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ABSTRACT 
 

Biological colonisation of stone is one of the main problems related to 
monuments and buildings conservation. It is amply recognised that microalgae 
have the greatest ecological importance as pioneer colonisers of stone materials, 
conducting to aesthetic, physical and chemical damages. Their deterioration 
potential is related with their photoautotrophic nature, using the mineral 
components of stone substrates and sunlight as energy source without any 
presence of organic matter.  

Stone biodeterioration by microalgae has been assessed by several authors. 
Most of the employed methodologies for microbial identification and monitoring 
are time-consuming and require extensive sampling. In addition, the scaffolding 
and sampling procedures required may also transform the researcher in a 
biodeteriorating agent itself. In this chapter, non-contact techniques for 
colonisation detection and monitoring are proposed in order to fulfil the mission of 
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heritage preservation. In vivo chlorophyll a fluorescence and digital image 
analysis were applied to estimate microalgal biomass and to quantify coverage of 
limestone samples artificially colonised by algal communities. The results 
showed that Ançã and especially Lecce limestones were extensively colonised 
on their surfaces revealing significant epilithic growth, whereas Escúzar and San 
Cristobal limestones were endolithically colonised by photoautotrophic 
microorganisms.  

The easily handled, portable and non-destructive techniques proposed allow 
the understanding of stone biodeterioration processes avoiding contact and 
damaging of the objects, which ensures a wide field of application on cultural 
heritage studies and the design of appropriate conservation and maintenance 
strategies. 

 

 

1. INTRODUCTION 
 

Stone materials have been used since the beginning of mankind. Their selection 

for construction purposes has been driven by questions of durability, availability, 

workability, cost and appearance. Despite the bewildering variety of stone types, 

carbonate rocks have been preferentially used as construction material. Among 

them, limestones were prised for their attractive appearance, ease of quarrying, 

workability and exceedingly distribution across the Earth’s surface. Thus, some of the 

most remarkable architectural heritage all over the world was built in limestone. 

Unfortunately, we are confronted with some problems concerning their preservation. 

Physical and chemical weathering is observed, which induce stone disaggregation 

and decomposition resulting from material loss (Smith 2003). Several researchers 

have studied the deterioration processes occurring on limestone surfaces (Maurício 

et al. 2005; Dionísio 2007; Figueiredo et al. 2007). In many compact limestones, the 

rate of deterioration may be gradual and, given climatic conditions, largely 

predictable. However, there are many commonly limestone types which do not decay 

gradually, but instead experience episodic and sometimes catastrophic breakdown. 

The problem of understanding the deterioration of limestones is compounded by the 

large range of intrinsic properties of limestones, and by their varying responses 

under different climatic and environmental conditions. The interactions between 

these numerous and synergistically acting factors lead to a dynamic and complex 

process of physical, chemical and biological deterioration. This last is the cause of 

many types of deterioration on limestones, through a process referred as 

biodeterioration. Biological colonisation of cultural heritage assets, especially those 

exposed to outdoor environment is one of the main problems that curators have to 

slow down as it constitutes an important risk factor for their conservation. As 

photoautotrophic organisms, microalgae play an important ecological role integrating 

the basement of the food chain. Depending on light, carbon dioxide and a few other 

elements, they are the pioneer colonisers of stone surfaces, forming phototrophic 

biofilms which can be described as surface attached microbial communities with a 

clearly present photosynthetic component (Roeselers et al. 2008). Their presence 

attracts heterotrophic organisms contributing to the development of complex and 

stratified biofilms, mainly composed of a multilayer of cells embedded in a hydrated 



extracellular polymeric matrix which hold the cells together (Morton et al. 1998; 

Warscheid 2000; Roldan et al. 2003). The vital activities of microalgae, as well as 

those of the other components of the biofilms, have a great biodeteriorating potential 

which ranges from purely aesthetic to physical and chemical changes and can lead 

to the total disaggregation and soiling of the surface, a problem especially important 

in stone cultural heritage elements such as historic buildings and monuments. When 

microalgae colonise stone materials, they adopt different survival strategies that 

usually imply the fast development of variously-coloured surface patinas (Ortega-

Calvo et al. 1995). Most of these coloured patinas are produced by microbial organic 

pigments firmly bound to the stone particles (Urzì and Realini 1998; Alakomi et al. 

