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Abstract  

 

This paper presents a systematic approach to efficiently reconstruct the infinite dimensional field in 

distributed process systems from a limited, and usually reduced, number of sensors. To that purpose, two 

basic tools are employed: on the one hand, a reduced order representation of the system which, based on 

proper orthogonal decomposition (POD) expansions, captures the most relevant dynamic features of the 

solution. On the other hand, the selection of the most appropriate type (and number) of measurements by 

the solution of a max-min optimization problem. These ideas will be illustrated on the problem of field 

reconstruction for unstable tubular reactors.  

 

Keywords: Distributed process systems; Observer design; Proper orthogonal decomposition; Optimal 

sensor placement  

 
1. Introduction  

 

The operation and control of distributed process systems such as chemical reactors or flow units usually 

requires precise information on the spatial distribution of the dynamic variables of interest (e.g. 

temperature, concentrations or fluid velocity fields). Unfortunately, that information is only available 

through a limited number of possibly expensive sensors (see, for instance, Van der Berg, Hoefsloot, 

Boelens & Smilde, 2000). Such limitation justified over the past years a considerable research effort in 

establishing methods for efficient sensor placement and field reconstruction (Kumar & Seinfeld, 1978; 

Harris, Wright & MacGregor, 1980; Alvarez, Romagnoli & Stephanopoulos, 1981; Windes, Cinar & Ray, 

1989). Although the need for systematic methods was soon recognized, most techniques relied on 

exhaustive search over a pre-defined set of candidates as in Keller and Bonvin (1992).However, this 

approach, valid for a small number of locations, becomes useless when the number of possible location 

candidates increases, as it is the case, for instance, in flow reconstruction problems (Podvin & Lumley, 

1998). Exceptions to exhaustive search include sub-optimal sequential selection alternatives, successfully 

applied to place sensors in large space structures (Kammer, 1991). Other interesting approaches include 
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those recently developed by Van den Berg et al. (2000), Vande Wouwer, Point, Porteman and Remy (2000) 

and Antoniades and Christofides (2001a), although limited by the type of dynamic system representation 

and control scheme employed.  

 

The methodology we propose in this paper has been developed to handle those situations demanding sensor 

placement neither depend on the particular control structure nor on a particular dynamic model, as this 

could be poorly understood or unavailable. With this intention, our approach only requires knowledge of a 

low dimensional linear sub-space capturing the most relevant features of the process operation. On this 

linear sub-space, the optimal sensor placement will be computed as that which maximizes a criterion 

directly connected with the quality of the estimation. An efficient guided search algorithm, with optimal 

convergence properties, is developed to that purpose. We also show that such selection criterion will also 

result into dynamic observation schemes with fast convergence rates. These ideas will be illustrated on a 

case study involving concentration and temperature reconstruction from measurements for a tubular reactor 

operating at an unstable regime.  

 

2. A reduced order representation of distributed dissipative process systems  

 

The class of systems we are considering in this work are those described by sets of quasi-linear partial 

differential equations of the form:  

ut  = L(u) + F(u)         (1)  

where L(·) denotes a general linear parabolic operator defined on a (possibly 3-dimensional) spatial domain 

D with smooth boundary B and F(u) is a nonlinear function of u. The solution u(x, t)in equation (1), with 

appropriate initial and boundary conditions, will be referred to as the field with x = (x1, x2, x3)T denoting 

spatial coordinates. Eq. (1) can be interpreted as an infinite dimensional system on a Hilbert space equipped 

with inner product and norm:  
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The dissipative nature of this type of systems allows the expansion of the solution u, in terms of a 

convergent series of the form:  
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where the coefficient set {cj (t)}  collects the time evolution of the field and the set of basis functions 

{φ

1=
∞

j

j (x)}  determines its spatial dependence (Smoller, 1983). Each element φ1=
∞

j
j of the set can be 



considered as the solution of the following eigenvalue problem:  
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where μj is a parameter-eigenvalue-associated with each basis function φj , and K(x, x´) a given kernel. 

