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Abstract. Aromatic unsaturated 4,4’-bis-[5(4H)-oxazolones] have been prepared and their 

structural properties discussed. Metallation studies of these substrates towards palladium(II) 

acetate were also investigated. 
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1. Introduction 

 C-H bond activation is the most important method for the synthesis of ortho-metallated 

complexes [1]. Nowadays, this reaction is extensively studied due to its synthetic 

possibilities for the functionalization of a large diversity of organic substrates  [2]. 

Oxazolones are very important organic precursors and appropriate building blocks, which 

have attracted much attention due to their use as intermediates in pharmacology and for the 

synthesis of amino acids [3]. With numerous reactive sites, oxazolone scaffold allows for a 

large diversity of transformations such as stereoselective cycloadditions [4], opening of the 

heterocyclic ring [5], enantioselective alkylation [6] and arylations [7]. The ortho-metallation 

of 5(4H)-oxazolones is still a scarcely represented process. Our recent contributions have  

shown that unsaturated substrates can be regioselectively functionalized through ortho-

palladation [8], and that metallated oxazolones may evolve through [2+2] photocycloaddition 

to give unprecedented oxazolones [9].  

 Following our current research on functionalization of unsaturated oxazolones  [8,9], we 

have focused now our attention on bis-oxazolones. While the use of these substrates was 

limited to polymers [10], chain coupling reagents [11], and in pharmacology [12], the 

chemistry of these species, in particular unsaturated 4,4’ -bis-[5(4H)-oxazolones], has been 

scarcely studied [13]. Moreover, no detailed structural information is available for 4,4’-bis-



[5(4H)-oxazolones]. 

 In addition, the reactivity of unsaturated bis-oxazolones towards metallating agents is 

unknown. The only reported examples are limited to Pt and Pd coordination complexes of 

saturated 2,2’-bis-[5(4H)-oxazolones] [14]. However, as we have previously reported [8,9], 

the palladation approach could constitute the first step of an alternative synthetic strategy 

for reaching modified bis-oxazolones, which in turn are precursors for bis-amino acids, 

targets which have attracted significant interest in the last few years [15], but synthetically 

limited to classic organic transformations [16]. 

 The interest to synthesize 4,4’-bis-[5(4H)-oxazolones] is increased by the potential use of 

these structures as multidentate ligands. For instance, some symmetrically substituted 4,4’ -

bis-[5(4H)-oxazolones] may be classified as pincer (NCN) ligands [1,17]. In this 

communication we describe the improved synthesis and structural characterization of 4,4’ -

bis-[5(4H)-oxazolones] and their reactivity towards metallating substrates as palladium(II) 

acetate. 

 



 

2. Results and discussion  

 The unsaturated 4,4’-bis-[5(4H)-oxazolones] 2a, 2b [10b,18] and 2c [18,19] were prepared 

according to literature procedures (Equation 1). Benzenedicarboxaldehydes (1a-c) were 

reacted with hippuric acid using Erlenmeyer conditions to afford ortho-, meta- and para- 

substituted (Z,Z’)-2,2'-diphenyl-4,4'-phenylenedimethylene-bis-5[(4H,4’H)-oxazolones] 2a-c 

in moderate to good yields. 

 

Equation 1  

 

 Although two geometric isomers are possible for 2a-c, the Erlenmeyer reaction favors the 

thermodynamically more stable Z isomer, which is easily isolated by recrystallization [8]. 

The structure and the correct geometry for 2a-c were inferred from spectroscopic (IR, NMR), 

MS, X-ray and elemental analyses data. The structures of the unsaturated 4,4’ -bis-[5(4H)-

oxazolones] 2a-c are drawn in Chart 1. 

 The IR spectra of 2a-c exhibit strong carbonyl stretching vibration bands around ν = 1785 

cm-1, while the absence of any band assignable for carboxylic OH or amidic NH function 

supports the formation of heterocyclic system. The NMR data fully agree with the assigned 

configurations. Only one set of signals is present on each spectrum, showing the presence 

of only one isomer in solution. The pattern of signals shows that the two oxazolone units are 

chemically equivalent, meaning that the molecule is symmetric with respect to the central 

C6H4 ring. We assume that the configuration around the C=C double bond is the 

thermodynamic Z-isomer, as shown in Chart 1, by analogy of the synthetic method here 

employed with previously reported syntheses of Z-oxazolones. This assumption will be 

confirmed through the determination of the crystal structure of 2c. 

