r)2
, (1.38)

which is finite even when d = 6, again due to the log-squared term in the denominator.
Therefore:

Corollary 1.5. The mean-field results (1.25), (1.27) and (1.33) hold for all three models
with α = 2 and sufficiently large L, in dimensions d ≥ dc (including equality).

Remark 1.6. 1. In the previous paper [15], we investigated the other case α 6= 2 and
proved the following:

Theorem 1.7 (Theorems 1.2 and 3.3 of [15]). Let α 6= 2 and d > dc and suppose
that D satisfies Assumptions 1.1–1.2 and the following bound on the “derivative” of
D∗n: for n ∈ N and x, y ∈ Zd with |y| ≤ 1

3
|x|,∣∣∣∣D∗n(x)− D∗n(x+ y) +D∗n(x− y)

2

∣∣∣∣ ≤ n
O(Lα∧2) |||y|||2L
|||x|||d+α∧2+2

L

. (1.39)

Then, there is a model-dependent L0 <∞ such that, for any L ≥ L0,

Gpc(x) ≤ δo,x +
O(L−α∧2)

|||x|||d−α∧2
L

. (1.40)

As a result, the bubble/triangle conditions (1.24) and (1.26) hold, and therefore the
critical exponents for χp and θp take on their respective mean-field values. Moreover,
there are A = 1 +O(L−2)1{α>2} and ε > 0 such that, as |x| → ∞,

Gpc(x) =
A

pc

γα/vα
|x|d−α∧2

(
1 +

O(Lε)

|x|ε

)
. (1.41)

The extra assumption (1.39) is hard to verify in a general setup. However, we have
shown [15] that the compound-zeta distribution (1.15) for α 6= 2 satisfies (1.39). In
fact, as explained in Section 3.2 (see also Remark 3.7), the proof of Theorem 1.4 for
α = 2 also works for the case α < 2, so that we do not have to require (1.39) for
α ≤ 2, but not for α > 2. This is somewhat related to the fact that the multiplicative
constant A in (1.41) becomes 1 for α ≤ 2.

2. The possibility to extend the mean-field results down to d = dc was already hinted
in [21, Theorem 1.1], where we have shown that, for d > dc and L� 1, the Fourier
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transform Ĝp(k) obeys the following infrared bound, uniformly in k ∈ [−π, π]d and
p < pc:

Ĝp(k) =
1 +O(δm)

χ−1
p + p(1− D̂(k))

, (1.42)

where

δm =

∫
[−π,π]d

ddk

(2π)d
D̂(k)2

(1− D̂(k))m
. (1.43)

In fact, we can follow the same line of proof of [21, Theorem 1.1] to obtain (1.42), as
long as δm is sufficiently small. However, for α = 2 and d ≥ dc (including equality),
we have

δm ≤
∫
|k|>1/L

ddk

(2π)d
D̂(k)2

∆m︸ ︷︷ ︸
∵ (1.9)

+O(L−2m)

∫
|k|≤1/L

ddk

(|k|2 log π
2L|k|)

m︸ ︷︷ ︸
∵ (1.10)

= O(L−d). (1.44)

Therefore, by taking L sufficiently large and using monotonicity in p, we obtain

G∗mpc
(o) = lim

p↑pc

G∗mp (o) = lim
p↑pc

∫
[−π,π]d

ddk

(2π)d
Ĝp(k)m <∞, (1.45)

as long as d ≥ dc, hence the mean-field results for all d ≥ dc.

2 Analysis for the underlying random walk

In Section 2.1, we prove Theorem 1.3 for α = 2 (the results for α 6= 2 have been proven
in [15]). In Section 2.2, we complete the proof of (1.12) for α = 2.

2.1 Proof of Theorem 1.3

The results for α 6= 2 are already proven in [15, Proposition 2.1]. The proof of (1.19) for
α = 2 is easy, as we split the sum at N ≡ ||| x

L
|||21/ log ||| x

L
|||1 and use (1.13) for n ≤ N and

(1.12) for n ≥ N , as follows:

Sq(x)− δo,x ≤
N∑
n=1

D∗n(x) +
∞∑
n=N

‖D∗n‖∞

≤ O(L−d)

(
log ||| x

L
|||1

||| x
L
|||d+2

1

N∑
n=1

n+
∞∑
n=N

(n log n)−d/2
)

≤ O(L−d)

(
log ||| x

L
|||1

||| x
L
|||d+2

1

N2 +
N1−d/2

(logN)d/2

)
=
O(L−d)||| x

L
|||2−d1

log ||| x
L
|||1

. (2.1)
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It remains to show (1.20) for α = 2. First, we rewrite S1(x) for d > 2 as

S1(x) =

∫
[−π,π]d

ddk

(2π)d
e−ik·x

1− D̂(k)
=

∫ ∞
0

dt

∫
[−π,π]d

ddk

(2π)d
e−ik·x−t(1−D̂(k)). (2.2)

Let

µ ∈ (0, 2
d+2

), T =
( |x|
L

)2

(log |x|
L

)1+µ
. (2.3)

Then, for |x| > L1+η (so that δo,x = 0),

I1 ≡
∫ T

0

dt

∫
[−π,π]d

ddk

(2π)d
e−ik·x−t(1−D̂(k))dt

=

∫ T

0

dt e−t
∞∑
n=0

tn

n!

∫
[−π,π]d

ddk

(2π)d
e−ik·xD̂(k)n

=

∫ T

0

dt e−t
(
δo,x +

∞∑
n=1

tn

n!
D∗n(x)

)
(1.13)

≤
O(L2) log |x|

L

|x|d+2
T 2 =

O(L−2)|x|2−d

(log |x|
L

)1+2µ
, (2.4)

which is an error term.
Next, we investigate S1(x)− I1. Let

ω =
1

η logL
∈ (0, 1), LR =

(
|x|
L

)−ω
. (2.5)

Then, we can rewrite S1(x)− I1 as

S1(x)− I1 =

∫ ∞
T

dt

∫
[−π,π]d

ddk

(2π)d
e−ik·x−t(1−D̂(k))dt

=

∫ ∞
T

dt

∫
|k|≤R

ddk

(2π)d
e−ik·x−v2t|k|2 log 1

L|k| +
4∑
j=2

Ij, (2.6)

where

I2 =

∫ ∞
T

dt

∫
|k|≤R

ddk

(2π)d
e−ik·x

(
e−t(1−D̂(k)) − e−v2t|k|2 log 1

L|k|

)
, (2.7)

I3 =

∫
R<|k|≤1/L

ddk

(2π)d
e−ik·x−T (1−D̂(k))

1− D̂(k)
, (2.8)

I4 =

∫
[−π,π]d

ddk

(2π)d
e−ik·x−T (1−D̂(k))

1− D̂(k)
1{|k|>1/L}. (2.9)
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For I2, we first note that, by (1.11),∣∣∣e−t(1−D̂(k)) − e−v2t|k|2 log 1
L|k|