2004; Gorbushina 2007). The consequence is the formation of greenish to blackish 

biofilm generated patinas, particularly evidenced on light colour limestones 

(Krumbein 2004). The colour of the biofilm constitutes generally an important 

aesthetic damage, but this is not the only adverse consequence of microalgae 

colonisation on cultural assets. As an example, characteristic patterns like crack 

formation, micropitting and biogenic mineral deposition were detected by Sarró et al. 

(2006) due to the development of microalgae on the Lions Fountain at the Alhambra 

Palace (Granada, Spain).  

If the environmental conditions are not the most suitable for life, the strategy of 

microalgae also imply an endolithic growth on the stone substrate, being this 

euendolithic when they actively dissolve the stone, cryptoendolithic, when the cells 

find their niche inside the rock pores and structural cavities, or chasmoendolithic, 

when the cells find protection on fissures and cracks of the rock (Golubic et al. 1981). 

The development of endolithic biofilms can produce the detachment of stone surface 

areas, due to the mechanical action of wetting/drying cycles of the extracellular 

polymeric substances, or due to chemical action of excreted metabolic products on 

the substrate (Miller et al. 2010a).  

The universally recognised value of cultural assets, whether being stone 

monuments, archaeological remains, paintings, or others works of art, limits the 

availability of samples for the scientific study of biodeterioration processes. The need 

for non-contact techniques is of great importance as the researcher can be 

transformed itself in a biodeteriorating agent since most methodologies employed for 

microbial identification and monitoring requires extensive sampling.  

In the last years, a number of non-destructive characterisation techniques have 

been developed in order to be applied on cultural heritage assets. The in situ 

application of analytical techniques previously confined to laboratory, is rather 

demanded, allowing non-destructive studies without sampling procedures.  

In general, algal biomass dwelling on stone monuments can be quantified 

through chlorophyll a quantification techniques. However, most of these methods are 

based on the extraction of chlorophyll from disintegrated cells in an organic solvent 

and on its subsequent determination by spectrophotometry (Parsons and Strickland, 

1963), fluorometry (Yentsch and Menzel, 1963) and high performance liquid 

chromatography (Goeyens et al., 1982). In fact, these methods are widely used in 

limnological researches to analyse phytoplankton, periphyton, marine or freshwater 

algae, as well as in monitoring programs with the purpose of ecosystem 

management (Macedo et al., 2000, 2001). Nevertheless, they are time-consuming, 



require large volume of samples to follow the temporal dynamics of photosynthetic 

communities and do not allow the repeated measurement in time of the same 

sampling unit, because of their destructive nature.  

In recent years, a rapid, reliable and non-destructive chlorophyll determination 

method based on in vivo chlorophyll fluorescence was introduced in the analysis of 

monuments and historic buildings (Cecchi et al. 2000; Tomaselli et al. 2002; Miller et 

al. 2006). This method is based on the quantification of chlorophyll a on solid 

substrates through the detection of its natural fluorescence, without sampling 

procedures. Thus, in vivo chlorophyll fluorescence has been used to detect 

phototrophic microorganisms on monuments and to monitor preventive treatments 

(Cecchi et al. 2000; Tomaselli et al. 2002; Miller et al. 2006).  