Depending on the structure of the kernel K, different sets will emerge (Alonso, Kevrekidis & Frouzakis, 

2003). Representative examples include the spectral basis or the so-called empirical eigenfunctions 

(Berkooz, Holmes & Lumley, 1993; Holmes, Lumley & Berkooz, 1996), also known as the proper 

orthogonal decomposition set (POD). The former is obtained by using the Green function associated to the 

parabolic operator as a kernel (Courant & Hilbert, 1937) while the latter is associated to the two point 

correlation kernel:  
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where T is a given time horizon. In both cases, the ordering property of the eigenspectrum {μj} , 

allows the selection of a finite low dimensional set of orthonormal functions {φ

1=
∞

j

j (x)}  capturing the 

most relevant features of the solution (Christofides & Daoutidis, 1997). In this way, the field (2) can be 

approximated as a truncated series so that:  
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In addition, such ordering property makes it possible to define a small positive parameter ε < 1 which 

partitions the dynamic evolution of the c coefficients in (2), into a slow and fast time scales t and τ =  t/ε, 

respectively. The explicit form of the dynamics can be obtained by Galerking projection - see for instance 

Christofides and Daoutidis (1997) - of the original equation (1) on the finite set of basis functions so that:  
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In the limit when 0→ε , fast modes relax so that 
0→

τd
dc f

. If in addition cf  0, the solution u(x, t) can be 

approximated by a finite number of slow modes cs Є Rns  in (5) so that u  us with  ∑ =
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We will refer to us as the slow solution. This representation will be employed in the next section to derive 

dynamic field reconstruction schemes. 

 
2.1. Construction of the discrete POD set  

 

In order to comply with the fact that measurements are only available at a finite number of locations, the 

reduced order representation discussed in the previous section will be constructed on a discrete basis set 

{фj} . This set will be interpreted as the n-discrete version of the set {φ1=
∞

j
j}  along the spatial 

coordinates x in (2), so that ф

1=
∞

j

j Є Rn and 
T
jφ  фk = δjk for every j and k, with δjk being the Kronecker delta. To 

that purpose, let us consider a set of data Sl{uj} , obtained either by experiments or simulation. Each 

element of the set is an n-dimensional vector with components corresponding to the value of the field at 

particular locations. If several fields are involved in the description, they will be included in the vector 

sequentially. The set S

1=
l

j

l is assumed to be representative of the dynamic behavior of the system in the range 

of initial conditions, parameters, inputs and/or perturbations of interest (Shvartsman & Kevrekidis, 1998). 

Given an integer k (k ≤ n), we define the k-dimensional set Sk = {фj} , as the set of k orthonormal 

vectors on which the average projection of the data set S

1=
k
j

l is maximized (equivalently, the k-set which 

minimizes the average distance to the data). Formally, the elements of this set can be computed as:  
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where wi represents the projection of the data ui on the span of the k vectors фj:  

wi  = фci          (7)  

with ф being the matrix:  

ф = [ф1 : фk ]          (8)  

and ci Є Rk a vector of coefficients satisfying ci = фTui . The solution of the previous optimization 

problem leads to the following set of equations to be satisfied by each element in Sk:  

Rфj  = λj фj          (9)  
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Note that the eigenvalue problem (9) with matrix R as in (10) can be considered as the discrete version of 

the generalized eigenvalue problem (3) with a kernel of the form (4) and μj = 1/λj . Consequently, the set 

 can be interpreted as the discrete version of the POD set 
{ } 1=k

jjφ { } 1=k
jjϕ

. On the other hand, any 



element ui of the data set Sl can be expressed in terms of Sk as:  

ui фci = εi          (11)  

where εi is an error vector, orthogonal to Sk that indicates the distance at which each data point lies from 

the low dimensional projection plane. The average distance of the data set to Sk is computed as:  
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Note that for k = l, Dav = 0 and we have that:  
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so the eigenvalues λi provide a measure of how close the data are to the set Sk. The nearer k is to l, the 

smaller the average distance. Combining (12) and (13) we have the equivalent expression:  
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The selection of the dimension of the low dimensional set is usually done by means of some related 

measures, known as the fraction of energy captured, or lost by the reduced order description, and defined, 

respectively, as:  
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L = 1 – E         (16)  

 

3. Observer design for field reconstruction  

 

Let us consider a set of k orthonormal and n-dimensional vectors Sk {фi} , representative of a given 

system (1) in the sense described in the previous section. In addition, let us define the operator P

1=
k
i

m as that 

which projects any vector v Є Rn on m of its n coordinates (the measurement sub-space). Formally, Pm will 

be expressed as a Rm x n matrix with rows being n-dimensional unit vectors e , for j = 1,..., n, so that 

computes the j-measurement at spatial location i. Then, by using (7)-(8) we have that:  

i
j

( ) i
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vm  = QT v  

QT  = Pm ф 

If vm is a vector of measurements, and v an element of the data set Sl, the estimation problem consists of 

reconstructing the remaining nm components of v from the available measurements. By making use of the 

reduced order representation described in the previous section, the field can be reconstructed by computing 



