Submitted, accepted and published by Parasitology (2009), 136, 713–722. • Cambridge University Press 2009 # A restriction site to differentiate Plasmodium and Haemoproteus infections in birds: on the inefficiency of general primers for detection of mixed infections J. MARTÍNEZ^{1*}, J. MARTÍNEZ-D E LA PUENTE ², J. HERRERO¹, S. DEL CERRO², E. LOBATO², J. RIV ERO-DE AGUILAR², R. A. VÁSQUE Z³ and S. MERINO² (Received 12 December 2008; revised 23 January, 28 February and 4 March 2009; accepted 5 March 2009; first published online 6 May 2009) #### SUMMARY Avian Plasmodium and Haemoproteus parasites are easily detected by DNA analyses of infected samples but only correctly assigned to each genus by sequencing and use of a phylogenetic approach. Here, we present a restriction site to differentiate between both parasite genera avoiding the use of those analyses. Alignments of 820 sequences currently listed in GenBank encoding a particular cytochrome B region of avian Plasmodium and Haemoproteus show a shared restriction site for both genera using the endonuclease Hpy CH4III. An additional restriction site is present in Plasmodium sequences that would initially allow differentiation of both genera by differential migration of digested products on gels. Overall 9 out of 326 sequences containing both potential restriction sites do not fit to the general rule. We used this differentiation of parasite genera based on Hpy CH4III restriction sites to evaluate the efficacy of 2 sets of general primers in detecting mixed infections. To do so, we used samples from hosts infected by parasites of both genera. The use of general primers was only able to detect 25% or less of the mixed infections. Therefore, parasite DNA amplification using general primers to determine the species composition of haemosporidian infections in individual hosts is not recommended. Specific primers for each species and study area should be designed until a new method can efficiently discriminate both parasites. Key words: avian malaria, endonuclease Hpy CH4III, haemoparasites, Haemosporidia, host-parasite interactions, mixed infections, molecular detection, PCR. #### INTRODUCTION Studies of avian malaria have increased in recent years because avian malaria provides an excellent system for investigating several aspects of the parasite-host interaction: sexual selection (Hamilton and Zuk, 1982), immunocompetence (Nordling et al. 1998; Tomás et al. 2007), costs of host reproduction (Norris et al. 1994; Merino et al. 2000; Marzal et al. 2005), stress (Merino et al. 2002; Tomás et al. 2005), host specificity (Bensch et al. 2000), host switching and evolutionary relationships (Ricklefs et al. 2004) or latitudinal distribution of diseases (Merino et al. 2008). The use of the sensitive polymerase chain reaction (PCR) has become a routine technique for detecting * Corresponding author: Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, E-28871 Madrid, Spain. Tel: +34 918854636. Fax: +34 918854663. E-mail: francisco. martinez@uah.es ¹ Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, E-28871 Madrid, Spain ² Departamento de Écología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, J. Gutiérrez Abascal 2, E-28006 Madrid, Spain ³ Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile these parasites (e.g., Feldman and Freed, 1995; Bensch et al. 2000; Perkins and Schall, 2002; Ricklefs et al. 2005; Durrant et al. 2006; Merino et al. 2008) and several studies have been published contributing to the improvement of the method of detection (Richard et al. 2002; Fallon et al. 2003; Waldenström et al. 2004; Freed and Cann, 2006). However, due to the tight phylogenetic proximity between parasites of the genera Plasmodium and Haemoproteus (7·7 % average genetic divergence calculated in a variable region; Beadell and Fleischer, 2005) it is very difficult to design a universal specific pair of primers to amplify only one of them and, therefore, they are frequently amplified indiscriminately (Perkins and Schall, 2002; Pérez-Tris et al. 2005). In spite of this, several authors have developed specific primers designed for Haemoproteus or Plasmodium but they are generally useful for parasite species in a particular geographical region and not in others (Bentz et al. 2006; Merino et al. 2008). Alternatively, Beadell and Fleischer (2005) described a restriction enzyme-based assay to distinguish Parasitology (2009), 136, 713–722. **f** Cambridge University Press 2009 doi:10.1017/S0031182009006118 Printed in the United Kingdom between avian haemosporidians. This study specifically permitted