 



 

 

Chart 1 

 

 The structure of (Z,Z’)-2,2'-diphenyl-4,4'-p-phenylene-dimethylene-bis-5[(4H,4’H)-

oxazolone] (2c) was determined by X-ray diffraction methods. Crystals of 2c·C6H5Me 

suitable for X-ray measurements were obtained after recrystallization from toluene (Fig. 1). 

 

Fig. 1. 

 

 2c crystallizes in the triclinic system, space group P-1, with two centrosymmetric 

molecules in the unit cell, together with two toluene molecules. The molecular structure 

displays a ZZ configuration about the C9C10 and C17C18 double bonds, as expected. In 

addition, if we look along the axis C17-C14-C11-C10 and perpendicularly to the plane 

containing the phenylene unit we observe the E orientation of the two azlactone rings. In 

comparison with previously determined (Z)-2-phenyl-4-arylidene-5(4H)-oxazolones, which 

are planar [20], the introduction of a second oxazolone ring resulted in a partial loss of 

planarity. The value of the dihedral angle between the plane of phenylene and the plane 

containing the aromatic ring (C3-C8) is 16.24(4)° while that of the phenylene with the plane 

containing the other terminal aromatic ring (C21-C26) is 14.67(4)°. This fact induces a slight 

helicity of the system. 

 The molecular configuration of 2c is stabilized by several intermolecular hydrogen bonds. 

A closer check of the crystal structure revealed C-H···O intermolecular interactions involving 

O1 and O3 atoms from the oxazolone rings [C17-H17···O1 2.6702(19) Å, C12-H12···O1 

2.7585(22) Å, C6-H6···O3 2.7022(24) Å and C10-H10···O3 2.6515(19) Å] (Fig. 2 top). 

Further stabilization of 2c in the solid state results from the formation of a dimeric structure 



in which two bis-oxazolones are connected by π-π interactions: tilted edge-to-face and 

offset face-to-face. Tilted edge-to-face interactions are given by the aromatic rings of 

toluene molecules which are parallel and quasi perpendicular on the other aromatic rings 

(Fig. 2 top). Each aromatic ring belonging to toluene has two edge tilted to face interactions 

(on both sides) with the terminal aromatic rings of two bis-oxazolone molecules in edge 

tilted to face arrangements. The distances between the centroid of the toluene aromatic ring 

and the contact hydrogens are 2.9925 (3) Å and 2.7213 (2) Å respectively. The latter 

interactions are given by the aromatic rings of two superposed bis-oxazolones, the distance 

between the ring centroids from phenyls centroids is 3.75396 (6) Å suggesting the existence 

of weak offset face-to-face interactions (Fig 2 bottom). The same interactions were noticed 

between the phenylene centroids 3.5578 (6) Å. 

 

Fig. 2.  

 

 Following our aim to study the metallating behavior of bis-oxazolones, ligands 2a-c were 

reacted with Pd(OAc)2 using our previously optimized conditions [9]. Under these conditions 

(CF3COOH, 70 oC), neither 2a nor 2c gave characterizable species, the products separated 

after workup having very low solubility in deuterated solvents. In the case of 2a the only 

evidence for the formation of a palladated product was the MALDI mass spectrum, since 

peaks of ions corresponding to [2aPd]+ were detected with a high abundance at m/z 524.8 

amu. 

 However, when 2b was treated in the same conditions as 2a or 2c, the C-H bond 

activation occurs easily and the pincer compound 3 was isolated in 86% yield after 

crystallization from dichloromethane/hexane (Equation 2). It is to be noted that due to its 

symmetrical structure, with two donor nitrogen atoms and a central ligating C atom 2b 

classifies as a NCN pincer ligand [17]. The increase interest to synthesize pincer complexes 



refers not only to their numerous applications in asymmetric synthesis  [21], catalysis [22] but 

also to the big variety of transformations in which these compounds are involved  [23] 

 

Equation 2  

 

 The 1H and 13C NMR spectra are consistent with the symmetrical  structure, and show 

sharp signals due to the presence of a single species. The deshielded signal attributed to 

