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Abstract. - We study, by means of magnetic susceptibility and magnetic aging experiments,
the nature of the glassy magnetic dynamics in arrays of Co nanoparticles, self-organized in N
layers from N = 1 (two-dimensional limit) up to N = 20 (three-dimensional limit). We find no
qualitative differences between the magnetic responses measured in these two limits, in spite of
the fact that no spin-glass phase is expected above T = 0 in two dimensions. More specifically,
all the phenomena (critical slowing down, flattening of the field-cooled magnetization below the
blocking temperature and the magnetic memory induced by aging) that are usually associated
with this phase look qualitatively the same for two-dimensional and three-dimensional arrays. The
activated scaling law that is typical of systems undergoing a phase transition at zero temperature
accounts well for the critical slowing down of the dc and ac susceptibilities of all samples. Our data
show also that dynamical magnetic correlations achieved by aging a nanoparticle array below its
superparamagnetic blocking temperature extend mainly to nearest neighbors. Our experiments
suggest that the glassy magnetic dynamics of these nanoparticle arrays is associated with a zero-
temperature spin-glass transition.

Introduction. – Dense arrays of magnetic nanopar-
ticles contain the physical ingredients of spin-glasses [1].
Disorder in the positions and orientations of the particles
leads to disorder and frustration of the dipolar interac-
tions, usually dominant, between their magnetic moments.
In contrast with ”canonical” spin-glasses, the slow mag-
netic relaxation introduced by interactions coexists with
the slow magnetization reversal associated with the high
anisotropy energy barriers. Many experiments performed
on dense nanoparticulate materials show phenomena, such
as magnetic aging [2] and the slowing down of the ac
susceptibility [3], which are typical of spin-glasses [4–11].
However, some of these phenomena are not exclusive of the
spin-glass phase [12, 13]. The question is, then, whether
real nanoparticulate materials show a true (super)spin-
glass phase.

Experimental studies are often hindered by the lack of
control over the sample parameters that determine the
nature and strength of dipolar interactions, such as inter-
particle distances, spatial organization, etc. This usually
makes it difficult to know a priori if a particular system
is expected to show a spin-glass phase. Perhaps the most
clear-cut situation to discuss the existence of a phase tran-
sition and its experimental manifestations is offered by the
study of a single layer of nanoparticles. In contrast with
three-dimensional systems [14], it is generally accepted
[15,16] that the transition temperature Tg vanishes in two-
dimensions. Results of tempered Monte Carlo simulations
seem to confirm the same conclusion also for Ising spins
coupled by dipolar interactions [17].

Based on these considerations, our work was aimed to
elucidate the nature of the glassy magnetic dynamics, i.e.
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whether it is associated with a superspin-glass phase at
Tg > 0 or if, by contrast, Tg = 0, in self-organized
nanoparticle arrays. For this, we compare results obtained
on very well-characterized three- and two-dimensional ar-
rays of Co nanospheres. Previous experiments reveal that
the superparamagnetic blocking temperature Tb, defined
as the temperature of the in phase χ′ ac susceptibility
cusp, increases as additional layers are deposited on a
two-dimensional sample [18, 19]. Since the number of
layers modifies the number of nearest neighbors in the
nanoparticle array, that result indicates that dipolar inter-
actions slow down the magnetic relaxation processes. In
the present study, we have investigated how the number of
layers modifies the critical slowing down and the magnetic
aging, properties that are usually associated with the spin
glass behavior [20]. Our results show that no qualitative
changes in these quantities occur as the two-dimensional
limit is approached. The control over the number of lay-
ers and their separation has also enabled us to directly
probe the magnetic correlation length and show that it is
mainly restricted to a first shell of nearest neighbors and,
in any case, shorter than what would be expected for a
conventional spin glass.