differentiation of Plasmodium from Haemoproteus in 38 lineages of both genera by using a conserved fragment of mitochondrial DNA encoding an XmnI restriction site unique to Haemoproteus. The selection of the specific restriction site in that study was based on only 5 sequences (2 Haemoproteus and 3 Plasmodium). The ability of the assay to distinguish between the two genera was then tested using samples from 33 avian host species with known infections to sum up the 38 tested samples. However, these authors did not perform an exhaustive study on the power of the assay to detect mixed infections. Of course it is very useful to have a restriction site to differentiate both parasite genera at the conserved region of the mitochondrial DNA but the lack of sequences deposited in GenBank containing this mitochondrial region prevents a firm conclusion being reached on the universality of the assay. On the other hand, the efficacy of general primers to detect mixed infections has been recently discussed (Pérez-Tris and Bensch, 2005; Valkiūnas et al. 2006). The main problem to detect these infections using general primers could be the different affinity shown for each lineage or the low intensity of infection by one of these parasite lineages providing low DNA concentrations and poor amplification. Although mixed infections could be important from an ecological and evolutionary perspective (Marzal et al. 2008; Merino et al. 2008), no studies to date have examined the efficacy of general primers in detecting mixed infections of haemosporidian species based on samples from multiple hosts and parasite lineages (Valkiūnas et al. 2006). Here, we report another restriction enzyme-based assay using a nucleotide fragment of the cytochrome B encoding an Hpy CH4III restriction site that allows differentiation of Haemoproteus from Plasmodium. In addition, we tested the efficacy of 2 sets of general primers to detect mixed infections of Plasmodium and Haemoproteus in wild birds. ### MATERIALS AND METHODS Initially, we searched all cytochrome B sequences encoding for a particular region of avian Plasmodium (432), Haemoproteus (388) and Leucocytozoon (204) currently listed in GenBank (Table 1). Recently, it has been suggested that several Haemoproteus species be transferred to the genus Parahaemoproteus (Martinsen et al. 2008). However, to date, there are no sequences assigned to this genus in GenBank. Thus, we use the nomenclature present in GenBank. Subsequently, we achieved multiple restriction maps for groups of sequences using a tool available in http://insilico.ehu.es/restriction/main. All restriction maps were analysed in detail reporting an Hpy CH4III restriction site unique to Plasmodium with the exception of 9 non-conforming sequences. To check preliminary data obtained from restriction maps, all sequences were aligned using CulstalW program (Thompson et al. 1994), edited with the software BioEdit (Hall, 1999). In order to clarify the phylogenetic placement of non-conforming sequences listed in GenBank we performed a phylogenetic analysis in the following way. DNA sequences were aligned using the ClustalW program. The BioEdit program was used to edit the sequences. The MEGA4 (Tamura et al. 2007) software package was used in phylogram construction/drawing. The computer programs were set at their default parameters in all analyses. Phylogenetic analyses were carried out using the Neighbour-Joining method (Kimura substitution model). Nodal support was estimated by bootstrap analysis with 1000 replications. Phylogenetic analysis was carried out using sequences with a length of 304 bp after removing columns containing gaps or missing data. The Plasmodium lineage LIN34 was included in another tree due to the low overlap with the other non-conforming sequences, 256 bp being the length of the sequences. Several GenBank sequences from parasites recovered from birds were included in the phylogenetic trees to clarify the taxonomic position of these non-conforming sequences. Overall 168 samples from Spanish blue-tits captured in the spring of 2007 were used (see Martínezde la Puente et al. 2007 for details on areas of study and blood sampling) to select individuals infected with both parasites, Plasmodium and Haemoproteus, by using specific primers to detect each genus. In addition, we also selected 15 blood samples from Chilean birds that were previously analysed for molecular detection of parasites and showed mixed infections (see Merino et al. 2008). Bird blood samples were stored in FTA classic cards (Whatman International Ltd, UK) and DNA was extracted to form a soluble solution before polymerase chain reaction (PCR) using the following protocol: cored samples were transferred to collection vials with 250 ml of SET buffer (0·15 м NaCl, 0·05 м Tris, 0·001 м EDTA, pH8) at 4 кС for 6 h. Then 7 ml of 20 % SDS and 50 mg proteinase K were added to the vials and incubated at 55 xC overnight. After incubation, 250 ml of 4 M ammonium acetate were added to the vials at room temperature for 30 min. Subsequently, vials were centrifuged at 13 000 g for 15 min. After removing the pellet, DNA was