∣∣∣ ≤ O(L2)t|k|2e−v2t|k|2 log 1
L|k| . (2.10)

Let s = v2t|k|2 log 1
L|k| and r = |k| ≤ R. Since |x| > L1+η, we have

ds

s
=

(
2− 1

log 1
Lr

)
dr

r
≥
(

2− 1

log 1
LR

)
dr

r
>

(
2− 1

ωη logL

)
dr

r
=

dr

r
. (2.11)

Therefore, for d > 2,

|I2| ≤ O(L2)

∫ ∞
T

dt t

∫ R

0

dr

r
rd+2e−v2tr2 log 1

Lr

≤ O(L2)

∫ ∞
T

dt t

∫ v2tR2 log 1
LR

0

ds

s

(
s

v2t log 1
LR

)(d+2)/2

e−s

(2.5)

≤ O(L−d)

(
log
|x|
L

)−(d+2)/2

T 1−d/2

(2.3)
=

O(L−2)|x|2−d

(log |x|
L

)2−(d−2)µ/2
, (2.12)

which is an error term because

2− (d− 2)µ

2

(2.3)
> 2− d− 2

d+ 2
= 1 +

4

d+ 2
> 1. (2.13)

For I3, since (1.10) holds and log π
2L|k| ≥ log π

2
> 0 for |k| ≤ 1/L, there is a c > 0 such

that

|I3| ≤ O(L−2)

∫ 1/L

R

dr

r
rd−2e−cL

2Tr2

= O(L−d)T 1−d/2
∫ cT

cL2TR2

ds

s
s(d−2)/2e−s. (2.14)

Since TR2 →∞ as |x| → ∞ (cf., (2.3) and (2.5)), the integral is bounded by a multiple of
(L2TR2)(d−4)/2e−cL

2TR2
, which is a bound on the incomplete gamma function. Therefore,

for N ∈ N large enough to ensure 2N + 4 > d,

|I3| ≤ O(L−d)
(LR)d−4

T
e−cL

2TR2 ≤ (LR)d−4

T

O(L−d)

(L2TR2)N

=
O(L−2+(2N+4−d)(1−ω))(log |x|

L
)(1+µ)(N+1)

|x|d−2+(2N+4−d)(1−ω)

|x|>L1+η

≤
O(L−2)(log |x|

L
)(1+µ)(N+1)

|x|d−2+(2N+4−d)(1−ω)η/(1+η)
, (2.15)

which is an error term.
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For I4, we use (1.9) and a similar argument to (2.15) to obtain that, for N ∈ N large
enough to ensure 2(Nη − 1)/(1 + η) > d− 2,

|I4| ≤ O(1)e−T∆ ≤ O(1)

TN
≤
O(L2N)(log |x|

L
)N

|x|2N
|x|>L1+η

≤
O(L−2)(log |x|

L
)N

|x|2(Nη−1)/(1+η)
, (2.16)

which is an error term.
So far, we have obtained

S1(x) =

∫ ∞
T

dt

∫
|k|≤R

ddk

(2π)d
e−ik·x−v2t|k|2 log 1

L|k| +
4∑
j=1

Ij. (2.17)

To investigate the above integral, we introduce ξ ≡ x/|x| and change variables as κ = |x|k.

Then, by changing time variables as τ = v2t
|x|2 log |x|

L
, the integral in (2.6) can be written as

|x|−d
∫ ∞
T

dt

∫
|κ|≤|x|R

ddκ

(2π)d
exp

(
− iκ · ξ − v2t|κ|2

|x|2
log
|x|
L|κ|

)

=
|x|2−d

v2 log |x|
L

∫ ∞
v2T

|x|2
log
|x|
L

dτ

∫
|κ|≤|x|R

ddκ

(2π)d
exp

(
− iκ · ξ − τ |κ|2

log |x|
L|κ|

log |x|
L

)

=
|x|2−d

v2 log |x|
L

(∫ ∞
0

dτ

∫
Rd

ddκ

(2π)d
e−iκ·ξ−τ |κ|

2 −
3∑
j=1

Mj

)
, (2.18)

where

M1 =

∫ v2T

|x|2
log
|x|
L

0

dτ

∫
Rd

ddκ

(2π)d
e−iκ·ξ−τ |κ|

2

, (2.19)

M2 =

∫ ∞
v2T

|x|2
log
|x|
L

dτ

∫
|κ|>|x|R

ddκ

(2π)d
e−iκ·ξ−τ |κ|

2

, (2.20)

M3 =

∫ ∞
v2T

|x|2
log
|x|
L

dτ

∫
|κ|≤|x|R

ddκ

(2π)d
e−iκ·ξ−τ |κ|

2

(
1− exp

(
τ |κ|2 log |κ|

log |x|
L

))
. (2.21)

Notice that the first term in the parentheses in (2.18) gives the leading term:∫ ∞
0

dτ

∫
Rd

ddκ

(2π)d
e−iκ·ξ−τ |κ|

2

=

∫ ∞
0

dτ
e−1/(4τ)

(4πτ)d/2
=

Γ(d−2
2

)

4πd/2
= γ. (2.22)

For M1, since |x|2/(v2T log |x|
L

) = L2

v2
(log |x|

L
)µ → ∞, we obtain that, for N ∈ N large

enough to ensure 2N + 4 > d,

M1 =

∫ v2T

|x|2
log
|x|
L

0

dτ
e−1/(4τ)

(4πτ)d/2
=

1

4πd/2

∫ ∞
|x|2/(4v2T log

|x|
L

)

ds

s
s(d−2)/2e−s

≤ O(1)

(
|x|2

v2T log |x|
L

)(d−4)/2

e−|x|
2/(4v2T log

|x|
L

). (2.23)
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Using the exponentially decaying term yields

M1

∀N
≤ O(1)

(log |x|
L

)(2N+4−d)µ/2
, (2.24)

which gives an error term as long as 2N + 4 > d.
For M2, changing the order of integrations and changing variables as r = |κ|2 v2T

|x|2 log |x|
L

yields

|M2| ≤
∫
|κ|>|x|R

ddκ

(2π)d

∫ ∞
v2T

|x|2
log
|x|
L

dτ e−τ |κ|
2

=

∫
|κ|>|x|R

ddκ

(2π)d
1

|κ|2
exp

(
− |κ|2v2T

|x|2
log
|x|
L

)
= O(1)

(
|x|2

v2T log |x|
L

)(d−2)/2 ∫ ∞
v2TR2 log

|x|
L

dr

r
r(d−2)/2e−r

= O(1) (|x|R)d−4 |x|2

v2T log |x|
L

e−v2TR2 log
|x|
L . (2.25)