ĉ  estimates obtained from a set of differential equations:  
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where Ω is a gain matrix which determines the (temporal) rate at which the estimate . Equation (17), 

known as a Luenberger observer, is nothing but a replica of system (5) with c replacing c

cc →ˆ

s plus an extraterm 

which, by computing the difference between the measurements and the state estimates, drives the estimated 

state c  towards the ‘‘true’’ state c. The following result, adapted to nonlinear systems of the form (5) from 

a standard theorem on observability of linear systems (Rugh, 1993), will relate the rate of convergence to 

the relative positions of the low dimensional sub-space S

ˆ

k and the measurement sub-space (determined by 

the operator Pm). This result will provide a useful criterion to select the appropriate sensor placement.  

 

Theorem 1. Let the system:  

ct = Ac + f(c)     (18)  

vm = QTc  

be such that: ||A|| = max||x || = 1||Ax|| = αm, ||f(c1) - f(c2)|| ≤ β||c1 - c2|| and: λuI ≥ QQT ≥ λII  (19)  

 

The observer (17) with Ω = P-1Q, and P being a symmetric, positive definite matrix satisfying:  

(A + αI)T P + P(A + αI) = QQT      (20)  

with 0 < η < 1 and α > αm l

u
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, will make the states at an exponential rate proportional to ηλcc →ˆ l.  

 

Proof. First, note that the error between the estimates and the states cc ˆ−=ε  evolves in time as:  

εt = (A – P-1QQT )ε + f(c) -  )ˆ(cf

 

The Proof is made in the following steps.  

1. Construct a symmetric matrix P as:  

∫
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The matrix P is positive definite since QQT satisfies (19). It is also bounded since the differential system yt 

= (A + αI)y is exponentially stable for any α > αm. In fact, given an arbitrary vector y0, the quadratic form 

is bounded as:  00 PyyT
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By construction, P also satisfies (20). Let H(t) = e–(A + αI )TtQQT e–(A + αI)t , differentiating H and integrating 

over time in the interval (0, ∞), we get:  

dH = - (A + αI)TH(t) - H(t)(A + αI) - H(0) = - (A + αI)TP - P(A + αI)  

and  

(A + αI)TP + P(A + αI) = QQT 

 

2. Construct a Lyapunov function V =εTPε and compute its time derivative:  
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Adding and subtracting the term 2αεTPε, and using (20), we get:  
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and inequality (21) becomes:  

Vt ≤ ηλl εT ε 

 

Finally, the result follows by making use of the well known Gromwall-Bellman lemma (Khalil, 1996) to 

obtain:  

||ε||2 ≤ γ1||ε0||2e-ηλlt

with γ1 being an arbitrary constant.  

 

Note that condition (19) ensures observability of the states c in system (18) since the observability 

Grammian:  

G = ∫ +Tt
t  c(s)TQQTc(s)ds  

is always positive definite, provided that the number of measurements is larger than, or equal, to the 

dimension of the reduced order model. In this way, sensor redundancy ensures state reconstruction 

independently of the particular structure of the dynamical system (18).  



 

4. Measurement selection problem  

 

According to Theorem 1, the performance of the observation schemes can be improved by placing 

measurements at locations such that the eigenvalue λl in (19) is maximized. This fact suggests the use of 

the minimum eigenvalue associated to the matrix QQT as a criterion to select, for a given number of sensors 

m, the appropriate spatial sensor arrangement. Formally, this can be stated as follows:  
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Where the operator Pm indicates the spatial sensor location. This problem could be solved by exhaustive 

search among all possible m combinations of the n coordinates. However, this approach, although feasible 

in a few number of dimensions, becomes unsuitable for most cases of practical interest due to the high 

dimensionality of the search space. Alternatively, by taking advantage of the underlying structure of Q, we 

propose a systematic algorithm to approximate the solution. The approach is based on the following facts:  

1) The effect of  T
mP on фT is that of deleting elements of the basis vectors ф  at the positions where the 

columns of P  are zero.  

i

m

2) The scalar products of the resulting sub-vectors Pm фi are the diagonal elements of QQT.  