precipitated with ethanol and re-suspended in sterile water. We designed 2 sets of primers to specifically detect the lineages of Plasmodium or Haemoproteus present in blue-tits (Cyanistes caeruleus) from our study area in Spain (see Merino et al. 2000). In particular, primers HML (5k-GCT ACT GGT GCT ACA TTT GT-3k) and HMR (5k-CCT AAA GGA TTA GAG CTA CC-3k) were designed for Haemoproteus (367 bp; see Merino et al. 2008) and Plas-F (5k-GTA ACA GCT TTT ATG GGT TAC-3k) and 4292Rw (5k-TGG AAC AAT ATG TAR AGG AGT-3k) for Plasmodium (422 bp). The primer 4292Rw was previously published (Beadell et al. 2004; Durrant et al. 2006). The genus specificity of the two sets of primers is due to HML and Plas-F primers for Haemoproteus and Plasmodium, respectively. The design of these primers was carried out using an alignment file with several sequences from both parasite genera. Later, the specificity of the primers was checked by performing a NCBI BLAST. The identity of the HML and Plas-F primers is not complete with any Plasmodium and Haemoproteus lineages respectively. However, the HML primer might hybridize with 2 Plasmodium sequences (DQ368386 and DQ241534) and the with 7 Haemoproteus sequences primer Plas-F AY714192, FJ462661, FJ462662, (AF495574, FJ462663, FJ462664 and FJ462657) because they have only 1–3 defective positions. Thus, the use of these primers avoids the amplification of parasites of the undesirable genus with relative confidence. PCR reactions consisted of 25 ml reaction volumes containing 20 ng template DNA, 50 mм KCl, 10 mм Tris-HCl, 1.5 MgCl₂, 0.2 mm of each dNTP, 0.5 mm of each primer, and 1.25 U of AmpliTaq Gold (Applied Biosystems, Foster City, California). The reactions were cycled at the following parameters using a thermal cycler (MasterCycler Personal, Eppendorf): 94 xC for 10 min (polymerase activation), 40 cycles at 95 xC for 40 sec, 58 xC for primers HML/HMR or 60 xC for Plas-F/4292Rw for 1 min, 72 xC for 1 min, and a final extension at 72 xC for 10 min. The specificity of the genusspecific primers designed was tested by sequencing using an ABI 3130 (Applied Biosystems) automated sequencer. Sequences of amplicons obtained from 10 samples of Spanish blue-tits using primers HML/ HMR showed only 1 lineage of Haemoproteus (corresponding to H. majoris GenBank Accession number AY099045). Likewise, the sequentiation of 5 amplicons obtained with primers Plas-F/4292Rw also revealed only 1 lineage of Plasmodium in the blue-tits (GenBank Accession number FJ494966). The parasite lineages present in the Chilean samples were previously identified (see Merino et al. 2008). We also designed a pair of general primers Palu-F (5k-GGG TCA AAT GAG TTT CTG G-3k) and Palu-R (5k-DGG AAC AAT ATG TAR AGG AGT-3k) selecting a conserved region of the cytochrome B on the basis of the alignment file that showed the specific restriction site for Plasmodium. A total of 59 Spanish blue-tits and 15 Chilean birds with mixed infections were analysed using this pair of primers. In this case, we used the same PCR conditions described above except that the annealing temperature was 56 xC. The size of the obtained amplicons was 390 bp. In order to check the effectiveness of the primers amplifying both parasites, the amplicons obtained after PCR were digested with the endonuclease Hpy CH4III (New England Biolabs, Beverly, Massachusetts). To carry out the digestion, 3 ml of PCR product was mixed with 1 ml (1 U/ml) of enzyme plus 5 ml of distilled water and 1 ml of 10 r NEBuffer 4. The mix was incubated for 3 h at 37 xC. The digestion products were resolved on 5% polyacrylamide gels (Miniprotean III, Bio-Rad) at 200 V for 35 min. After digestion with the endonuclease Hpy CH4III, amplicons from Plasmodium were cut into 3 fragments of 27, 36 and 327 bp and Haemoproteus in 2 fragments of 27 and 363 bp. The smaller fragments of 27 and 36 bp were indistinguishable in electrophoresis from those produced by the primers. In order to compare the efficacy of the assay between different sets of general primers in detecting double