Experimental details. – Samples made of N lay-
ers of Co nanoparticles with average diameter D ≃ 2.6
nm were prepared by the sequential sputtering of N =
1, 2, 3, 4, 5, 7, 10, 15, and 20 Co and Al2O3 layers on sili-
con substrates [18, 19, 21, 22]. The particle’s shape and
average size (thus also the average magnetic moment µp

per particle), as well as the width of the size distribu-
tion (σD = 0.26D) are approximately independent of N
[19]. Nanoparticles deposited on adjacent layers tend
to self-organize in a structure that resembles a closed-
packed hexagonal lattice of nanospheres [22]. The separa-
tion between the Co layers is determined by the thickness
tAl2O3

= 3 nm of the alumina layer. Nearest neighbors
separations are dnn,‖ ≃ 4.6 nm, within a given layer, and
dnn,⊥ ≃ 4.2 nm, between adjacent layers. They correspond
to dipolar energies Edip = µ2

p/d
3
nn ≈ 13 K and 17 K, re-

spectively. As described in [23], the anisotropy energy bar-
rier U0 for the magnetization reversal was estimated from
ac susceptibility experiments performed under sufficiently
strong magnetic fields, which dominate over dipolar inter-
actions. This method gives U0 ≃ 430 K. In the same way,
we estimate an attempt time τ0 ∼ 10−13 s, of the same
order of that found for samples of very small Co nanopar-
ticles (D ∼ 1 nm), prepared by the same technique [18],
for which interactions are expected to become neglibible.
A multilayer with N = 20 layers but a larger interlayer
separation tAl2O3

= 10 nm, and thus also a much smaller
interlayer Edip ≈ 1.6 K, was prepared under identical ex-
perimental conditions.

Ac susceptibility and magnetization measurements were
performed with a commercial SQUID magnetometer.
Samples were rectangular plates with approximate dimen-
sions 9 × 3 × 0.5 mm3. Ac and dc magnetic fields were

parallel to the plane of the sample to minimize demagne-
tizing effects. In our study of aging [6,7], we measured the
time-dependent relaxation of the zero-field cooled (ZFC)
magnetization on samples aged, at zero field, for a time tw
at temperatures Tw < Tb. In addition, we employed a dif-
ferent method which consists on measuring magnetization
curves (zero-field and field cooled (FC), and remanence)
using the waiting time protocol described in [24, 25].

Results and discussion. – A typical method to
characterize the spin-glass behavior is by measuring the
frequency-dependent ac magnetic susceptibility [3–5]. At
any fixed frequency ω we define a characteristic relaxation
time τc such that ωτc(T ) = 1 at T = Tb(ω). For spin
glasses τc diverges at Tg according to a power law, reflect-
ing the growth of magnetic correlations [4]

τc = τ∗|1− T/Tg|
−zν (1)

In Fig. 1, we plot τc versus the reduced temperature for
N ranging from 1 to 20 layers. The experimental data are
compatible with a critical slowing down of the magnetiza-
tion dynamics at a finite Tg. In order to limit the number
of fitting parameters, we took Tg, for each sample, as the
temperature of the ZFC susceptibility cusp (i.e. equal to
the Tb corresponding to a typical timescale of the order of
170 s). The microscopic time scale τ∗ and the dynamical
critical exponent zν are found to be nearly the same for
all samples. The critical exponent is close to typical values
found for spin glasses [5] as well as for some nanopartic-
ulate materials [26]. The present results are remarkable
because it is generally believed that Tg = 0 in two dimen-
sions. Notice however that, as often happens with plots of
this type obtained for nanoparticles [3,26,27], experiments
do not explore the close vicinity of the critical region. For
this reason, the data are relatively easy to fit. Fits of sim-
ilar quality can be obtained by scaling all Tg’s by a factor
in between 1 and 0.75. The characteristic τ∗ increases
then from about 10−6 s to 10−4 s while, at the same time,
the exponent zν increases from 7.3 to 14. In fact, if one
wishes to include also in the analysis the freezing tem-
perature extracted from ZFC susceptibility data (getting
closer to Tg), the best fits with Eq. (1) are obtained then
for the largest zν and τ∗ values (thus also for the lowest
Tg). Such large zν values are not uncommon in systems
of magnetic nanoparticles [3,27] but they are significantly
larger than what it is expected for a canonical spin glass
phase transition (of the order of zν = 7 [28]).