The quantification and monitoring of algal biofilms on surfaces can also be 

performed by digital image analysis techniques, which comprise the set of 

mathematical operations applied to detect, monitor and quantify different elements 

included in digital images. As digital image, we understand every pictorial 

representation of the data obtained by a sensor, i.e., a device capable for detecting 

electromagnetic radiation, for converting it into a signal and for presenting it in a 

picture (Chuvieco Salinero 2002). The data obtained by a sensor is directly related to 

the materials reflectance, which is the percent of reflected radiation in its sensitivity 

wavelength range. These data are translated to numerical values and ordered in a 

matrix in which two Cartesian coordinates define the spatial position and a third 

coordinate defines the reflectance value. Digital images are usually multiband 

images, as for the Cartesian coordinates, is commonly available more than one 

reflectance coordinate. This set of two Cartesian coordinates and a third reflectance 

coordinate receives the name of band. A typical digital photographic image is 

composed of three bands, each one with encoded reflectance values of the intervals 

400-500, 500-600, and 600-700 nm (Blue, Green and Red bands). Thus, digital 

image analysis is the set of mathematical operations that can be performed with this 

type of images. These techniques have been used to improve the visualisation of 

rock art motifs (Rogerio-Candelera 2008), and to record separately different 

elements (in terms of nature and composition) present in mural paintings (Rogerio-

Candelera et al. 2011).  

In this chapter, digital image analysis was applied in combination with in vivo 

chlorophyll a fluorescence as rapid, reliable and non-contact techniques for the 

detection and monitoring of biodeterioration processes on different limestone types. 

With both techniques, qualitative but also quantitative information of microalgal 

biomass was obtained with the advantages of being low time-consuming and without 

the need of contact or sampling.  

 

 

2. MATERIALS AND METHODS 
 

2.1. Colonisation Experiment 
 



The usefulness of quantifying algal biomass by non-contact techniques was 

illustrated by a laboratory-based stone colonisation experiment, in which five 

limestone types were inoculated with a culture of microalgae and cyanobacteria and 

incubated in a climatic chamber (Miller et al. 2010b). The limestone types tested 

were: 

Ançã limestone (CA) – a Portuguese fine-grained, compact to oolitic tendency 

limestone from the Jurassic; 

Lioz limestone (CL) – a Portuguese microcrystalline, very fine-grained limestone 

from the middle Cretaceous with stylolite joints and recrystallised bioclasts; 

San Cristobal stone (SC) – a Spanish coarse-grained calcarenite of the Upper 

Miocene; 

Escúzar stone (PF) – a Spanish heterogeneous and coarse-grained 

biocalcarenite from the Tortonian; 

Lecce stone (PL) – an Italian fine-grained Miocene limestone, almost exclusively 

composed by sparite bioclasts and scarce cementation. 

Before inoculation, replicates of each limestone type (3 cm height and 4.4 cm 

diameter) were sterilised at 120ºC and 1 atm for 20 min. After cooling, the upper 

surface of the stone samples were inoculated with a multiple-species phototrophic 

culture composed of microalgae and cyanobacteria, described and tested in a 

previous study (Miller et al. 2009). The inoculated stone samples were immediately 

placed in a climatic chamber at 20±2ºC and 12h dark/light cycles during 90 days of 

incubation. Detailed information regarding the laboratory-based colonisation 

experiment, as well as the petrographic and petrophysical characteristics of each 

lithotype, is presented in Miller et al. (2010b). 

The laboratory-induced colonisation on initially uninhabited limestones presented 

in this chapter was achieved by inoculating stone samples with a multiple-species 

community culture since in nature microorganisms involved in stone biodeterioration 

develop in more or less complex communities because of the diversity of rock 

ecosystems. Consequently, the choice for the stone inoculation comprised a 

community of phototrophic microorganisms that are potential deteriorating agents of 

the selected stone materials. Furthermore, the use of a complex microbial community 

presents the advantage to simulate the existence of competition and/or synergy 

between colonising microorganisms, which act singly or in association with other 

microorganisms, or with physicochemical factors, to deteriorate stones (Koestler et 

al. 1996). In addition, the stone samples were not re-inoculated and no extra 

nutrients were added during the experiment. These procedures allowed the 

comparison of the temporal development of microalgae colonisation on five different 

limestones throughout two non-destructive photosynthetic biomass quantification 

techniques. 