infections, we also analysed the same 59 bluetit samples using previously published general primers (Beadell et al. 2004; Durrant et al. 2006). Unfortunately, we only obtained sufficient DNA from 9 Chilean samples to conduct this second analysis. The primers were 3760F (5k-GAG TGG ATG GTG TTT TAG AT-3k) and 4292Rw (see above), amplifying a fragment of 565 bp from parasite cytochrome B. PCR reactions were conducted using the same conditions described above except that the annealing temperature was 52 xC. The endonuclease Hpy CH4III cut in 2 sites on sequences from Plasmodium yielding 3 fragments of 327, 206 and 37 bp. However, it only cut at 1 site on sequences from Haemoproteus yielding 2 fragments of 206 and 363 bp. Fragments of 37 bp were indistinguishable from those produced by the primers (see Figs 1 and 2). Under-digestion of PCR products obtained by using both sets of primers was not a serious problem because in both genera there is at least 1 restriction site. Nevertheless, under-digestion was never detected using the conditions reported above. # RESULTS Overall 326 sequences of Plasmodium (185) and Haemoproteus (141) present enough length to include the regions where both hypothetical restriction sites are encoding. The first restriction site is present in all sequences listed on Genbank encoding for at least the portion for that particular cytochrome B region of avian Plasmodium (307 sequences) and Haemoproteus (299 sequences) except one that cannot be clearly assigned to any of that genera (see Discussion section). However, among the sequences including the fragment where the endonuclease could produce the second cut (310 Plasmodium and 230 Haemoproteus sequences), 9 sequences do not conform to the expected cutting pattern; 3 Haemoproteus sequences show the second Hpy CH4III restriction site and 6 Plasmodium sequences do not show it. The alignment Table 1. GenBank Accession numbers of sequences encoding a particular cytochrome B region from avian Plasmodium and Haemoproteus currently listed | Accession numbers (Haemoproteus) | | | | | | | | | | | | |----------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | AF069613 | AF495547 | AY455658 | AY640150 | AY714166 | AY817754 | DQ241542 | DQ451420 | DQ847190 | EF380167 | EF380201 | FJ462666 | | AF465562 | AF495550 | AY455659 | AY640151 | AY714167 | AY817755 | DQ241543 | DQ451421 | DQ847191 | EF380168 | EF380202 | FJ462667 | | AF465563 | AF495551 | AY540196 | AY640152 | AY714168 | AY831750 | DQ241544 | DQ451422 | DQ847192 | EF380169 | EF380203 | FJ462668 | | AF465564 | AF495552 | AY540198 | AY714134 | AY714169 | AY831751 | DQ241545 | DQ451423 | DQ847193 | EF380170 | EF380205 | FJ462670 | | AF465565 | AF495553 | AY540199 | AY714135 | AY714170 | AY831752 | DQ241546 | DQ451424 | DQ847194 | EF380171 | EF380206 | FJ462671 | | AF465566 | AF495554 | AY540201 | AY714136 | AY714171 | AY831753 | DQ241547 | DQ451425 | DQ847195 | EF380172 | EF380207 | FJ462672 | | AF465567 | AF495555 | AY540202 | AY714137 | AY714172 | AY831754 | DQ241548 | DQ451426 | DQ847196 | EF380173 | EF380208 | FJ462673 | | AF465568 | AF495556 | AY540203 | AY714138 | AY714173 | AY831755 | DQ241549 | DQ451427 | DQ847197 | EF380174 | EF380209 | FJ462674 | | AF465569 | AF495557 | AY540204 | AY714139 | AY714174 | AY831756 | DQ241550 | DQ451428 | DQ847198 | EF380175 | EF564175 | FJ462675 | | AF465570 | AF495558 | AY540205 | AY714140 | AY714175 | AY831757 | DQ241551 | DQ451429 | DQ847200 | EF380176 | EF564176 | FJ462676 | | AF465571 | AF495559 | AY540209 | AY714141 | AY714176 | AY831758 | DQ241552 | DQ451430 | DQ847201 | EF380177 | EF564177 | FJ462677 | | AF465572 | AF495560 | AY540212 | AY714142 | AY714177 | AY831759 | DQ241553 | DQ451431 | DQ847202 | EF380178 | EF607289 | FJ462678 | | AF465573 | AF495561 | AY540213 | AY714143 | AY714178 | AY831760 | DQ241554 | DQ630004 | DQ847203 | EF380179 | EF607290 | FJ462679 | | AF465574 | AF495562 | AY540214 | AY714144 | AY714179 | AY831761 | DQ241555 | DQ630005 | DQ847204 | EF380180 | EU254548 | FJ462682 | | AF465575 | AF495563 | AY540215 | AY714145 | AY714180 | AY831762 | DQ241556 | DQ630006 | DQ884876 | EF380181 | EU254549 | | | AF465576 | AF495565 | AY540216 | AY714146 | AY714181 | AY831763 | DQ241557 | DQ630007 | DQ991077 | EF380182 | EU254553 | | | AF465577 | AF495567 | AY540224 | AY714147 | AY714182 | AY831764 | DQ241558 | DQ630008 | DQ991078 | EF380183 | EU676187 | | | AF465578 | AF495570 | AY640124 | AY714148 | AY714183 | AY831765 | DQ241559 | DQ630009 | DQ991079 | EF380184 | EU676188 | | | AF465579 | AF495573 | AY640125 | AY714149 | AY714184 | AY831766 | DQ278434 | DQ630010 | DQ991080 | EF380185 | EU676189 | | | AF465580 | AF495574 | AY640126 | AY714150 | AY714185 | AY831767 | DQ278435 | DQ630011 | EF032811 | EF380186 | EU676190 | | | AF465581 | AF495575 | AY640127 | AY714151 | AY714186 | AY831768 | DQ278436 | DQ630012 | EF032812 | EF380187 | FJ025895 | | | AF465582 | AF495579 | AY640129 | AY714152 | AY714187 | AY831769 | DQ278437 | DQ630013 | EF032813 | EF380188 | FJ025896 | | | AF465583 | AF495580 | AY640131 | AY714153 | AY714188 | AY840997 | DQ451408 | DQ630014 | EF032871 | EF380189 | FJ462649 | | | AF465584 | AY167239 | AY640133 | AY714154 | AY714189 | AY840998 | DQ451409 | DQ659592 | EF153646 | EF380190 | FJ462650 | | | AF465585 | AY167240 | AY640138 | AY714155 | AY714190 | AY840999 | DQ451410 | DQ847180 | EF153647 | EF380191 | FJ462651 | | | AF465586 | AY167241 | AY640139 | AY714156 | AY714191 | DQ000320 | DQ451411 | DQ847181 | EF153648 | EF380192 | FJ462652 | | | AF465587 | AY167242 | AY640140 | AY714157 | AY714192 | DQ000321 | DQ451412 | DQ847182 | EF153649 | EF380193 | FJ462653 | | | AF465588 | AY167243 | AY640141 | AY714158 | AY714193 | DQ000322 | DQ451413 | DQ847183 | EF153650 | EF380194 | FJ462654 | | | AF465589 | AY167244 | AY640142 | AY714160 |
AY817748 | DQ000323 | DQ451414 | DQ847184 | EF153652 | EF380195 | FJ462655 | | | AF465590 | AY167245 | AY640144 | AY714161 | AY817749 | DQ000324 | DQ451415 | DQ847185 | EF153653 | EF380196 | FJ462657 | | | AF465591 | AY167246 | AY640146 | AY714162 | AY817750 | DQ000325 | DQ451416 | DQ847186 | EF153654 | EF380197 | FJ462658 | | | AF465592 | AY172842 | AY640147 | AY714163 | AY817751 | DQ241539 | DQ451417 | DQ847187 | EF380164 | EF380198 | FJ462659 | | | AF465593 | AY455656 | AY640148 | AY714164 | AY817752 | DQ241540 | DQ451418 | DQ847188 | EF380165 | EF380199 | FJ462660 | | | AF465594 | AY455657 | AY640149 | AY714165 | AY817753 | DQ241541 | DQ451419 | DQ847189 | EF380166 | EF380200 | FJ462665 | | | Accession numbers (Plasmodium) | | | | | | | | | | | | | AB30289 | AY540208 | AY831748 | DQ508376 | DQ659567 | DQ839002 | DQ839045 | DQ839085 | EF011173 | EF380116 | EF380156 | | | AF465547 | AY540210 | AY831749 | DQ508396 | DQ659568 | DQ839003 | DQ839046 | DQ839086 | EF011174 | EF380117 | EF380157 | | | AF465548 | AY540211 | AY841000 | DQ508397 | DQ659569 | DQ839004 | DQ839047 | DQ839087 | EF011175 | EF380118 | EF380158 | | | | | | | | | | | | | | | | AF465551 | AF465549 | AY540217 | AY841001 | DO508398 | DO659570 | DO839005 | DO839048 | DO839088 | EF011176 | EF380119 | EF380159 | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | AF465551 AY540219 DQ241510 DQ508400 DQ659572 DQ839008 DQ839051 DQ839090 EF011178 EF380121 EF380161 AF465552 AY540221 DQ241511 DQ508401 DQ659573 DQ839008 DQ839051 DQ839091 EF011179 EF380122 EF380162 AF465553 AY540221 DQ241511 DQ508402 DQ659574 DQ839009 DQ839052 DQ839092 EF011180 EF380123 EF380163 AF465555 AY540221 DQ241512 DQ508403 DQ659576 DQ839010 DQ839053 DQ839093 EF011181 EF380124 EF564178 AF465555 AY540223 DQ241513 DQ508404 DQ659576 DQ839011 DQ839053 DQ839093 EF011181 EF380124 EF564178 AF465555 AY540223 DQ241513 DQ508405 DQ659576 DQ839011 DQ839053 DQ839093 EF011182 EF380125 EF564178 AF465555 AY54023 DQ241514 DQ508405 DQ659576 DQ839011 DQ839055 DQ847258 EF011182 EF380125 EF564178 AF465556 AY640130 DQ241515 DQ659583 DQ659577 DQ839012 DQ839055 DQ847259 EF011183 EF380126 EF607288 AF465558 AY640132 DQ241516 DQ659538 DQ659579 DQ839013 DQ839056 DQ847260 EF011184 EF380127 EF607291 AF465559 AY640132 DQ241516 DQ659538 DQ659579 DQ839014 DQ839057 DQ847260 EF011185 EF380127 EF607291 AF465560 AY640135 DQ241518 DQ659540 DQ659580 DQ839015 DQ839057 DQ847261 EF011185 EF380129 EU600215 AF465561 AY640135 DQ241518 DQ659541 DQ659582 DQ839016 DQ839060 DQ847264 EF011188 EF380131 EU600221 AF495548 AY640137 DQ241520 DQ659543 DQ659582 DQ839019 DQ839060 DQ847265 EF011189 EF380133 EU600222 AF495546 AY640143 DQ241521 DQ659544 DQ659584 DQ839020 DQ839061 DQ847265 EF011190 EF380133 EU600222 AF495566 AY714194 DQ241522 DQ659545 DQ659585 DQ839021 DQ839061 DQ847266 EF011190 EF380133 EU600222 AF495566 AY714195 DQ241522 DQ659548 DQ659587 DQ839022 DQ839061 DQ847267 EF011191 EF380134 EU600222 AF495566 AY714196 DQ241521 DQ659546 DQ659587 DQ839022 DQ839061 DQ847267 EF011191 EF380134 EU600222 AF495566 AY714195 DQ241524 DQ659548 DQ659585 DQ839022 DQ839061 DQ847267 EF011191 EF380133 EU600222 AF495566 AY714196 DQ241525 DQ659548 DQ659588 DQ839025 DQ839061 DQ847267 EF011191 EF380133 EU600222 AF495576 AY714196 DQ241525 DQ659548 DQ659589 DQ839027 DQ839060 DQ847260 EF011199 EF380133 EU600222 AF495576 AY714199 DQ241525 DQ659545 DQ659589 DQ839027 DQ839060 DQ84 | | | | ~ | ~ | ~ | ~ | ~ | | | | | AF465552 AY540220 DQ241511 DQ508401 DQ659573 DQ839008 DQ839051 DQ839091 EF011179 EF380122 EF380162 AF465554 AY540222 DQ241512 DQ508402 DQ659575 DQ839010 DQ839052 DQ839092 EF011180 EF380123 EF380163 AF465555 AY540223 DQ241513 DQ508404 DQ659575 DQ839010 DQ839053 DQ839093 EF011181 EF380124 EF564178 AF465556 AY640128 DQ241514 DQ508405 DQ659576 DQ839011 DQ839054 DQ847258 EF011182 EF380125 EF564179 AF465556 AY640130 DQ241515 DQ659538 DQ659577 DQ839012 DQ839055 DQ847259 EF011183 EF380126 EF607289 AF465557 AY640130 DQ241515 DQ659538 DQ659578 DQ839013 DQ839055 DQ847260 EF011184 EF380127 EF607291 AF465558 AY640132 DQ241516 DQ659539 DQ659578 DQ839013 DQ839055 DQ847261 EF011185 EF380127 EF607291 AF465550 AY640134 DQ241517 DQ659540 DQ659580 DQ839015 DQ839057 DQ847261 EF011186 EF380129 EU600215 AF465561 AY640135 DQ241518 DQ659541 DQ659581 DQ839016 DQ839058 DQ847262 EF011186 EF380129 EU600215 AF465561 AY640135 DQ241519 DQ659542 DQ659581 DQ839016 DQ839059 DQ847263 EF011187 EF380130 EU6002215 AF495548 AY640143 DQ241521 DQ659542 DQ659583 DQ839010 DQ839060 DQ847264 EF011188 EF380131 EU600222 AF495549 AY640143 DQ241521 DQ659544 DQ659588 DQ839020 DQ839061 DQ847266 EF011189 EF380131 EU600222 AF495566 AY714194 DQ241521 DQ659545 DQ659586 DQ839022 DQ839061 DQ847266 EF011190 EF380133 EU600222 AF495566 AY714194 DQ241522 DQ659545 DQ659586 DQ839022 DQ839063 DQ847266 EF011190 EF380133 EU600222 AF495566 AY714194 DQ241523 DQ659545 DQ659586 DQ839023 DQ839061 DQ847266 EF011191 EF380134 EU600222 AF495566 AY714195 DQ241524 DQ659549 DQ659589 DQ839024 DQ839065 DQ847269 EF011191 EF380136 EU600222 AF495570 AY714198 DQ241527 DQ659558 DQ839024 DQ839065 DQ847269 EF011199 EF380138 EU600222 AF495570 AY714198 DQ241525 DQ659558 DQ859589 DQ839025 DQ839066 DQ847269 EF011194 EF380136 EU600222 AF495570 AY714198 DQ241525 DQ659558 DQ839080 DQ839070 DQ991068 EF011197 EF380140 EU600225 AF495570 AY714198 DQ241525 DQ659555 DQ838989 DQ839025 DQ839070 DQ991070 EF01199 EF380141 EU600223 AF495570 AY714200 DQ241530 DQ659555 DQ838999 DQ839031 DQ839071 DQ991070 EF032870 EF3 | | | ~ | ~ | ~ | ~ | | | | | | | AF465553 AY540221 DQ241511 DQ508402 DQ659575 DQ839009 DQ839053 DQ839093 EF011180 EF380123 EF380163 AF4655554 AY540223 DQ241512 DQ508404 DQ659576 DQ839011 DQ839053 DQ839093 EF011181 EF380124 EF564179 AF465555 AY540128 DQ241514 DQ508404 DQ659576 DQ839011 DQ839055 DQ847259 EF011183 EF380126 EF664179 AF465556 AY640128 DQ241514 DQ508405 DQ659577 DQ839015 DQ839056 DQ847259 EF011183 EF380126 EF607288 AF465557 AY640130 DQ241515 DQ659538 DQ659579 DQ839015 DQ839056 DQ847260 EF011184 EF380127 EF607291 AF465557 AY640134 DQ241517 DQ659540 DQ659580 DQ839015 DQ839058 DQ847262 EF011186 EF380129 EL600212 AF465561 AY640135 DQ241519 DQ659541 DQ659581 DQ839016 DQ839058 DQ847263 </td <td></td> <td></td> <td>~</td> <td>~</td> <td>~</td> <td>~</td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | ~ | ~ | ~ | ~ | | | | | | | AF465554 AY\$40222 DQ241512 DQ508403 DQ659576 DQ839010 DQ839053 DQ83903 EF011181 EF380124 EF564178 AF465555 AY\$40128 DQ241513 DQ508404 DQ659577 DQ839012 DQ839055 DQ847259 EF011182 EF380125 EF564179 AF465556 AY\$40130 DQ241515 DQ659578 DQ839013 DQ839056 DQ847260 EF011184 EF380125 EF607289 AF465557 AY\$40130 DQ241516 DQ659583 DQ659579 DQ839015 DQ839057 DQ847260 EF011184 EF380122 EF607291 AF465559 AY\$40134 DQ241516 DQ659580 DQ839015 DQ839057 DQ847262 EF011185 EF380128 EU600215 AF465560 AY\$40135 DQ241518 DQ659581 DQ659581 DQ839016 DQ839069 DQ847263 EF011187 EF380130 EU600215 AF495548 AY\$640137 DQ241521 DQ659581 DQ659581 DQ839061 DQ839061 DQ847266 EF011188 EF380133 <td></td> <td></td> <td>~</td> <td>~</td> <td>~</td> <td>~</td> <td>~</td> <td>~</td> <td></td> <td></td> <td></td> | | | ~ | ~ | ~ | ~ | ~ | ~ | | | | | AF465555 AY540223 DQ241513 DQ508404 DQ659576 DQ839011 DQ839055 DQ847259 EF011182 EF380125 EF564179 AF465556 AY640130 DQ241515 DQ659578 DQ839012 DQ839056 DQ847259 EF011183 EF380126 EF607288 AF465557 AY640130 DQ241516 DQ659578 DQ659577 DQ839056 DQ847260 EF011185 EF380128 EF607288 AF465558 AY640132 DQ241516 DQ659589 DQ659579 DQ839014 DQ839057 DQ847261 EF011185 EF380128 EU600217 AF465550 AY640134 DQ241517 DQ659580 DQ839015 DQ839058 DQ847262 EF011186 EF380128 EU600218 AF465561 AY640136 DQ241519 DQ659581 DQ659581 DQ839016 DQ839060 DQ847264 EF011188 EF380131 EU600222 AF495549 AY640137 DQ241520 DQ659581 DQ659581 DQ659582 DQ839061 DQ847266 EF011189 EF380132 EU600222 <td></td> <td></td> <td>~</td> <td>~</td> <td>~</td>