An alternative theoretical framework to describe the
frequency-dependent susceptibility, which seems very ap-
propriate in the case of a layered material with a markedly
two-dimensional character, is the activated dynamics char-
acteristic of glassy systems undergoing a phase transition
at Tg = 0 [4, 16]. In the latter situation, the critical slow-
ing down of τc obeys the following expression

τc = τ0 exp (Ea/kBT )
σ (2)
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Fig. 1: (Color online). Critical slowing down of the charac-
teristic relaxation time extracted from ac susceptibility exper-
iments. Results are shown for samples with varying number of
layers N .

where Ea is an effective activation energy and σ is a crit-
ical exponent. As it is shown in Fig. 2, we find a good
agreement with our data, including also the temperature
of the ZFC magnetization cusp, for σ = 1.3 (to be com-
pared with σ = 3.2 found for 2−D spin-glasses [16]) and
Ea gradually increasing with the number of layers from
345 K up to 471 K. From these frequency-dependent sus-
ceptibility experiments, we conclude that the nature of
the slow magnetic dynamics of two-dimensional (i.e. with
N equal to or close to unity) and three-dimensional (with
large N) nanoparticle arrays is the same. The description
based on a zero-temperature phase transition is appeal-
ing, because it is consistent with the behavior expected
for a single layer. By themselves, however, these experi-
ments cannot discriminate between the two alternatives,
i.e., whether the underlying physics corresponds to the ex-
istence of a second-order phase transition at a finite Tg or
if, by contrast, Tg = 0.

Aging experiments can shed some light and help decid-
ing between these two alternatives, since they probe how
dynamical magnetic correlations grow with time [6, 8, 11].
We have carried out two different experiments, which mea-
sure the magnetic memory effects associated with the
aging of the sample at a given temperature. In the
first of these, the quantity of interest is the difference
∆M = M − Mw between the magnetizations (ZFC, FC
or remanent) measured after cooling the sample without
or with a pause at an intermediate temperature Tw < Tb

[24]. Results measured for tw = 104 s are shown in Fig. 3.
∆MZFC shows a peak centered near Tw. If Tw is varied,
the peak shifts accordingly. In addition, the relationship
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Fig. 2: (Color online). Log-log plot showing the variation with
temperature of ln(τc/τ0), where τc is a characteristic relaxation
time extracted from ac susceptibility data and τ0 = 10−13 s.
The lines are fits of the law τc = τ0 exp (Ea/kBT )

σ, character-
istic of a spin-glass transition at Tg = 0

[24] ∆MFC = ∆Mr+∆MZFC is fulfilled, showing that they
are associated with the aging of the sample at Tw and not
with experimental artifacts.

Figure 3 compares results obtained on a single layer
N = 1 with those measured on a multilayer made of
N = 20 layers. The aging was performed at Tw = 0.7Tb

for the two samples. Besides the obvious difference in
the signal-to-noise ratios, they look qualitatively the same.
The maximum in ∆MZFC vs T is just about 25 % larger in
the case of the multilayer. A first conclusion is, therefore,
that the magnetic memory induced by aging a nanopar-
ticle array does not show any abrupt change as the two-
dimensional (2D) limit is approached. Notice also that, as
we have seen with the critical slowing down, the analogy
is not restricted to aging. The FC curves measured on the
two samples show also the same degree of “flattening” be-
low Tb, a property that has been considered as a signature
of the superspin glass phase [25].

By gradually changing the number of layers N we can
study how magnetic correlations grow. In Fig. 4, we show,
as a function of N , the relative amplitude of the mag-
netic memory effect ∆MZFC/MZFC measured after aging
at Tw = 15.8 K for tw = 104 s. Within the droplet picture
of the spin-glass phase [29], this quantity is connected with
the size that domains of correlated spins attain after time
tw [11]. We see that ∆MZFC/MZFC increases rapidly when
one or two layers are added to a two-dimensional sample,
nearly saturating as N increases further. The right-hand
panel of Fig. 4 shows that, within the relatively large ex-
perimental uncertainties, ∆MZFC/MZFC is approximately
proportional to the increase in the average number of near-
est neighborsN⊥ = 6(N−1)/N that is associated with the
addition of extra layers. The same linear dependence was
also found for the blocking temperature [19]. This behav-
ior suggests that the enhancement in the amplitude of the
magnetic memory is provided mainly by correlations with
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Fig. 3: (Color online). ZFC, FC and thermoremanence curves
measured with (red crosses) and without (black solid line)
pause. The insets show absolute values of ∆MZFC, ∆MFC and
∆Mr. Left: sample with N = 1; Tw was 15.8 K. Right: sample
with N = 20; Tw was 25 K. The waiting time was 104 s and
the applied magnetic field was 10 Oe.