 

 

2.2. Quantification of Photosynthetic Biomass during the 
Colonisation Experiment 

 

In vivo chlorophyll a fluorescence and digital image analysis were applied and 

compared in order to quantify and monitor the development of photosynthetic growth 



on the stone samples during the incubation time. Chlorophyll a is a photosynthetic 

pigment present in all photoautotrophic microorganisms, including microalgae and 

cyanobacteria, used to estimate the amount of photosynthetic biomass present in 

liquid media, in soil and also on rock substrates. Moreover, this pigment is in the 

origin of green-coloured patinas, which is a good indicator of the presence of algal 

biofilms. Hence, the temporal dynamic of microalgae colonisations dwelling on stone 

substrates can be quantified by means of surface areas covered by these green-

coloured biofilms using digital image analysis.  

 

In Vivo Chlorophyll a Fluorescence Technique 

The growth of phototrophic microorganisms on the stone samples was assessed 

by in vivo chlorophyll a fluorescence method. This is a non-destructive, very fast, 

safe and easy method for the estimation of phototrophic biofilms dwelling on solid 

substrates, without the extraction of chlorophyll a from disintegrated cells. 

Fluorescence properties of some compounds, such as the natural fluorescence of 

chlorophyll a, are detected with a spectrofluorometer, providing their intensity of 

fluorescence in counts per second (cps) which give information of their concentration 

in a sample. A certain excitation wavelength is selected, and a scan is performed to 

record the intensity versus wavelength, called an emission spectra. Chlorophyll a 

absorbs light in all regions of the visible spectrum, showing maximum absorption in 

the blue-violet (about 430 nm) and red regions (around 660 nm) and emitting in a 

wavelength of about 680 nm when light excited at 430 nm. 

Stone samples of each lithotype were taken out of the chamber in triplicate at the 

inoculation time and after each 30 days of incubation (0, 30, 60 and 90 days). 

Emission spectra were determined using a spectrofluorometer SPEX Fluorolog-3 

FL3-22 fitted with a fibre-optic platform (Horiba Jobin Yvon F-3000). For each stone 

sample five spectrofluorometric measurements were randomly carried out on the 

surface of the stone samples covered by the biofilm. The fibre-optic end-piece was 

held steady facing the sample surface at a distance of 2 mm. Measurements were 

performed with an excitation wavelength of 430 nm (optimum for chlorophyll a 

molecules, APHA/AWWA/WEF, 1992), slits of 4.5 nm, an integration time of 0.3 s 

and an increment of 1.0 nm. 

 

Digital Image Analysis 

Digital image analysis techniques constitute a low-cost and very useful set of 

tools allowing non-destructive recording and quantification of different elements 

included in digital images even when they are not recognised by eye. In this chapter, 

digital image analysis was focused on the detection and quantification of stone 

surface areas covered by algal biofilms along the incubation time. Three replicates of 

each lithotype were taken out of the climatic chamber after 0, 45 and 90 days of 

incubation and placed on millimetric paper under controlled light to ensure fixed 

conditions for all photographic records. The photographic recording was performed 

with a digital camera Kodak EasyShare P850. The generated RGB digital images 

recorded at different incubation times were transferred and processed on a personal 

computer in order to digitally rectify the geometry of the images, since they should 

constitute comparable series both geometrically and radiometrically making them 



consistent for comparative purposes. Radiometric corrections have been performed 

adjusting the maximum and minimum pixel values. Geometric corrections are 

necessary due to the different distortions introduced by several factors as the kind 

and structure of the employed lenses, the focal distance or the relative position of the 

photographic camera. In most cases, it is necessary the employ of digital 

photogrammetry techniques to ensure the geometrical consistence of the series. In 

this chapter, the comparability of the images has been ensured by means of the 

same lighting conditions, focal length and normal position of the camera respect to 

the samples. Adobe Photoshop
®
 software was used for the digital rectification of 

single photographs as shown by Mark and Billo (1999). The result of these geometric 

corrections is a multi-layer file, in which each layer corresponds to one of the 

incubation stage recorded. 

After radiometric and geometric rectifications, digital decorrelation of RGB 

images by means of Principal Components Analysis (PCA) technique and simple 

image classification by the application of a thresholding algorithm were performed.  