H2’’ in 2b is not longer seen on the 1H NMR spectrum of 3, giving unambiguous proof of the 

metallation. The vinylic protons of the benzylidene fragment H7’’, which are equivalent and 

appear as a singlet, shift downfield from 7.32 ppm in 2b to 7.66 ppm in 3. Full assignments 

of all resonances in 3 were made using NOESY-1D experiments. The selective saturation of 

the signal at 7.66 ppm (assigned to H7’’) induces a clear NOE effect on the signal at 7.48 

ppm (assigned to the H6’’ proton of the ortho-palladated ring). On the other hand, the 

selective saturation of the signal at 7.32 ppm (assigned to H 5’’) gives a clear NOE with the 

doublet at 7.48 ppm (H6’’), showing unambiguously the formation of the ortho-palladated 

unit. The presence of trifluoroacetate anion has been confirmed by 19F NMR spectroscopy, 

the two broad singlet peaks at -75.78 and -76.44 ppm indicating a dynamic structure at room 

temperature. Therefore, the whole molecule shows two different behaviors on the NMR time 

scale. The pincer ligand displays a static behavior, giving sharp and well resolved signals, 

while the trifluoroacetate is involved on a dynamic process, likely its coordinati on and 

decoordination. This dynamic process seems to be closely related with the high steric 

hindrance exerted by the two phenyl groups of the oxazolone at 2,2’ positions. To further 

confirm the formation of a monomeric structure we have used MALDI to detect palladacycle 

species. The spectrum of 3 exhibits only the ion corresponding to the [M-TFA]+ fragment at 

m/z 524.8. 

 It is worthy of note that the formed palladacycle 3 has two six-membered fused 
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metallacycles. These pincer complexes are formed to a lesser extent than five-membered 

ones [17], show increased catalytic efficiency [24] and they are limited to few examples [25].  

 Taken together these results demonstrate that some unsaturated 4,4’ -bis-[5(4H)-

oxazolones] can be metallated. We believe that the simple case presented herein will open 

the way to a whole new series of metallated compounds which may be used in catalytic 

studies and in preparation of bis-amino acids. The synthesis of more complex bis-oxazolonic 

substituted substrates as well as use of different transition metals is currently under 

investigation in our laboratories. 



 

3. Experimental 

3.1. Materials 

The unsaturated oxazolones 2b and 2c, were already synthesized but an entirely 

spectroscopic characterization is missing and therefore a ful ly characterization is given here. 

 

3.2. Physical methods 

Chemicals of commercial grade were used without further purification. 1H and 13C{1H} NMR 

spectra were recorded in CDCl3, at room temperature, on a Bruker Avance 400 

spectrometer (δ in ppm, J in Hz) at 1H operating frequency of 400.13 MHz. 1H and 13C NMR 

spectra were referenced using the solvent signal as internal standard. MALDI mass spectra 

were recorded on a MALDI-TOF Microflex (Bruker) spectrometer from CHCl3 solutions 

(DCTB as matrix). Infrared spectra (4000-380 cm-1) were recorded on a Perkin-Elmer 

Spectrum One IR spectrophotometer, using nujol mulls between polyethylene sheets. 

Elemental analyses were carried out on a Perkin-Elmer 2400-B microanalyser. 

 

3.3. Synthesis of compounds 

3.3.1. Preparation of (Z,Z’)-2,2'-diphenyl-4,4'-o-phenylenedimethylene-bis-[5(4H,4’H)-oxazolone] 

(2a) 

Benzene-1,2-dicarboxaldehyde (0.595 g, 4.435 mmol), N-benzoylglycine (1.590 g, 8.871 

mmol), anhydrous sodium acetate (0.728 g, 8.871 mmol) and acetic anhydride (2.720 g , 

26.615 mmol) were added in a 100 mL round-bottomed flask. The mixture was heated for 

two hours at 100 oC and then allowed to cool at room temperature. The precipitate was 

washed with ethanol, cooled down for 30 minutes and then filtered. 2a was obtained as an 

yellow solid after recrystallization from ethanol (Yield 0.783 g, 42%). 1H NMR (CDCl3) δ 

ppm: 7.54 (t, 3J = 7.6 Hz, 4H, 2H3’, 2H5’), 7.59-7.66 (m, 4H, 2H4’, H4’’, H5’’), 7.70 (s, 2H, 2H7’’), 