the first one or two nearest layers. Another result suggest-
ing that magnetic correlations remain rather short-ranged
is shown in Fig. 5. There, we compare the magnetic mem-
ory ∆MZFC obtained for a single layer of 2.6 nm particles
with that obtained for a N = 20 multilayer in which the
interlayer separation is tAl2O3

= 10 nm, i.e. more than
twice dnn,‖ ∼ 4.6 nm. Within their respective experimen-
tal uncertainties, these two quantities are found to be the
same. Also Tb and other quantities agree. It seems then
that no measurable magnetic correlations are established
between layers of nanoparticles located 10 nm far form
each other.

We also studied the effects of aging using a different
experimental method, which enables a more quantitative
determination of magnetic correlation lengths. For this,
we measured the magnetic relaxation of the ZFC mag-
netization of a N = 15 multilayer at Tw = 15.8 K. The
sample was first cooled from 100 K to Tw in zero field.
After aging the sample for tw = 104 s, a magnetic field
H was applied and the ensuing magnetization measured
as a function of time. This method has been applied to
estimate the number of correlated spins in spin glasses
[30, 31], and recently applied also to investigate the slow
dynamics of frozen ferrofluids [26]. Its basic idea is as
follows. During the waiting time tw, at zero field, mag-
netic correlations between nanoparticles grow [6]. Typi-
cal free energy barriers ∆(tw) for the flip of Ns(tw) cor-
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Fig. 4: (Color online). Left: Variation with the number N
of layers of the memory ∆MZFC/MZFC measured after aging
the sample for tw = 104 s at Tw = 15.8 K (•). Right: Same
data as a function of the average number of nearest neighbors
N⊥ = 6(N − 1)/N that a nanoparticle has in adjacent layers
[19]. The lines represent 0.033 + 0.015N⊥.

related spins increase also with the age tw of the sys-
tem. This growth of dynamical correlations reflects itself
in the appearance of a maximum in the relaxation rate,
defined as ∂MZFC/∂ log(t), when the experimental time
t approaches the age of the system teffw ∼ tw (see Fig.
6). A magnetic field H reduces the free energy barriers,
from its zero-field value to ∆(tw)− EZ [H,Ns(tw)], where
EZ [H,Ns(tw)] = µ [H,Ns(tw)]H and µ is the magnetic
moment of a ”drop” of Ns correlated spins. The energy
shift induced by this Zeeman term effectively reduces the
”age” of the system according to

teffw (H) = teffw (H = 0) exp

{

−
EZ [H,Ns(tw)]

kBT

}

(3)

therefore shifting the relaxation rate maximum towards
shorter times with increasing H , as it is indeed observed
experimentally (Fig. 6). From a series of experiments
performed at different fields, ranging from 5 Oe up to 100
Oe, we have extracted the Zeeman energy EZ [H,Ns(tw)],
which we plot in the main panel of Fig. 6. The field
dependence of this energy can be fitted using a quadratic
function of H , compatible with the following expression

EZ [H,Ns(tw)] = Ns(tw)χZFCH
2 (4)

which was found to agree also with experiments performed
on frozen ferrofluids [26]. Inserting in Eq. (4) the mea-
sured FC susceptibility per particle χFC, we estimate the
number of correlated spins Ns to be approximately 17, i.e.,
rather close to the average number of nearest neighbors
(12) in a multilayer of nanoparticles [19].
Our experimental findings suggest therefore that mag-

netic correlations achieved after aging the sample at low T
extend mainly to nearest neighbors. The detailed charac-
terization of our samples enables us to make a quantitative
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comparison of the present results with predictions for the
growth of correlations in spin-glasses. Theoretical con-
siderations as well as experiments support the idea that
correlations grow approximately as a power law of time
[26, 30, 32]:

ξ(t∗, Tw)/dnn ∼ (t∗)
α(Tw)