Using the exponentially decaying term and |x| > L1+η as in (2.15)–(2.16), we obtain that,
for N ∈ N large enough to ensure 2N + 4 > d,

|M2| ≤
O(1)(log |x|

L
)(N+1)µ

( |x|
L

)(2N+4−d)(1−ω)

|x|>L1+η

≤
O(1)(log |x|

L
)(N+1)µ

|x|(2N+4−d)(1−ω)η/(1+η)
, (2.26)

which gives another error term.
For M3, we first note that, since |κ| ≤ |x|R = (|x|/L)1−ω,∣∣∣∣∣1− exp

(
τ |κ|2 log |κ|

log |x|
L

)∣∣∣∣∣ ≤ τ |κ|2 | log |κ||
log |x|

L

exp

(
τ |κ|2 log |x|R

log |x|
L

)
= τ |κ|2 | log |κ||

log |x|
L

e(1−ω)τ |κ|2 . (2.27)

Then, by changing the order of integrations and changing variables as s = ω|κ|2 v2T
|x|2 log |x|

L
,

we obtain

|M3| ≤
1

log |x|
L

∫
|κ|≤|x|R

ddκ

(2π)d
|κ|2| log |κ||

∫ ∞
v2T

|x|2
log
|x|
L

dτ τ e−ωτ |κ|
2

=
1

log |x|
L

∫
|κ|≤|x|R

ddκ

(2π)d
| log |κ||
ω2|κ|2

(
1 + ω|κ|2v2T

|x|2
log
|x|
L

)
e
−ω|κ|2 v2T

|x|2
log
|x|
L

=
O(1)

log |x|
L

(
|x|2

v2T log |x|
L

)(d−2)/2

︸ ︷︷ ︸
(log

|x|
L

)−1+(d−2)µ/2

∫ ωv2TR2 log
|x|
L

0

ds

s

∣∣∣∣ log
s|x|2

ωv2T log |x|
L

∣∣∣∣s(d−2)/2(1 + s)e−s.

(2.28)
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Using the triangle inequality∣∣∣∣ log
s|x|2

ωv2T log |x|
L

∣∣∣∣ (2.3)

≤
∣∣∣∣ log

L2s

ωv2

∣∣∣∣+ µ log log
|x|
L
, (2.29)

we obtain ∫ ωv2TR2 log
|x|
L

0

ds

s

∣∣∣∣ log
s|x|2

ωv2T log |x|
L

∣∣∣∣s(d−2)/2(1 + s)e−s

≤
∫ ∞

0

ds

s

∣∣∣∣ log
L2s

ωv2

∣∣∣∣s(d−2)/2(1 + s)e−s︸ ︷︷ ︸
convergent as long as d > 2

+
(
Γ(d−2

2
) + Γ(d

2
)
)
µ log log

|x|
L

= O(1)

(
1 + log log

|x|
L

)
. (2.30)

As a result,

|M3| ≤
O(1) log log |x|

L

(log |x|
L

)1−(d−2)µ/2

µ< 2
d+2

≤
O(1) log log |x|

L

(log |x|
L

)4/(d+2)
, (2.31)

which gives another error term.
Summarizing (2.17)–(2.18) and (2.22), we arrive at

S1(x) =
|x|2−d

v2 log |x|
L

(
γ −

3∑
j=1

Mj

)
+

4∑
j=1

Ij, (2.32)

with the error estimates (2.4), (2.12), (2.15)–(2.16), (2.24), (2.26) and (2.31). This com-
pletes the proof of Theorem 1.3 assuming the properties in Assumptions 1.1–1.2.

2.2 Proof of the bound (1.12) on ‖D∗n‖∞ for α = 2

For n = 1, ‖D‖∞ = O(L−d) is obvious. For n ≥ 2, we recall that ‖D∗n‖∞ is bounded as
(cf., [12, (A.2) and (A.4)])

‖D∗n‖∞ ≤ O(L−d)

∫ 1

0

dr

r
rde−nr

2 log π
2r + ‖D‖∞(1−∆)n−2. (2.33)

Since the second term decays exponentially in n, it suffices to show that∫ 1

0

dr

r
rde−nr

2 log π
2r ≤ O

(
(n log πn

2
)−d/2

)
. (2.34)

Let t = n−1/4 (so that nt2 =
√
n). Notice that log π

2r
≥ log π

2
> 0 for r ≤ 1. By changing

variables as s = nr2 log π
2
, we have∫ 1

t

dr

r
rde−nr

2 log π
2r ≤ O(n−d/2)

∫ ∞
√
n log π

2

ds

s
sd/2e−s ≤ O(n−

d+2
4 ) e−

√
n log π

2 , (2.35)
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which decays much faster than O((n log πn
2

)−d/2). For the remaining integral over r ∈
(0, t), we change variables as s = nr2 log π

2r
. Then, there is a c > 0 such that

ds

s
=

(
2− 1

log π
2r

)
dr

r
≥
(

2− 1

log π
2t

)
dr

r
≥ c

dr

r
, (2.36)

r =

√
s

n log π
2r

≤
√

s

n log π
2t

=

√
s

n(1
4

log n+ log π
2
)
≤
√

4s

n log πn
2

. (2.37)

Therefore,∫ t

0

dr

r
rde−nr

2 log π
2r ≤ 4d/2

c(n log πn
2

)d/2

∫ nt2 log π
2t

0

ds

s
sd/2e−s ≤

4d/2Γ(d
2
)

c(n log πn
2

)d/2
, (2.38)

as required.

3 Analysis for the two-point function

In this section, we use the lace expansion (1.2) to prove Theorem 1.4. First, in Section 3.1,
we summarize some known facts, including the precise statement of the lace expansion for
the two-point function. Then, in Section 3.2, we prove the infrared bound (1.35) by using
convolution bounds on power functions with log corrections (Lemma 3.5) and bounds on
the lace-expansion coefficients (Lemma 3.6). The proofs of those two lemmas follow, in
Sections 3.3–3.4, respectively. Finally, in Section 3.5, we prove the asymptotic behavior
(1.36) and complete the proof of Theorem 1.4.

3.1 List of known facts

The following four propositions hold independently of the value of α > 0.

Proposition 3.1 (Lemma 2.2 of [15]). For every x ∈ Zd, Gp(x) is nondecreasing and
continuous in p < pc for SAW, and in p ≤ pc for percolation and the Ising model. The
continuity up to p = pc for SAW is also valid if Gp(x) is uniformly bounded in p < pc.