<td>~</td> <td>~</td> <td>~</td> <td></td> <td></td> <td></td> | | | ~ | ~ | ~ | ~ | ~ | ~ | | | | | AF465556 AY640128 DQ241514 DQ508405 DQ659577 DQ839012 DQ839055 DQ847259 EF011183 EF380126 EF607288 AF465557 AY640130 DQ241515 DQ659578 DQ839014 DQ839056 DQ847260 EF011185 EF380127 EF607289 AF465558 AY640132 DQ241516 DQ659539 DQ659579 DQ839014 DQ839057 DQ847261 EF011185 EF380128 EU600218 AF465559 AY640134 DQ241517 DQ659581 DQ839015 DQ839058 DQ847262 EF011186 EF380129 EU600218 AF465560 AY640135 DQ241519 DQ659581 DQ839010 DQ839069 DQ847263 EF011187 EF380130 EU6002218 AF495548 AY640136 DQ241520 DQ659581 DQ659581 DQ839060 DQ847264 EF011189 EF380131 EU600222 AF495548 AY640143 DQ241521 DQ659544 DQ659585 DQ839062 DQ847266 EF011190 EF380133 EU600222 AF495564 | | | | ~ | | | | | | | | | AF465558 AY640132 DQ241516 DQ659539 DQ659579 DQ839014 DQ839057 DQ847261 EF011185 EF380128 EU600215 AF465569 AY640134 DQ241517 DQ659540 DQ659580 DQ839015 DQ839058 DQ847262 EF011186 EF380129 EU600218 AF465560 AY640135 DQ241518 DQ659541 DQ659581 DQ839016 DQ839059 DQ847263 EF011187 EF380130 EU600215 AF465561 AY640136 DQ241519 DQ659542 DQ659582 DQ839019 DQ839060 DQ847264 EF011188 EF380131 EU600215 AF495548 AY640137 DQ241520 DQ659543 DQ659583 DQ839020 DQ839061 DQ847265 EF011189 EF380132 EU600221 AF495549 AY640143 DQ241521 DQ659544 DQ659584 DQ839021 DQ839062 DQ847266 EF011190 EF380133 EU600222 AF495564 AY640145 DQ241522 DQ659545 DQ659585 DQ839022 DQ839064 DQ847266 EF011190 EF380133 EU600222 AF495566 AY714194 DQ241523 DQ659546 DQ659586 DQ839023 DQ839064 DQ847267 EF011191 EF380134 EU600222 AF495568 AY714195 DQ241523 DQ659546 DQ659586 DQ839023 DQ839064 DQ847269 EF011192 EF380135 EU600222 AF495569 AY714196 DQ241525 DQ659548 DQ659588 DQ839024 DQ839065 DQ847269 EF011193 EF380136 EU600222 AF495572 AY714197 DQ241526 DQ659549 DQ659589 DQ839064 DQ847270 EF011194 EF380137 EU600222 AF495572 AY714198 DQ241527 DQ659550 DQ659589 DQ839026 DQ839066 DQ847271 EF011194 EF380138 EU600222 AF495576 AY714199 DQ241526 DQ659550 DQ659589 DQ839027 DQ839068 DQ8484771 EF011195 EF380138 EU600222 AF495576 AY714199 DQ241528 DQ659550 DQ659589 DQ839027 DQ839068 DQ8484771 EF011194 EF380138 EU600222 AF495578 AY714200 DQ241528 DQ659550 DQ859591 DQ839027 DQ839069 DQ991068 EF011197 EF380140 EU600223 AF495578 AY714201 DQ241530 DQ659552 DQ838989 DQ839070 DQ991070 EF032870 EF380142 EU600233 AY167247 AY714202 DQ241531 DQ659554 DQ838989 DQ839031 DQ839071 DQ991071 EF153639 EF380144 EU600233 AY167248 AY714203 DQ241531 DQ659555 DQ838990 DQ839031 DQ839073 DQ991071 EF153640 EF380145 EU600233 AY167249 AY714204 DQ241535 DQ659555 DQ838990 DQ839035 DQ839074 DQ991075 EF153642 EF380145 EU883533 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883533 | | | ~ | ~ | ~ | ~ | ~ | ~ | | | EF607288 | | AF465559 AY640134 DQ241517 DQ659540 DQ659580 DQ839015 DQ839058 DQ847262 EF011186 EF380129 EU600218 AF465560 AY640135 DQ241518 DQ659541 DQ659581 DQ839016 DQ839059 DQ847263 EF011187 EF380130 EU600215 AF465561 AY640136 DQ241519 DQ659542 DQ659582 DQ839019 DQ839060 DQ847264 EF011188 EF380131 EU600222 AF495548 AY640137 DQ241520 DQ659543 DQ659583 DQ839020 DQ839061 DQ847265 EF011189 EF380132 EU600222 AF495549 AY640143 DQ241521 DQ659544 DQ659584 DQ839021 DQ839062 DQ847266 EF011189 EF380133 EU600222 AF495564 AY640145 DQ241522 DQ659545 DQ659585 DQ839022 DQ839063 DQ847267 EF011191 EF380134 EU600222 AF495566 AY714194 DQ241523 DQ659546 DQ659586 DQ839023 DQ839064 DQ847267 EF011191 EF380135 EU600222 AF495569 AY714195 DQ241524 DQ659547 DQ659588 DQ839024 DQ839065 DQ847269 EF011192 EF380135 EU600222 AF495569 AY714196 DQ241525 DQ659548 DQ659588 DQ839025 DQ839066 DQ847269 EF011194 EF380137 EU600222 AF495569 AY714196 DQ241525 DQ659549 DQ659588 DQ839025 DQ839066 DQ847270 EF011194 EF380137 EU600222 AF495571 AY714197 DQ241526 DQ659549 DQ659589 DQ839026 DQ839067 DQ847271 EF011195 EF380138 EU600222 AF495572 AY714198 DQ241527 DQ659550 DQ659590 DQ839027 DQ839068 DQ847271 EF011195 EF380138 EU600222 AF495578 AY714199 DQ241528 DQ659551 DQ6595591 DQ839028 DQ839069 DQ991068 EF011197 EF380140 EU600222 AF495578 AY714200 DQ241529 DQ659551 DQ659551 DQ659591 DQ839029 DQ839070 DQ991069 EF011198 EF380141 EU600230 AY167247 AY714202 DQ241531 DQ659554 DQ838988 DQ839030 DQ839071 DQ991070 EF032870 EF380142 EU600232 AY167247 AY714202 DQ241531 DQ659555 DQ838989 DQ839031 DQ839071 DQ991070 EF032870 EF380144 EU600233 AY167248 AY714201 DQ241532 DQ659555 DQ838990 DQ839031 DQ839073 DQ991072 EF153649 EF380144 EU600233 AY167248 AY714204 DQ241533 DQ659555 DQ838990 DQ839035 DQ839075 DQ991074 EF153642 EF380145 EU768328 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839075 DQ991075 EF153642 EF380145 EU768328 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839075 DQ991075 EF153642 EF380145 EU883534 