3) The eigenvalues of matrix QQT are located inside circles centered at the positions given by the 

diagonal elements - Gershgorin disc theorem (Golub & Van Loan, 1983) - with radii satisfying:  
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so that, when the radii are much smaller than the diagonal elements (denoted as si), problem (22) 

approximates that of maximizing the minimum diagonal element. Formally, this can be written as:  

mP
max min (s1, ... , sk)      (24)  

with sk being of the form sk =  ∑ =
2
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As pointed out in Alonso et al. (2003), the relationship between (22) and (24) holds not only as m 

approaches n, but also for a given m, as long as si :≈ sj for all possible i, j elements of the basis set. In this 

way, the solution to problem (24) can be interpreted as seeking for the ‘‘nearest to’’ orthonormal set of m-

dimensional sub-vectors Pm фi, thus minimizing orthonormality distortion. A systematic approach to solve 

problem (24) is presented next.  

 
4.1. Algorithm description  

 

Before proceeding with the formal algorithm description, we include the following notation and definitions.  



 

For each element  n
i R∈φ of the set S , let us consider the vectors k ( ) ( )[ ] [ nIi

T

jiii :1,,..., 22
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index vector  m
i Z∈η  with elements being elements of I . In addition, we define the operator i ( )ησ ,iℑ  as 

that which computes the summation of elements in σ  with indexes [(η) , ...,(η) ]i 1 m
T . This can be written as:  
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si = ( )ησ ,iℑ   

For a given sequence of index vectors {η(p)} we also have that:  
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A point Σ in the k-summation space (s1, ..., sk) is obtained as:  
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( ) [ ]∑ = kk SsS ,..., 1η  
 

In the same way, a sequence of points is obtained by applying (25) to a sequence {η(p )} so that:  
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A nonincreasing sequence of r index vectors { })( p
iη  is defined as that which satisfies:  
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for p = 2, ..., r. Conditional sequences { })( p
iη [a ,b ,c] are defined as nonincreasing sequences which for every p 

= 1, ..., r satisfy that:  
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If either (26) or (27) does not hold for every p = 1, ..., r, the sequence is empty i.e. { })( p
iη [a ,b ,c] =φ . A 

conditional sequence { })( p
iη [a ,b ,c] is incomplete if there exists some { })( p

iηη∉ [a ,b ,c] satisfying both (26) or 

(27). If not, the conditional sequence is complete. The method employed to compute complete conditional 

sequences was taken from Alonso et al. (2003). Using these definitions, the algorithm is summarized as 

follows.  

 

Initialization  

 

Set up positive numbers ε, L(0) and { }iL   for every i = 1, ..., k as iL  = maxηi ( )ii ησ ,ℑ



Iteration Step (from ℓ = 0)  

1) For a given integer ℓ, set up positive numbers L(ℓ) and define for each i, intervals ⎥⎦
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4) Compute  

Li = maxp ( ) ( ){ }
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5) If Li >/L(ℓ) store current p, set up L(ℓ) =/Li and go to step 2 for the next i up to k. 

6) If L(ℓ) ≥ jL for some j = 1, …, k stop along j . 

7) If 6 holds for every j = 1, …, k save solution p,  and terminate. If not, set L(ℓ + 1) = /L(ℓ), )( p
iη

−
= ii LL  

for every ji ≠ and go to step 1 with ℓ = ℓ + 1. 

 

5. Case study: a nonlinear convection-diffusion-reaction process  

 

In this example, we consider the problem of concentration and temperature reconstruction on a 

nonisothermal tubular reactor from a limited number of sensors. The system is described by the following 

set of partial differential equations (Antoniades & Christofides, 2001b) defined on a spatial domain z Є (0, 

1):  
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where C and T stand for concentration and temperature, respectively, in deviation form with respect to a 

stationary state. Tc corresponds to the temperature of the cooling medium and f(C, T) represents the 

reaction term, of the form:  

f(C; T) = BC(1 + C)exp ⎥⎦
⎤

⎢⎣
⎡
+ T
yT

1
 

 

The parameters employed in the simulation are taken from Antoniades and Christofides (2001b) with 



values:  

PeC = 7.0  BBC = 0.1  y = 10.0  

PeT = 7.0  BBT = 2.5  βT = 2.0  

 

The reactant at the output stream is assumed to be recycled to the feed stream at a ratio r, which results into 

the following boundary conditions at z = 0:  
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The corresponding boundary conditions at z = 1 are:  
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∂
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z
T

z
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Operating at C0 = T0 = Tc = 0 with a recycling relation r = 0.5, the reactor exhibits an oscillatory behavior 

as depicted in Fig. 1. The POD basis set is obtained by solving the eigenvalue problem (9) as described in 

Section 2. The snapshots employed are depicted in Fig. 1(a) and (b) for C and T, respectively. Each 

snapshot consists of the values of concentration and temperature at a given time taken at 16 equally spaced 

positions in the domain, and ordered sequentially in a vector u = (CT, TT)T. The energy captured by the first 

11 modes - equation (15) - is plotted in Fig. 2. As it can be seen from the Figure, a POD basis set with three 

elements is enough to collect more than the 99.9% of the energy thus capturing most of the relevant 

behavior of the system. The elements of the selected POD basis are depicted in Fig. 3.  