Proposition 3.2 (Lemma 2.3 of [15]). For every p < pc and x ∈ Zd,

Gp(x) ≤ Sp(x), pD(x) ≤ Gp(x)− δo,x ≤ (pD ∗Gp)(x). (3.1)

Proposition 3.3 (Lemma 2.4 of [15]). For every p < pc, there is a Kp = Kp(α, d, L) <∞
such that, for any x ∈ Zd,

Gp(x) ≤ Kp|||x|||−d−αL . (3.2)
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Proposition 3.4 ([11] for SAW; [19] for percolation; [28] for the Ising model). There
are model-dependent nonnegative functions on Zd, {π(n)

p }∞n=0 (π(0)
p ≡ 0 for SAW) and

{R(n)
p }∞n=1, such that, for every integer n ≥ 0,

Gp =

{
δ + (pD 6= + π(≤n)

p ) ∗Gp + (−1)n+1R(n+1)
p [SAW],

π(≤n)
p + π(≤n)

p ∗ pD6= ∗Gp + (−1)n+1R(n+1)
p [percolation & Ising],

(3.3)

where the spatial variables are omitted (e.g., Gp for Gp(x), δ for δo,x) and1

D 6= = D −D(o)δ, π(≤n)

p =
n∑
j=0

(−1)jπ(j)

p . (3.4)

Moreover, the remainder term obeys the following bound:

R(n+1)

p ≤

{
π(n+1)
p ∗Gp [SAW],

π(n)
p ∗ pD ∗Gp [percolation & Ising].

(3.5)

Before proceeding to the next subsection, we derive the unified expression (1.2) from
(3.3). To do so, we first assume p < pc and

∑
j ‖π(j)

p ‖1 < ∞, which has been verified for
α 6= 2, d > dc and L � 1 in [15] and is verified in the next subsection for α = 2, d ≥ dc

and L� 1. Then, by (3.5), we can take the n→∞ limit to obtain

Gp =

{
δ + (pD 6= + πp) ∗Gp [SAW],

πp + πp ∗ pD 6= ∗Gp [percolation & Ising],
(3.6)

where πp = limn→∞ π
(≤n)
p . For percolation and the Ising model, if pD(o)‖πp‖1 < 1 (also

verified for α 6= 2, d > dc and L� 1 in [15], and for α = 2, d ≥ dc and L� 1 in the next
subsection), then

Gp = πp + πp ∗ pD ∗Gp − pD(o)πp ∗ Gp︸︷︷︸
replace

= πp + πp ∗ pD ∗Gp − pD(o)πp ∗
(
πp + πp ∗ pD ∗Gp − pD(o)πp ∗Gp

)
=

(
πp − pD(o)π∗2p

)
+
(
πp − pD(o)π∗2p

)
∗ pD ∗Gp +

(
− pD(o)

)2
π∗2p ∗ Gp︸︷︷︸

replace

=
(
πp − pD(o)π∗2p

)
+
(
πp − pD(o)π∗2p

)
∗ pD ∗Gp

+
(
− pD(o)

)2
π∗2p ∗

(
πp + πp ∗ pD ∗Gp − pD(o)πp ∗Gp

)
...

= Πp +Πp ∗ pD ∗Gp, (3.7)

1The recursion equation [15, (1.11)] is correct for percolation and the Ising model, but not quite for
SAW, as long as D(o) > 0. To deal with such D, the definition [15, (1.13)] of Πp needs slight modification.
See (3.10) below.

17



where

Πp = πp +
∞∑
n=1

(
− pD(o)

)n
π∗(n+1)
p . (3.8)

For SAW, if pD(o) + ‖πp‖1 < 1 (also verified for α 6= 2, d > dc and L� 1 in [15], and for
α = 2, d ≥ dc and L� 1 in the next subsection), then

Gp = δ + pD ∗Gp +
(
− pD(o)δ + πp

)
∗ Gp︸︷︷︸

replace

= δ + pD ∗Gp +
(
− pD(o)δ + πp

)
∗
(
δ + pD ∗Gp +

(
− pD(o)δ + πp

)
∗Gp

)
=

(
δ +

(
− pD(o)δ + πp

))
+
(
δ +

(
− pD(o)δ + πp

))
∗ pD ∗Gp

+
(
− pD(o)δ + πp

)∗2 ∗ Gp︸︷︷︸
replace

...

= Πp +Πp ∗ pD ∗Gp, (3.9)

where

Πp = δ +
∞∑
n=1

(
− pD(o)δ + πp

)∗n
. (3.10)

3.2 Proof of the infrared bound (1.35)

Let α = 2, d ≥ dc and

λ = sup
x 6=o

S1(x)

|||x|||2−dL / log ||| x
L
|||1

= O(L−2). (3.11)

Define

gp = p ∨ sup
x 6=o

Gp(x)

λ|||x|||2−dL / log ||| x
L
|||1
. (3.12)

We will show that gp satisfies the following three properties:

(i) gp is continuous (and nondecreasing) in p ∈ [1, pc).

(ii) g1 ≤ 1.

(iii) If λ� 1 (i.e., L� 1), then gp ≤ 3 implies gp ≤ 2 for every p ∈ (1, pc).

Notice that the above properties readily imply Gp(x) ≤ 2λ|||x|||2−dL / log ||| x
L
|||1 for all x 6= o

and p < pc (≤ 2). By Proposition 3.1, we can extend this bound up to pc, which completes
the proof of (1.35).

It remains to prove the properties (i)–(iii).

18



Proof of (i). It suffices to show that supx 6=oGp(x)/|||x|||2−dL / log ||| x
L
|||1 is continuous in

p ∈ [1, p0] for every fixed p0 ∈ (1, pc). First, by the monotonicity of Gp(x) in p ≤ p0 and
using Proposition 3.3, we have

Gp(x)

|||x|||2−dL / log ||| x
L
|||1
≤ Gp0(x)

|||x|||2−dL / log ||| x
L
|||1
≤ Kp0|||x|||−d−2

L

|||x|||2−dL / log ||| x
L
|||1

=
Kp0

|||x|||4L/ log ||| x
L
|||1
. (3.13)

On the other hand, for any x0 6= o with D(x0) > 0, there is an R = R(p0, x0) < ∞ such
that, for all |x| ≥ R,

Kp0

|||x|||4L/ log ||| x
L
|||1
≤ D(x0)

|||x0|||2−dL / log |||x0

L
|||1
. (3.14)

Moreover, by using p ≥ 1 and the lower bound of the second inequality in (3.1), we have

D(x0) ≤ pD(x0) ≤ Gp(x0). (3.15)

As a result, for any p ∈ [1, p0], we obtain

sup
x 6=o

Gp(x)

|||x|||2−dL / log ||| x
L
|||1

=
Gp(x0)

|||x0|||2−dL log |||x0

L
|||1
∨ max
x:0<|x|<R

Gp(x)

|||x|||2−dL / log ||| x
L
|||1
. (3.16)

Since Gp(x) is continuous in p (cf., Proposition 3.1) and the maximum of finitely many
continuous functions is continuous, we can conclude that gp is continuous in p ∈ [1, p0],
as required.

Proof of (ii). By Proposition 3.2 and the definition (3.11) of λ, we readily obtain

g1 = 1 ∨ sup
x 6=o

G1(x)

λ|||x|||2−dL / log ||| x
L
|||1
≤ 1 ∨ sup

x 6=o

S1(x)

λ|||x|||2−dL / log ||| x
L
|||1
≤ 1, (3.17)

as required.