8.19 (d, 3J = 7.2 Hz, 4H, 2H2’, 2H6’), 8.79 (m, 2H, H3’’, H6’’). 
13C{1H} NMR (CDCl3) δ ppm: 

125.32 (2C, C1’), 126.59 (2C, C7’’), 128.59 (4C, 2C2’, 2C6’), 129.03 (4C, 2C3’, 2C5’), 130.83 

(2C, C4’), 132.65 (2C, C3’’, C6’’), 133.74 (2C, C4’’, C5’’), 134.01 (2C, C1’’, C2’’), 134.91 (2C, C2), 

161.25 (2C, C1), 167.04 (2C, C3). MS (MALDI +) m/z, (rel. int. %): 420.1 (98.5%) [M]+. IR:  

= 1792 cm-1 (C=O), 1639 cm-1 (C=N). Anal. Calc. for C26H16N2O4 (420.11): C, 74.28; H, 3.84; 

N, 6.66. Found: C, 74.55; H, 3.67; N, 6.74. 

 

3.3.2. Preparation of (Z,Z’)-2,2'-diphenyl-4,4'-m-phenylenedimethylene-bis-5[(4H,4’H)-

oxazolone] (2b) 

Benzene-1,3-dicarboxaldehyde (1.650 g, 12.301 mmol), N-benzoylglycine (4.410 g, 24.602 

mmol), anhydrous sodium acetate (2.018 g, 24.602 mmol) and acetic anhydride (7.530 g, 

73.808 mmol) were added in a 100 mL round-bottomed flask. The mixture was heated for 

two hours at 100 oC and then allowed to cool at room temperature. The precipitate was 

washed with ethanol, cooled down for 30 minutes and then filtered. 2b was obtained as an 

yellow solid after recrystallization from EtOH (Yield 4.290 g, 83%). 1H NMR (CDCl3) δ ppm: 

7.32 (s, 2H, H7’’), 7.49 (t, 3J = 7.8 Hz, 4H, 2H3’, 2H5’), 7.52-7.70 (m, 3H, 2H4’, H5’’), 8.19 (d, 3J 

= 7.2 Hz, 4H, 2H2’, 2H6’), 8.33 (d, 3J = 8.1 Hz, 2H, H4’’, H6’’), 9.00 (s, 1H, H2’’). 
13C{1H} NMR 

(CDCl3) δ ppm: 125.28, 134.12, 134.17 (3C, C1’’, C1’, C2), 128.54 (4C, 2C2’, 2C6’), 128.96 

(4C, 2C3’, 2C5’), 129.49 (1C, C5’’), 130.61 (2C, 2C7’’), 133.57 (2C, C4’), 134.49 (2C, C4’’, C6’’), 

136.00 (1C, C2’’), 164.12 (1C, C1), 167.45 (1C, C3). MS (MALDI +) m/z, (rel. int. %): 420.1 

(46.8%) [M]+. IR:  = 1789 cm-1 (C=O), 1647 cm-1 (C=N). Anal. Calc. for C26H16N2O4 

(420.11): C, 74.28; H, 3.84; N, 6.66. Found: C, 74.22; H, 3.62; N, 6.93.  

 

3.3.3. Preparation of (Z,Z’)-2,2'-diphenyl-4,4'-p-phenylenedimethylene-bis-5[(4H,4’H)-oxazolone] 

(2c) 
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Benzene-1,4-dicarboxaldehyde (0.963 g, 7.179 mmol), N-benzoylglycine (2.570 g, 14.359 

mmol), anhydrous sodium acetate (1.178 g, 14.359 mmol) and acetic anhydride (1.178 g, 

14.359 mmol) were added in a 100 mL round-bottomed flask. The mixture was heated for 

two hours at 100 oC and then allowed to cool at room temperature. The precipitate was 

washed with ethanol, cooled down for 30 minutes and then filtered. 2c was obtained as a 

yellow solid after recrystallization from ethanol (Yield 2.354 g, 78%). 1H NMR (400 MHz, 

CDCl3) δ ppm: 7.26 (s, 2H, 2H7’’), 7.57 (t, 3J = 7.3 Hz, 4H, 2H3’, 2H5’), 7.65 (t, 3J = 7.4 Hz, 