Image decorrelation by PCA allows the contrast enhancement of digital images 

(Gillespie et al. 1986), avoiding the loss of information implicit in the methods which 

redefine the histograms, as the ones known as linear, histogram, or special stretches 

(Lillesand and Kiefer 2000), and also eliminating the alteration of pixel values 

obtained by the application of digital filtering. This make these images as suitable for 

image classification as the original ones, because the transformation experienced by 

the pixel values is purely geometric, being these linear combinations of the original 

values (Chuvieco Salinero 2002). One of the main explanations of the spectral 

differences detected in the different Principal Components bands even in optically 

homogenous RGB images is that they reflect different compositions. This assumption 

leads to the application of PCA to issues as mineral survey by means of satellite 

imagery (Loughlin 1991), the differentiation of phases in rock art paintings (Rogerio-

Candelera et al. 2009), or the improvement in the visualisation of rock art panels, 

even if some figures are not visible at all (Portillo et al. 2008). The Principal 

Components of a digital image are calculated by means of the expression:  

 

        (1) 

 

where PCj represent the pixel value corresponding to Principal Component j, ai,j is the 

coefficient applied to the pixel value of the band i in order to generate the component 

j and Rj a constant introduced in each component in order to avoid negative values. 

Therefore, this approach allows the detection of minority elements (of different 

nature and composition) apparently absent in the initial RGB digital image but 

masked by the redundant data registered in the Red, Green and Blue bands of the 

image. With this decorrelation it is possible to choose the most appropriate band 

corresponding to each PC (PC1, PC2 or PC3) which enhance the visualisation of the 

photosynthetic biomass present on the stone surfaces. In our case, the colour and 

texture of some limestones might mask the presence of the algal biofilms on their 

surfaces, which could not be detected without the digital decorrelation of the images. 

This approach was performed using the HyperCube v. 9.5 software (Army Geospatial 
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Centre, Alexandria, Virginia, USA). The application of an iterative thresholding 

algorithm was then considered necessary to segment the images into binary, 

allowing the selection of the colonised areas to be quantified. The binarisation of the 

images is based in the recognition of the extreme pixel values of the coverage 

visually identified as biomass. Typically, iterative thresholding algorithms work using 

the average of the foreground and background class means, establishing a new 

threshold (Tn) by iteration (Sezgin and Sankur 2004). The algorithm employed 

displays the threshold according to: 

 

       (2) 

 

where gmax is the highest nonzero grey level, gmin is the lowest one, gmid is the 

midpoint between the two assumed points of the histogram [gmid=(gmax+ gmin)/2], and 

p(g) the probability mass function. For area estimation, the images were scaled, and 

the selected pixels counted. This allowed obtaining a series of numerical values, 

permitting the estimation of growth rates along the experimental period. All these 

image operations were performed using the ImageJ v. 1.38x software (National 

Institutes of Health, Bethesda, MD, USA). 

 

 

3. RESULTS AND DISCUSSION 
 

3.1. Photosynthetic Biomass Quantified by In Vivo Chlorophyll a 
Fluorescence 

 

For the evaluation of the algal colonisation process during the incubation time 

span, in vivo chlorophyll a fluorescence was measured on the surface stone samples 

immediately after inoculation and after 30, 60 and 90 days of incubation. The initial 

fluorescence intensities obtained for CA and PL abruptly increased during the first 30 

days of incubation (Figure 1a). The in vivo chlorophyll a fluorescence values after 30 

days-incubation for SC and PF samples were also about three times higher than 

those immediately after inoculation. In general, the chlorophyll a fluorescence 

intensities increased during the first 30 days of incubation for all lithotypes, and 

decreased after 60 days of experimentation, with the exception of SC lithotype 

(Figure 1a).  
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Figure 1. Intensities of chlorophyll a fluorescence obtained for each lithotype (excitation 
wavelength: 430 nm): A) Fluorescence intensity values of chlorophyll a at 684 nm measured 
immediately after inoculation (initial fluorescence), and after 30, 60 and 90 days of incubation. 