Proof of (iii). This is the most involved part among (i)–(iii), and here we use the lace
expansion. To evaluate the lace-expansion coefficients, we use the following bounds on
convolutions of power functions with log corrections, whose proof is deferred to Section 3.5.

Lemma 3.5. For a1 ≥ b1 > 0 with a1 + b1 ≥ d, and for a2, b2 ≥ 0 with a2 ≥ b2 when
a1 = b1, there is an L-independent constant C = C(d, a1, a2, b1, b2) <∞ such that∑

y∈Zd

|||x− y|||−a1
L

(log |||x−y
L
|||1)a2

|||y|||−b1L

(log ||| y
L
|||1)b2

(3.18)

≤ C |||x|||−b1L

(log ||| x
L
|||1)b2

×



Ld−a1 [a1 > d],

log log ||| x
L
|||1 [a1 = d, a2 = 1],

(log ||| x
L
|||1)0∨(1−a2) [a1 = d, a2 6= 1],

|||x|||d−a1
L [a1 < d, a1 + b1 > d],

|||x|||b1L (log ||| x
L
|||1)0∨(1−a2) [a1 < d, a1 + b1 = d, a2 + b2 > 1].
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o x

o x

Figure 1: Examples of the lace-expansion diagrams for SAW and the Ising model (left)
and percolation (right). The factor ` in (3.19) is the number of disjoint paths (in red)
from o to x using different sets of line segments.

Assuming gp ≤ 3 and Lemma 3.5, we prove in Section 3.4 the following bounds on the
lace-expansion coefficients {π(n)

p }∞n=0 (recall that π(0)
p ≡ 0 for SAW) in (3.3).

Lemma 3.6. Let (cf., (1.34) for the definition of m)

` =
m+ 1

m− 1
=

{
3 [SAW & Ising],

2 [percolation].
(3.19)

Suppose gp ≤ 3 and p < pc. Under the same condition as in Theorem 1.4, we have

(pD ∗Gp)(x) ≤ O(λ)
|||x|||2−dL

log ||| x
L
|||1

[x ∈ Zd]. (3.20)

Moreover, for SAW,

π(j)

p (x) ≤


O(L−d)δo,x [j = 1],

O(λ)j+1 |||x|||
3(2−d)
L

(log ||| x
L
|||1)3

[j ≥ 2],
(3.21)

and for the Ising model and percolation,

π(j)

p (x) ≤


O(L−d)jδo,x +O(λ)2 |||x|||

`(2−d)
L

(log ||| x
L
|||1)`

[j = 0, 1],

O(λ)j
|||x|||`(2−d)

L

(log ||| x
L
|||1)`

[j ≥ 2].

(3.22)

Consequently, we have
∑

j ‖π(j)
p ‖1 < ∞ for d ≥ dc and L � 1. Then, by using (3.5)

for p < pc, we obtain limn→∞ ‖R(n)
p ‖1 = 0 and (3.6) with

|πp(x)| ≤


O(L−d)δo,x +O(λ3)

|||x|||3(2−d)
L

(log ||| x
L
|||1)3

[SAW],

(
1 +O(L−d)

)
δo,x +O(λ2)

|||x|||`(2−d)
L

(log ||| x
L
|||1)`

[Ising & percolation].

(3.23)
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This implies that, for SAW (cf., (3.10)),

pD(o)︸ ︷︷ ︸
O(L−d)

δo,x + |πp(x)| ≤ O(L−d)δo,x +O(λ3)
|||x|||3(2−d)

L

(log ||| x
L
|||1)3

, (3.24)

hence pD(o) + ‖πp‖1 < 1 for d ≥ dc and L� 1. Also, for the Ising model and percolation
(cf., (3.8)), since L−d = O(λ) for d ≥ 2,

pD(o)|πp(x)| ≤ O(L−d)δo,x +O(λ3)
|||x|||`(2−d)

L

(log ||| x
L
|||1)`

, (3.25)

hence pD(o)‖πp‖1 < 1 for d ≥ dc and L� 1. We note that, for all three models,

`(2− d) = −d− 2− (`− 1)(d− dc). (3.26)

By repeated applications of (3.24) and Lemma 3.5, Πp(x) for SAW obeys the bound

|Πp(x)− δo,x| ≤
∞∑
n=1

(
pD(o)δ + |πp|

)∗n
(x)

≤
∞∑
n=1

O(L−d)n︸ ︷︷ ︸
O(L−d)

δo,x +
∞∑
n=1

n∑
j=1

(
n

j

)
O(L−d)n−jO(λ3)j

O(L−2−2(d−4))j−1|||x|||3(2−d)
L

(log ||| x
L
|||1)3︸ ︷︷ ︸

∵Lemma 3.5

≤ O(L−d)δo,x +O(λ3)
|||x|||3(2−d)

L

(log ||| x
L
|||1)3

∞∑
n=1

n
(
O(L−d) +O(λ3L−2−2(d−4))︸ ︷︷ ︸

O(L−2d)

)n−1

︸ ︷︷ ︸
O(1)

. (3.27)

Similarly, by repeated applications of (3.23), (3.25) and Lemma 3.5, Πp(x) for the Ising
model and percolation obeys the bound

|Πp(x)− δo,x| ≤ |πp(x)− δo,x|+
(
|πp| ∗

∞∑
n=1

(
pD(o)|πp|

)∗n
︸ ︷︷ ︸
≤ RHS of (3.27)

)
(x)

≤ O(L−d)δo,x +O(λ2)
|||x|||3(2−d)

L

(log ||| x
L
|||1)3

. (3.28)

By weakening the O(λ3) term in the right-most expression of (3.27) to O(λ2), Πp(x) for
all three models enjoys the unified bound

|Πp(x)− δo,x| ≤ O(L−d)δo,x +O(λ2)
|||x|||`(2−d)

L

(log ||| x
L
|||1)`

. (3.29)
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As a result,

|Π̂p(0)− 1| ≤ O(L−d) +O(λ2)
∑
x

|||x|||`(2−d)
L

(log ||| x
L
|||1)`︸ ︷︷ ︸

O(L−2−(`−1)(d−dc))

= O(L−d), (3.30)

and

|Π̂p(0)− Π̂p(k)| ≤ O(λ2)|k|2
∑
x

|x|2 |||x|||
`(2−d)
L

(log ||| x
L
|||1)`︸ ︷︷ ︸

O(L−(`−1)(d−dc))

≤ O(λ2)|k|2. (3.31)

Now we are back to the proof of (iii). First, by summing both sides of (1.2) over x
and solve the resulting equation for χp, we have

χp = Π̂p(0) + Π̂p(0)pχp =
Π̂p(0)

1− pΠ̂p(0)
. (3.32)

Since χp <∞ (because p < pc) and Π̂p(0) = 1 +O(L−d) > 0 for large L, we obtain

pΠ̂p(0) ∈ (0, 1), (3.33)

which implies p < Π̂p(0)−1 = 1 +O(L−d) ≤ 2, as required.
Next, we investigate Gp(x). By repeated applications of (1.2) for N times, we have

Gp(x) = Πp(x) + (Πp ∗ pD ∗Gp)(x)

= Πp(x) + (Πp ∗ pD ∗Πp)(x) +
(
(Πp ∗ pD)∗2 ∗Gp

)
(x)

...