(5)

where dnn ∼ 4.4 nm is the distance to nearest neighbors,
t∗ = tw/τ(Tw) is a dimensionless timescale, the exponent
α = 0.17(Tw/Tg), and τ is the relaxation time of individ-
ual spins at the given temperature. We have estimated
τ = τ0 exp (U/kBT ) using parameters estimated, as de-
scribed above, for the noninteracting case: τ0 ∼ 10−13 s
and U ≃ 430 K [23]. For Tw = 15.8 K and tw = 104 s,
Eq. 5 gives 4.2dnn < ξ < 7dnn, i.e., between 19 and 31
nm for a single layer and 3dnn < ξ < 4.2dnn (13− 19 nm)
for a multilayer. The upper and lower limits of ξ corre-
spond to, respectively, the lower and upper limits of the
freezing temperatures Tg that are compatible with the ac
susceptibility experiments described above. Our magnetic
memory experiments point to significantly shorter corre-
lation lengths ξ ∼ 4.4 nm.

Conclusions. – The central result of the present
study is that we observe the same magnetic memory and
critical slowing down in two-dimensional nanoparticle ar-
rays, as well as in multilayers, suggesting that the un-
derlying physical behavior is also the same. The slowing
down of the ac (and dc) susceptibility curves measured on
all these samples can, in fact, be accounted for using the
activated law [Eq.(2)] that is typical of two-dimensional
spin-glasses. These results suggest, therefore, that the
glassy magnetic dynamics observed in these materials is
associated with a phase transition occurring at Tg = 0,
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Fig. 6: (Color online). Zeeman energies estimated from the
relaxation of ZFC magnetization curves measured after aging
the sample at zero field and at Tw = 15.8 K for a waiting time
tW = 104 s, before the application of a magnetic field H . The
inset shows the time dependence of the magnetic viscosity, de-
fined as ∂M/∂ log(t) with M being the sample’s magnetization,
measured for (from bottom to top curves) H = 5 15, 20, 30,
50, 60, and 80 Oe. This quantity shows maxima, marked by
grey dots, at the effective age of the system that decreases with
increasing H . The dotted line is a guide to the eye.

rather than with a conventional spin-glass transition with
a finite Tg. This conclusion is supported by the results of
magnetic memory experiments, which show that dynami-
cal magnetic correlations are rather short ranged and, in
any case, shorter than expected for canonical spin glasses.

As mentioned in the introductory section above, the
observed facts disagree with the prediction, derived from
Monte Carlo simulations, that Ising-like spins interacting
via dipole-dipole interactions should undergo a spin-glass
transition below a finite temperature [17]. Establishing
the origin for this discrepancy is beyond the scope of the
present work. Here, we content ourselves with discussing
possible deviations of real materials from the ideal con-
ditions set by such models. In our opinion, an important
aspect to be considered is the, unavoidable, distribution in
particle sizes. In our multilayers, the distribution is prop-
erly described by a Gaussian function of width σD ≃ 0.7
nm, which is equivalent to roughly ±1 atomic layer and
provides an indication of the good homogeneity of these
samples. This narrow size distribution leads, however, to
an extremely large dispersion in the relaxation times τ
associated with the magnetic anisotropy of the nanoparti-
cles. Using the parameters U and τ0 given above (see also
the second reference in [19] for further details), it follows
that intrinsic timescales separated by more than 13 orders
of magnitude can coexist at temperatures near or below
Tb. A possible consequence of this enormous dispersion
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is the following. Smaller, and therefore faster, relaxing
nanoparticles are able to immediately react to spin flips of
larger (slower) ones, minimizing their mutual interaction
energy. We have previously shown that this effect accounts
for the modification of the average relaxation times by in-
teractions, at temperatures close to Tb [19]. We might
speculate with the possibility that the disorder in relax-
ation times also hinders the growth of magnetic correla-
tions at lower temperatures. For instance, the formation
of negatively polarized magnetic clouds surrounding the
largest nanoparticles can screen dipolar interactions be-
tween them. Clearly, further theoretical studies that in-
clude effects of disorder and nonequilibrium dynamics are
required to clarify the nature of the collective magnetic
response in nanoparticle arrays.
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