Each column corresponds to the mean value of an average of 15 measurements  SD. B) 
Chlorophyll a fluorescence spectra measured after 90 days of incubation. Each lithotype 
spectrum is an average of 15 spectra.  

This high development of green biofilms after 30 days of incubation, was 

conceivably due to residual culture medium (BG11) elements present in the 

inoculum, providing nutrients for microbial growth. In contrast, on CL surfaces this 

development was not observed probably due to the very compact nature of this 

limestone, hindering the inoculum absorption into the samples. In fact, it was verified 



that after 60 days-incubation a decrease occurred for all lithotypes surfaces except 

for CL (Figure 1a). This could be attributed to the lack of nutrients provided by total 

consumption of the elements present in the inoculum and to a negative adaptation to 

the new type of nutrients supplied by the lithic substrates. However, if growth were 

only determined by the culture medium elements, similar results would be obtained in 

all lithotypes and no re-increase of microbial biomass would occur as observed for 

CA, PF and PL limestones. On the other hand, for CL a great decrease was 

observed until 60 days of incubation, after which an increase was observed until the 

end of the incubation experiment. Indeed, CL was the limestone depicting the lowest 

quantity of chlorophyll a during the firsts 60 days-incubation, which tended to 

increase during the last 30 days of incubation. This suggests that the phototrophic 

colonisation would progressively increase if the incubation period were extended. 

According to Roeselers et al. (2006), the end of exponential growth does not 

necessarily mean that a stable climax community has established or cessed. The 

biofilm may be still in an adaptation state, developing slowly towards a final 

convergence. 

The intensity of chlorophyll a fluorescence recorded for the medium-grained SC 

lithotype decreased after 60 days of incubation until the end of the experiment 

(Figure 1a), being the least colonised lithotype after 90 days-incubation. This 

significant decrease noticed to SC samples indicated apparent cessation of epilithic 

colonisation.  

After the inoculum development observed during the first 30 days, PF was the 

only lithotype where the mean values of chlorophyll a fluorescence remained 

approximately the same during the 90 days of experimentation. This result suggests 

an adaptation state of the microalgae colonisation to this stone substrate.  

The emission spectra obtained after 90 days for all limestone types showed the 

typical chlorophyll a fluorescence peak at 684 nm (Figure 1b). After 90 days, high 

fluorescence intensities were obtained for CA and PL lithotypes which presented 

visible biofilms formed on their surfaces. High fluorescence intensities represent a 

high quantity of photosynthetic biomass on the surface of the stone samples. These 

results obtained for CA and PL lithotypes were probably due to their fine grained 

textures and petrophysical characteristics (Miller et al. 2010b). As verified in Figure 

1b, SC samples showed the lowest quantity of chlorophyll a and thus the lowest algal 

development on their upper surfaces.  

 

 

3.2. Stone Coverage Areas Quantified by Digital Image Analysis 
 

For the evaluation of the colonisation process during the incubation time span, 

the measurement of areas covered by the algal biofilms by means of digital image 

analysis was also performed. This approach allowed the monitoring of biofilm 

development on stone samples of the five limestone types throughout the 

quantification of stone surface areas covered by the green biofilms. By means of the 

thresholding algorithms applied to bands obtained by PCA (Figure 2), it was possible 



to isolate the areas covered by the biofilm and quantify the phototrophic cover 

through the time as represented in Figure 3.  

 

 

Figure 2. Thresholded areas obtained by ImageJ software for CA: A) After inoculation; B) 
After 45 days incubation; C) After 90 days incubation. The detected particles are then 
measured using ImageJ software. 
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Figure 3. Stone surface areas covered by algal biofilms after 0, 45 and 90 days of incubation, 
quantified by digital image analysis. 