=

(
Πp ∗

N−1∑
n=0

(pD ∗Πp)
∗n
)

(x) +
(
(Πp ∗ pD)∗N ∗Gp

)
(x). (3.34)

Notice that, by (3.26), (3.29) and Lemma 3.5, there are finite constants C,C ′, C ′′ such
that

(Πp ∗D)(x) ≥ (1− CL−d)D(x)− C ′λ2
∑
y

|||y|||`(2−d)
L

(log ||| y
L
|||1)`

D(x− y)

≥ (1− CL−d − C ′′λ3)D(x), (3.35)

which is positive for all x, if L is large enough (see Remark 3.7 below). Therefore,

D(x) =
(Πp ∗D)(x)

Π̂p(0)
(3.36)
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is a probability distribution that satisfies Assumptions 1.1–1.2 (see computations below).
By this observation, we can take the limit

0 ≤
(
(Πp ∗ pD)∗N ∗Gp

)
(x) =

(
pΠ̂p(0)︸ ︷︷ ︸
∈(0,1)

)N
(D∗N ∗Gp)(x)︸ ︷︷ ︸

≤χp

−−−→
N→∞

0, (3.37)

so that

Gp(x) =

(
Πp ∗

∞∑
n=0

(
pΠ̂p(0)

)nD∗n)(x) = (Πp ∗ SpΠ̂p(0))(x), (3.38)

where Sq is the random-walk Green function generated by the 1-step distribution D with
fugacity q ∈ [0, 1], for which (1.19) holds. By (3.29) and Lemma 3.5, we obtain that, for
x 6= o,

Gp(x) ≤
(
1 +O(L−d)

)
S1(x) +

∑
y(6=o)

O(λ2)|||y|||`(2−d)
L

(log ||| y
L
|||1)`

(
δy,x +

O(λ)|||x− y|||2−dL

log |||x−y
L
|||1

)
︸ ︷︷ ︸

O(λ4)|||x|||2−dL / log ||| x
L
|||1

. (3.39)

Suppose S1(x) ≤ (1 +O(λ3))S1(x) holds for all x. Then, for x 6= o,

Gp(x) ≤
(
1 +O(λ3)

)
S1(x) +O(λ4)

|||x|||2−dL

log ||| x
L
|||1

L�1

≤ 2λ
|||x|||2−dL

log ||| x
L
|||1
, (3.40)

as required.
It remains to show S1(x) ≤ (1 +O(λ3))S1(x) for all x. This is not so hard to verify, as

explained now. First, by (3.35) and its opposite inequality with all negative signs replaced
by positive signs, ∣∣∣∣D(x)

D(x)
− 1

∣∣∣∣ = O(λ3). (3.41)

Also, by (3.30)–(3.31) and (1.10),

1− D̂(k)

1− D̂(k)

(3.36)
= 1 +

D̂(k)

Π̂p(0)︸ ︷︷ ︸
1+O(L−d)

Π̂p(0)− Π̂p(k)

1− D̂(k)︸ ︷︷ ︸
O(λ3)

= 1 +O(λ3). (3.42)

Similarly,

1− D̂(k)

|k|2 log(1/|k|)
=

1− D̂(k)

|k|2 log(1/|k|)︸ ︷︷ ︸
→v2, ∵ (1.4)

+
D̂(k)

Π̂p(0)

Π̂p(0)− Π̂p(k)

|k|2 log(1/|k|)︸ ︷︷ ︸
→0, ∵ (3.31)

−−−→
|k|→0

v2. (3.43)

Therefore, for L large enough, D satisfies all (1.9)–(1.12) with the same constants as D
(modulo O(λ3) terms). Similar analysis can be applied to show that D also satisfies (1.13)
with the same constant as D. As a result, we can get S1(x) ≤ (1 +O(λ3))S1(x) for all x.
This completes the proof of (iii), hence the proof of the infrared bound (1.35).
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Remark 3.7. The above proof works as long as α ≤ 2 + (` − 1)(d − dc) (cf., (3.35)),
then we can define the probability distribution (3.36) by taking L sufficiently large. For
short-range models investigated in [17, 18, 28], on the other hand, since α is regarded as
an arbitrarily large number, there is no way for (3.35) to be nonnegative for every x. In
this case, we may have to introduce a quite delicate function Ep,q,r(x) as in [15, 18] that
is required to satisfy some symmetry conditions. Since we do not need such a function for
all α ≤ 2 and d ≥ dc, the analysis explained in this subsection is much easier and more
transparent than the previous one in [15, 18]. This is also related to the reason why the
multiplicative constant A in the asymptotic expression (1.41) becomes 1 for α ≤ 2.

3.3 Convolution bounds on power functions with log corrections

In this subsection, we prove Lemma 3.5. First, we rewrite the sum in (3.18) as∑
y∈Zd

|||x− y|||−a1
L

(log |||x−y
L
|||1)a2

|||y|||−b1L

(log ||| y
L
|||1)b2

=
∑

y:|x−y|≤|y|

|||x− y|||−a1
L

(log |||x−y
L
|||1)a2

|||y|||−b1L

(log ||| y
L
|||1)b2

+
∑

y:|x−y|>|y|

|||x− y|||−a1
L

(log |||x−y
L
|||1)a2

|||y|||−b1L

(log ||| y
L
|||1)b2

=
∑

y:|x−y|≤|y|

(
|||x− y|||−a1

L

(log |||x−y
L
|||1)a2

|||y|||−b1L

(log ||| y
L
|||1)b2

+
|||x− y|||−b1L

(log |||x−y
L
|||1)b2

|||y|||−a1
L

(log ||| y
L
|||1)a2

)
. (3.44)

Notice that the ratio of the second term to the first term in the parentheses, which is

|||x− y|||−b1L

(log |||x−y
L
|||1)b2

|||y|||−a1
L

(log ||| y
L
|||1)a2

|||x− y|||−a1
L

(log |||x−y
L
|||1)a2

|||y|||−b1L

(log ||| y
L
|||1)b2

=

(
|||x− y|||L
|||y|||L

)a1−b1( log |||x−y
L
|||1

log ||| y
L
|||1

)a2−b2
, (3.45)

is bounded above by an L-independent constant C ∈ [1,∞) as long as a1 > b1, or a1 = b1

and a2 ≥ b2. Therefore,∑
y∈Zd

|||x− y|||−a1
L

(log |||x−y
L
|||1)a2

|||y|||−b1L

(log ||| y
L
|||1)b2

≤ 2C
∑

y:|x−y|≤|y|

|||x− y|||−a1
L

(log |||x−y
L
|||1)a2

|||y|||−b1L

(log ||| y
L
|||1)b2

. (3.46)

Now we consider the following cases separately: (a) a1 > d, (b) a1 = d, (c) a1 < d and
a1 + b1 ≥ d.