2H, 2H4’), 8.23 (d, 3J = 7.2 Hz, 4H, 2H2’, 2H6’), 8.32 (s, 4H, 2H2’’, H3’’, H5’’, H6’’). 
13C{1H} NMR 

(CDCl3) δ ppm: 125.39, 134.62, 135.83 (6C, 2C1’, 2C2, C1’’, C4’’) 128.57 (4C, 2C2’, 2C6’), 

129.03 (4C, 2C3’, 2C5’), 130.06 (2C, 2C7’’), 132.65 (4C, C2’’, C3’’, C5’’, C6’’), 133.69 (2C, C4’) 

162.23 (2C, C1), 167.35 (2C, C3). MS (MALDI +) m/z, (rel. int. %): 420.1 (5.6%) [M]+. IR:  = 

1785, 1764 cm-1 (C=O), 1650 cm-1 vs (C=N). Anal. Calc. for C26H16N2O4 (420.11): C, 74.28; 

H, 3.84; N, 6.66. Found: C, 74.42; H, 3.98; N, 6.41. 

 

3.3.4. Preparation of (3) 

To a stirred solution of 2b (0.295 g, 0.701 mmol) in TFA (5 mL), palladium acetate (0.315 g, 

1.403 mmol) was added. The solution was refluxed at 70 oC for 2 hours and the mixture was 

then treated with water. The precipitate formed was filtered and washed several times with 

water to remove the acid. After complete dryness the solid was dissolved in CH 2Cl2 and the 

precipitated with hexane to afford 3 as a yellow solid (Yield 0.386 g, 86%). 1H NMR (400 

MHz, CDCl3) δ ppm: 7.32 (t, 3J = 7.4 Hz, 1H, H5’’), 7.42-7.51 (m, 6H, 2H3’, 2H5’, H4’’, H6’’), 

7.59 (t, 3J = 7.6 Hz, 2H, 2H4’), 7.66 (s, 2H, 2H7’’), 8.21 (d, 3J = 7.5 Hz, 4H, 2H2’, 2H6’). 
13C{1H} 

NMR (CDCl3) δ ppm: 122.10, 126.09, 135.05, 139.10 (4C, C1’, C1’’, C2, C2’’), 126.59 (1C, 

C5’’), 128.81 (4C, 2C3’, 2C5’), 130.61 (4C, 2C2’, 2C6’), 135.09 (2C, C4’’, C6’’), 135.57 (2C, 

2C4’), 138.14 (2C, C7’’), 160.34 (2C, C1), 169.25 (2C, C3). 
19F NMR (376 MHz, CDCl3) δ ppm: 

-76.44, -75.78 (broad s, 3F). MS (MALDI +) m/z, (rel. int. %): 524.8 (100%) [M-CF3COO-]+. 
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IR:  = 1804, 1791 cm-1 vs (C=O), 1650, 1635 cm-1 vs (C=N). Anal. Calc. for 

C28H15F3N2O6Pd (637.99): C, 52.64; H, 2.37; N, 4.39. Found: C, 52.87; H, 2.43; N, 4.56.  

 

3.4. Crystal structure determination 

Data collection was performed at room temperature on an Oxford Diffraction Xcalibur2 

diffractometer using graphite-monocromated Mo-Kα radiation (λ = 0.71073 Å). An 

hemisphere of data was collected based on three ω-scan or φ-scan runs. The diffraction 

frames were integrated using the program CrysAlis RED [26] and the integrated intensities 

were corrected for absorption with SADABS [27]. The structure was solved and developed 

by Patterson and Fourier methods [28]. All non-hydrogen atoms were refined with 

anisotropic displacement parameters. The hydrogen atoms were placed at idealized 

positions and treated as riding atoms. Each hydrogen atom was assigned an isotropic 

displacement parameter equal to 1.2 times the equivalent isotropic displacement parameter 

of its parent atom. The structure was refined to Fo
2, and all reflections were used in the 

least-squares calculations [29]. 
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Equation 1 Reagents and conditions: Ac2O, NaOAc,100oC, 2h; 2a (42%), 2b (83%), 2c (78%) 

 



 

 

 

Chart 1 



 

 

 

Fig. 1. ORTEP plot of 2c with thermal ellipsoids drawn at the 50% probability level 

 



 

 

Fig. 2. Diamond view of intermolecular interactions in 2c 

 



 

 

Equation 2 Reagents and conditions: Pd(OAc)2,CF3CO2H,70 oC, 2h; (86%) 
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