 

For the selected basis set and different numbers of possible given measurements (m = 6, 8, 10), sensor 

placements satisfying (24) were computed with the algorithm described in Section 4. Fig. 4 represents, for 

the different number of sensors available, both the values of the diagonal elements of matrix QQT and their 

corresponding minimum and maximum eigenvalues obtained as a function of the iteration number. The 

optimal arrangements (presented in Fig. 5) are compared in Fig. 6, in terms of the maximum and minimum 

eigenvalues of the resulting QQT matrix, with arrangements obtained through a standard criterion such as 

the maximization of the trace of the matrix QQT (see Alvarez et al., 1981). As shown in the Figure, the 

approach suggested in this paper is able to identify sensor arrangements with minimum eigenvalues much 

larger than those obtained through the standard criterion. In accordance with the discussion in Section 3, 

this would imply better estimation properties. To confirm this fact, observation experiments were carried 

out with these two possible arrangements (denoted by A and B, respectively). The system, in these 

experiments, was perturbed through a fluctuation in the fresh feed stream temperature. The distribution of 

temperature and concentration under such fluctuation is plotted in Fig. 7 (the class of perturbation 

introduced in the system is represented in Fig. 8). The evolution of the first (dominant) true c-states - see 



Eq. (2) - and the ones estimated with the proposed observation scheme (17) but different arrangements, are 

presented in Fig. 8.As illustrated in this Figure, the ability to dynamically observe the dominant modes of 

the system is to a large extent conditioned by the type of sensor arrangement. In this way, the criterion 

proposed in this paper induces a very acceptable observer performance as compared with alternative 

selection criterions.  

 

6. Conclusions  

 

In this paper, a systematic technique was presented to efficiently solve the optimal sensor location problem 

and thus provide reliable field reconstruction from a limited and usually reduced number of measurements. 

This was accomplished through a two-steps approach. First, a low dimensional representation of the 

solution of the original distributed system is obtained. Second, the most appropriate sensor type and 

locations are chosen on this low dimensional sub-space through an efficient guided search algorithm that 

minimizes orthonormality distortion.  
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Fig. 1. Snapshots produced by direct numerical simulation of the nonlinear diffusion - convection reaction 

system -/Eqs. (28) and (29). (a) Concentration evolution. (b) Temperature evolution 

 

 

Fig. 2. Energy captured by the low dimensional set as a function of the number of PODs chosen. Note that 

three PODs are enough to capture more than 99.9% of the energy of the system. 

 

Fig. 3. The first three PODs functions chosen in accordance with the energy criterion. (a) Concentration 

part of the discretized PODs functions. (b) Temperature part of the discretized PODs functions 

 

Fig. 4. Intermediate points (diagonal elements) in the k-summation space (solid lines) and the 

corresponding maximum and minimum QQT eigenvalues (dotted lines) for the nonlinear convection-

diffusion-reaction example, as a function of the iteration number for different numbers of sensors. (a) m = 

6, (b) m = 8, (c) m = 10. 

 

Fig. 5. A comparison of the maximum and minimum QQT eigenvalues, for different number of sensors, 

obtained by: (A) optimal solution of problem (24), (B) maximization of the trace of QQT. 

 

Fig. 6. Optimal sensor arrangements for m = 8 attained by methods A and B, respectively. Squares indicate 

the location of temperature sensors. Triangles indicate the location of concentration sensors 

 

Fig. 7. Concentration and temperature evolution profiles for the nonisothermal chemical reactor in response 

to temperature fluctuations in the fresh reactant feed stream (the range and shape of the fluctuation is 

depicted in Fig. 8). 

 

 

Fig. 8. Evolution of the real and the estimated first three modes under temperature input fluctuation. 

Measurements are taken through 8 available sensors. Mode estimation is obtained from the observation 

scheme (17) with gain computed as in Theorem 1. Solid lines represent the evolution of the real modes and 

modes estimated from sensor arrangements A. Dotted lines represent the evolution of modes for sensor 

arrangement B. 