(a) Let a1 > d. Since |x− y| ≤ |y| implies |y| ≥ 1
2
|x|, and since

|||x
2
|||L ≥

1

2
|||x|||L, log ||| x

2L
|||1 ≥

log π
2

log π
log ||| x

L
|||1, (3.47)
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we obtain∑
y:|x−y|≤|y|

|||x− y|||−a1
L

(log |||x−y
L
|||1)a2

|||y|||−b1L

(log ||| y
L
|||1)b2

≤ O(1)|||x|||−b1L

(log ||| x
L
|||1)b2

∑
y∈Zd

|||x− y|||−a1
L

(log |||x−y
L
|||1)a2︸ ︷︷ ︸

O(Ld−a1 )

. (3.48)

(b) Let a1 = d. First we split the sum as∑
y:|x−y|≤|y|

=
∑

y:|x−y|≤|y|
(|y|≤ 3

2
|x|)

+
∑

y:|x−y|≤|y|
(|y|> 3

2
|x|)

. (3.49)

For the first sum, since |x − y| ≤ |y| implies |y| ≥ 1
2
|x| (so that (3.47) holds), and

since

log ||| 3x
2L
|||1 ≤

log 3π
4

log π
2

log ||| x
L
|||1, log log ||| 3x

2L
|||1 ≤

log log 3π
4

log log π
2

log log ||| x
L
|||1, (3.50)

we obtain∑
y:|x−y|≤|y|
(|y|≤ 3

2
|x|)

|||x− y|||−dL
(log |||x−y

L
|||1)a2

|||y|||−b1L

(log ||| y
L
|||1)b2

≤ O(1)|||x|||−b1L

(log ||| x
L
|||1)b2

∑
y:|x−y|≤ 3

2
|x|

|||x− y|||−dL
(log |||x−y

L
|||1)a2

≤ O(1)|||x|||−b1L

(log ||| x
L
|||1)b2

×


1 [a2 > 1],

log log ||| x
L
|||1 [a2 = 1],

(log ||| x
L
|||1)1−a2 [a2 < 1].

(3.51)

For the second sum in (3.49), since |y| > 3
2
|x| implies |x− y| ≥ 1

3
|y|, and since

|||y
3
|||L ≥

1

3
|||y|||L, log ||| y

3L
|||1 ≥

log π
2

log 3π
2

log ||| y
L
|||1, (3.52)

we obtain∑
y:|x−y|≤|y|
(|y|> 3

2
|x|)

|||x− y|||−dL
(log |||x−y

L
|||1)a2

|||y|||−b1L

(log ||| y
L
|||1)b2

≤ O(1)

(log ||| x
L
|||1)a2+b2

∑
y:|y|> 3

2
|x|

|||y|||−d−b1L︸ ︷︷ ︸
O(1)|||x|||−b1L

, (3.53)

which is smaller than (3.51).

(c) Let a1 < d and a1 +b1 ≥ d. Similarly to the case (b), we split the sum as in (3.49) and
evaluate each sum by using (3.47) and (3.52). Then, by discarding the log-dumping
term (log |||x−y

L
|||1)−a2 , the first sum in (3.49) is bounded as∑

y:|x−y|≤|y|
(|y|≤ 3

2
|x|)

|||x− y|||−a1
L

(log |||x−y
L
|||1)a2

|||y|||−b1L

(log ||| y
L
|||1)b2

≤ O(1)|||x|||−b1L

(log ||| x
L
|||1)b2

∑
y:|x−y|≤ 3

2
|x|

|||x− y|||−a1
L︸ ︷︷ ︸

O(1)|||x|||d−a1
L

(3.54)
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while the second sum in (3.49) is bounded as

∑
y:|x−y|≤|y|
(|y|> 3

2
|x|)

|||x− y|||−a1
L

(log |||x−y
L
|||1)a2

|||y|||−b1L

(log ||| y
L
|||1)b2

∵ |x−y|≥ 1
3
|y|

≤ O(1)
∑

y:|y|> 3
2
|x|

|||y|||−a1−b1
L

(log ||| y
L
|||1)a2+b2

≤ O(1)|||x|||d−a1−b1
L

(log ||| x
L
|||1)a2+b2

×

{
1 [a1 + b1 > d],

log ||| x
L
|||1 [a1 + b1 = d, a2 + b2 > 1],

(3.55)

which is smaller (resp., larger) than (3.54) if a2 > 1 (resp., a2 < 1). This completes
the proof of Lemma 3.5.

3.4 Bounds on the lace-expansion coefficients

In this subsection, we prove Lemma 3.6. Suppose that gp ≤ 3 and p < pc. Since Gp(y) =
δo,y +Gp(y)1{y 6=o} for all three models, we have

(D ∗Gp)(x) = D(x) +
∑
y 6=o

D(x− y)Gp(y). (3.56)

The first term is easy, because

D(x) =
O(L2)

|||x|||d+2
L

= O(λ)
log ||| x

L
|||1

||| x
L
|||41

|||x|||2−dL

log ||| x
L
|||1
≤ O(λ)

|||x|||2−dL

log ||| x
L
|||1
. (3.57)

For the second term in (3.56), we use gp ≤ 3 and Lemma 3.5 as

∑
y 6=o

D(x− y)Gp(y) ≤
∑
y∈Zd

O(L2)

|||x− y|||d+2
L

3λ|||y|||2−dL

log ||| y
L
|||1
≤ O(λ)

|||x|||2−dL

log ||| x
L
|||1
. (3.58)

This completes the proof of (3.20).
To prove (3.21)–(3.22), we repeatedly apply Lemma 3.5 to the diagrammatic bounds

on πp(x) in [18, 28]. For example, the lace-expansion diagram in Figure 1 for SAW and
the Ising model can be bounded as follows. Suppose for now that each line segment, say,
from x to y, represents 3λ|||x−y|||2−dL / log |||x−y

L
|||1, i.e., the assumed bound on the nonzero

two-point function. Then, by using Lemma 3.5 (to perform the sum over w), we can show
that, for d ≥ 4,

xo (z)

(y) (w)

≤ 4d−1

(
3λ

log π

log π
2

)2

C

x

o (z)

(y)

, (3.59)
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where the indicies in the parentheses are summed over Zd. This is due to the following
computation: for d ≥ 4,