According to this complementary visual monitoring technique, it was possible to 

assess which samples showed the most extensively colonised surfaces, i.e., a 

significant epilithic growth. The phototrophic culture, randomly distributed on the lithic 

surfaces, has grown during the incubation course leading to an increase of surface 

covered areas. CL showed a very slight increase of surface area covered by growth, 

also noticed by the in vivo chlorophyll a fluorescence technique, suggesting the 

progressive increase of algal colonisation if the incubation were extended. In spite of 

the difficulties for measuring phototrophic biofilms on PF and SC sample surfaces, 

strongly masked by the high macroporosity of these lithotypes, the digital image 

analysis approach was successful since it allowed the quantification of stone surface 



coverage areas. For SC samples, total surface area covered by the phototrophic 

biofilm did not show an increase over the course of batch incubation, being the least 

colonised surface samples among the studied lithotypes, as also observed by in vivo 

chlorophyll a fluorescence technique. Distinctively, it was noticeable the epilithic 

growth registered for PF, which showed a significant increase of phototrophic 

colonisation on its surfaces; the stone surface covered area was greater than after 

inoculation, showing a progressive increase during the experiment. As in the case of 

in vivo chlorophyll a fluorescence, CA showed a great increase of algal biofilm after 

the inoculation time, decreasing after 60 days of incubation. A re-increase of biomass 

was not observed by digital image analysis after 90 days-incubation, as noticed by in 

vivo chlorophyll a fluorescence.  

According to both approaches, PL samples showed extensive colonised 

surfaces, revealing significant epilithic growth, followed by PF lithotype. In contrast, 

SC showed the lowest microalgal biomass. Nevertheless, according to the data 

presented by Miller et al. (2010) in which in vitro chlorophyll a quantification 

technique was combined with in vivo chlorophyll a fluorescence to analyse the five 

limestone types, SC and PF were the most colonised stone substrates. The authors 

concluded that endolithic growth occurred for these lithotypes as revealed by optical 

and electron microscopy of transversally cut stone samples (Miller et al. 2010b). 

Gathering all these data together it can be corroborated that the non-destructive 

techniques used in this chapter can only detect and quantify phototrophic biofilms 

displayed on the stone surfaces and not growing inside them. Hence, the 

combination of in vivo chlorophyll a fluorescence and digital image analysis 

techniques gave a rather good presentation of algal biomass variation and provided 

qualitative and quantitative evaluations of epilithic phototrophic growth on the 

limestones studied. Therefore, it can be concluded that on CA, PL and CL lithotypes 

algal colonisation occurred epilithically, whereas on SC and PF samples, the 

microbial growth occurred mainly inside the stone samples.  

Both techniques, even though they are non-destructive and produce rapid 

measurements and quantified observation in less time than conventional methods, 

are nevertheless insufficient to detect and evaluate endolithic growth without 

destroying the sample. 

 

 

CONCLUSION 
 

Experimental simulations investigating stone colonisation are commonly used in 

ecological studies since they provide a valuable alternative for natural ecological 

niches by allowing experimental manipulation of the microbial ecosystem. The 

laboratory-based studies are of great interest for the particular case of cultural 

heritage materials, as is the case of the study presented in this chapter. 

Our results illustrate the suitability of non-destructive methods as digital image 

analysis and in vivo chlorophyll a fluorescence to monitor the development of 

microalgae colonisations on limestone materials, even in an incipient stage when it is 

difficult to visually appreciate the green colour characteristic of chlorophyll. The most 



important advantage of the use of these methods is their non-invasivity, which allows 

obtaining qualitative and quantitative data of repeated samples along time without 

sampling procedures, and thus to contribute to the elaboration of adequate 

conservation strategies for cultural heritage assets. Due to the detection of 

phototrophic microorganisms at an early stage of development on stone surfaces, 

the use of in vivo chlorophyll a fluorescence and digital image analysis is also 

considered as an important tool to control possible relapse. Probably it would not be 

hazardous to state that the generalisation of the use of these techniques would be of 

great interest for researchers, conservators and, in last instance, for cultural assets 

itself. Nevertheless, endolithic growth is not detected by these techniques, which 

represents a major obstacle when an integral study of the stone phototrophic 

colonisation is needed. 
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