∑
w

3λ|||y − w|||2−dL

log |||y−w
L
|||1

3λ|||z − w|||2−dL

log ||| z−w
L
|||1

(
3λ|||w − x|||2−dL

log |||w−x
L
|||1

)2

×
(
1{|y−w|≤|w−x|} + 1{|y−w|≥|w−x|}

)(
1{|z−w|≤|w−x|} + 1{|z−w|≥|w−x|}

)
≤
∑
w

3λ|||y − w|||2−dL

log |||y−w
L
|||1

3λ|||z − w|||2−dL

log ||| z−w
L
|||1

(
3λ|||w − x|||2−dL

log |||w−x
L
|||1

)2

1{|y−w|≤|w−x|}︸ ︷︷ ︸
⇒|w−x|≥ 1

2
|y−x|

1{|z−w|≤|w−x|}︸ ︷︷ ︸
⇒|w−x|≥ 1

2
|z−x|

+ [3 other cases]

≤ (3λ)2 3λ|||y−x
2
|||2−dL

log |||y−x
2L
|||1

3λ||| z−x
2
|||2−dL

log ||| z−x
2L
|||1

(∑
w

|||y − w|||2−dL

log |||y−w
L
|||1
|||z − w|||2−dL

log ||| z−w
L
|||1︸ ︷︷ ︸

≤C|||y−z|||2−dL / log ||| y−z
L
|||1

+[3 other cases]

︸ ︷︷ ︸
≤4C

)

≤ 4d−1

(
3λ

log π

log π
2

)2

C
3λ|||y − x|||2−dL

log |||y−x
L
|||1

3λ|||z − x|||2−dL

log ||| z−x
L
|||1

. (3.60)

By repeated application of the above inequality, we will end up with

xo (z)

(y) (w)

≤

(
4d−1

(
3λ

log π

log π
2

)2

C

)5
x

o

≤

(
4d−1

(
3λ

log π

log π
2

)2

C

)5

(3λ)3

︸ ︷︷ ︸
O(λ)13

|||x|||3(2−d)
L

(log ||| x
L
|||1)3

, (3.61)

which is smaller than (3.21)–(3.22), by a factor O(λ)5 for SAW, in particular. This is
because, in fact, not every line segment is nonzero. The situation for the Ising model and
percolation is harder, because most of the line segments can be zero-length, which do not
have small factors of λ. However, the convolution pD ∗ Gp shows up repeatedly, which
has a small factor of λ, as in (3.20). This also provides a bound on the main contribution
from π(1)

p (x), as

(pD ∗Gp)(o)δo,x ≤ 3

(
D(o) +

∑
y 6=o

O(L2)

|||y|||d+2
L

3λ|||y|||2−dL

log ||| y
L
|||1

)
δo,x = O(L−d)δo,x. (3.62)

This completes the sketch proof of Lemma 3.6.
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3.5 Proof of the asymptotic behavior (1.36)

First we recall (3.38). Since χp = Π̂p(0)/(1 − pΠ̂p(0)) diverges as p ↑ pc, while Π̂p(0) =

1 +O(L−d) uniformly in p < pc, we have pcΠ̂pc(0) = 1. Therefore,

Gpc(x) = Πpc ∗ S1(x) = Π̂pc(0)︸ ︷︷ ︸
1/pc

S1(x) +
∑
y 6=o

Πpc(y)
(
S1(x− y)− S1(x)

)
. (3.63)

The asymptotic expression of S1(x) is the same as that of S1(x). This can be shown by
following the proof of (1.20) and using the limit (3.43).

To investigate the error term in (3.63), we first split the sum as∑
y 6=o

=
∑

y:0<|y|≤ 1
3
|x|

+
∑

y:|x−y|≤ 1
3
|x|

+
∑

y:|y|∧|x−y|> 1
3
|x|

≡
∑
y

′
+
∑
y

′′
+
∑
y

′′′
. (3.64)

For
∑′′

y, since |x − y| ≤ 1
3
|x| implies 2

3
|x| ≤ |y| (so that a similar inequality to (3.47) or

(3.52) holds), we have that, for large |x|,∣∣∣∣∑
y

′′
Πpc(y)

(
S1(x− y)− S1(x)

)∣∣∣∣ (3.29)

≤ O(λ2)|x|`(2−d)

(log |x|)`
∑

y:|x−y|≤ 1
3
|x|

(
S1(x− y) + S1(x)

)
︸ ︷︷ ︸

O(λ)|x|2/ log |x|

= O(λ3)
|x|−d−(`−1)(d−dc)

(log |x|)`+1
. (3.65)

Similarly, for
∑′′′

y for large |x|,∣∣∣∣∑
y

′′′
Πpc(y)

(
S1(x− y)− S1(x)

)∣∣∣∣ (3.29)

≤ O(λ)|x|2−d

log |x|
∑

y:|y|> 1
3
|x|

O(λ2)|y|`(2−d)

(log |y|)`︸ ︷︷ ︸
O(λ2)|x|−2−(`−1)(d−dc)/(log |x|)`

= O(λ3)
|x|−d−(`−1)(d−dc)

(log |x|)`+1
. (3.66)

It remains to investigate
∑′

y. For that, we first use (1.20) and the Zd-symmetry of
Πpc to obtain that, for large |x|,∣∣∣∣∑

y

′
Πpc(y)

(
S1(x− y)− S1(x)

)∣∣∣∣
≤ γ2

v2︸︷︷︸
O(λ)

∑
y

′
|Πpc(y)|

∣∣∣∣12
(
|x+ y|2−d

log |x+ y|
+
|x− y|2−d

log |x− y|

)
− |x|

2−d

log |x|

∣∣∣∣
+

∑
y:0<|y|≤ 1

3
|x|

|Πpc(y)|

︸ ︷︷ ︸
O(λ3)

O(λ)|x|2−d

(log |x|)1+ε
. (3.67)
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Then, by Taylor’s theorem,

|x± y|2−d = |x|2−d
(

1± 2
x · y
|x|2

+
O(|y|2)

|x|2

)(2−d)/2

= |x|2−d
(

1± (2− d)
x · y
|x|2

+
O(|y|2)

|x|2

)
, (3.68)

log |x± y| = log |x|+ log
|x± y|
|x|

= log |x| ± x · y
|x|2

+
O(|y|2)

|x|2
, (3.69)

which implies ∣∣∣∣12
(
|x+ y|2−d

log |x+ y|
+
|x− y|2−d

log |x− y|

)
− |x|

2−d

log |x|

∣∣∣∣ ≤ O(|y|2)|x|−d

log |x|
. (3.70)

Therefore, the first term on the right-hand side of (3.67) is bounded by

O(λ)|x|−d

log |x|
∑

y:0<|y|≤ 1
3
|x|

O(λ2)|||y|||−d−(`−1)(d−dc)
L

(log ||| y
L
|||1)`︸ ︷︷ ︸

O(λ2)

= O(λ3)
|x|−d

log |x|
. (3.71)

This completes the proof of Theorem 1.4.
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