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ | AF465557 | AY640130 | DÕ241515 | DO659538 | DO659578 | DO839013 | DO839056 | DO847260 | EF011184 | EF380127 | EF607291 | | AF465560 AY640135 DQ241518 DQ659541 DQ659581 DQ839016 DQ839059 DQ847263 EF011187 EF380130 EU600219 AF465561 AY640136 DQ241519 DQ659542 DQ659582 DQ839019 DQ839060 DQ847264 EF011188 EF380131 EU600222 AF495548 AY640137 DQ241520 DQ659543 DQ659583 DQ839020 DQ839061 DQ847265 EF011189 EF380132 EU600222 AF495549 AY640143 DQ241521 DQ659544 DQ659584 DQ839021 DQ839062 DQ847266 EF011190 EF380133 EU600222 AF495564 AY640145 DQ241522 DQ659545 DQ659585 DQ839022 DQ839063 DQ847267 EF011191 EF380134 EU600222 AF495566 AY714194 DQ241523 DQ659546 DQ659586 DQ839023 DQ839064 DQ847268 EF011192 EF380135 EU600222 AF495569 AY714195 DQ241524 DQ659547 DQ659586 DQ839024 DQ839065 DQ847269 EF011191 EF380136 EU600222 AF495569 AY714196 DQ241525 DQ659548 DQ659588 DQ839025 DQ839066 DQ847269 EF011191 EF380136 EU600222 AF495571 AY714197 DQ241526 DQ659548 DQ659589 DQ839025 DQ839066 DQ847270 EF011194 EF380137 EU600222 AF495572 AY714198 DQ241526 DQ659549 DQ659589 DQ839025 DQ839067 DQ847271 EF011195 EF380138 EU600222 AF495576 AY714199 DQ241528 DQ659550 DQ659590 DQ839027 DQ839068 DQ847271 EF011196 EF380138 EU600222 AF495578 AY714200 DQ241529 DQ659551 DQ659550 DQ839029 DQ839070 DQ991068 EF011197 EF380140 EU600225 AF495578 AY714200 DQ241530 DQ659552 DQ838987 DQ839029 DQ839070 DQ991069 EF011198 EF380141 EU600230 AY167247 AY714202 DQ241531 DQ659555 DQ838989 DQ839071 DQ991070 EF032870 EF380142 EU600233 AY167247 AY714201 DQ241532 DQ659555 DQ838989 DQ839030 DQ839071 DQ991070 EF153639 EF380144 EU600233 AY167248 AY714201 DQ241531 DQ659555 DQ838989 DQ839031 DQ839072 DQ991071 EF153639 EF380144 EU600233 AY167248 AY714204 DQ241531 DQ659555 DQ838990 DQ839031 DQ839073 DQ991072 EF153640 EF380144 EU676191 AY167249 AY714204 DQ241535 DQ659556 DQ838991 DQ839035 DQ839075 DQ991075 EF153642 EF380145 EU780332 AY167249 AY714206 DQ241535 DQ659558 DQ838993 DQ839075 DQ991075 EF153642 EF380147 EU883535 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 | AF465558 | AY640132 | DO241516 | DO659539 | DO659579 | DO839014 | DO839057 | DO847261 | EF011185 | EF380128 | EU600217 | | AF465561 AY640136 DQ241519 DQ659542 DQ659582 DQ839019 DQ839060 DQ847264 EF011188 EF380131 EU60022C AF495548 AY640137 DQ241520 DQ659543 DQ659583 DQ839020 DQ839061 DQ847265 EF011189 EF380132 EU600221 AF495549 AY640143 DQ241521 DQ659544 DQ659584 DQ839021 DQ839062 DQ847266 EF011190 EF380133 EU600222 AF495564 AY640145 DQ241522 DQ659545 DQ659585 DQ839022 DQ839063 DQ847267 EF011191 EF380134 EU600222 AF495566 AY714194 DQ241523 DQ659546 DQ659586 DQ839022 DQ839064 DQ847268 EF011192 EF380135 EU600222 AF495569 AY714195 DQ241524 DQ659547 DQ659587 DQ839024 DQ839065 DQ847269 EF011193 EF380136 EU600222 AF495569 AY714196 DQ241525 DQ659548 DQ659588 DQ839025 DQ839066 DQ847270 EF011194 EF380137 EU600226 AF495571 AY714197 DQ241526 DQ659549 DQ659589 DQ839026 DQ839067 DQ847271 EF011195 EF380138 EU600222 AF495572 AY714198 DQ241527 DQ659550 DQ659590 DQ839027 DQ839068 DQ848727 EF011196 EF380138 EU600222 AF495576 AY714199 DQ241528 DQ659551 DQ659591 DQ839028 DQ839069 DQ991068 EF011197 EF380140 EU600222 AF495578 AY714200 DQ241529 DQ659551 DQ659551 DQ839029 DQ839070 DQ991069 EF011198 EF380141 EU600223 AY167247 AY714202 DQ241531 DQ659554 DQ838988 DQ839030 DQ839071 DQ991070 EF032870 EF380142 EU600233 AY167248 AY714203 DQ241531 DQ659555 DQ838989 DQ839031 DQ839071 DQ991071 EF153638 EF380143 EU600233 AY167248 AY714203 DQ241533 DQ659555 DQ838990 DQ839031 DQ839071 DQ991071 EF153639 EF380145 EU600233 AY167249 AY714204 DQ241533 DQ659555 DQ838991 DQ839031 DQ839074 DQ991071 EF153649 EF380145 EU768328 AY455660 AY714205 DQ241534 DQ659557 DQ838992 DQ839035 DQ839075 DQ991074 EF153641 EF380146 EU883534 AY455660 AY714205 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991074 EF153642 EF380145 EU788353 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ9 | AF465559 | AY640134 | DO241517 | DO659540 | DO659580 | DO839015 | DO839058 | DO847262 | EF011186 | EF380129 | EU600218 | | AF465561 AY640136 DQ241519 DQ659542 DQ659582 DQ839019 DQ839060 DQ847264 EF011188 EF380131 EU60022C AF495548 AY640137 DQ241520 DQ659543 DQ659583 DQ839020 DQ839061 DQ847265 EF011189 EF380132 EU600221 AF495549 AY640143 DQ241521 DQ659544 DQ659584 DQ839021 DQ839062 DQ847266 EF011190 EF380133 EU600222 AF495564 AY640145 DQ241522 DQ659545 DQ659585 DQ839022 DQ839063 DQ847267 EF011191 EF380134 EU600222 AF495566 AY714194 DQ241523 DQ659546 DQ659586 DQ839022 DQ839064 DQ847268 EF011192 EF380135 EU600222 AF495569 AY714195 DQ241524 DQ659547 DQ659587 DQ839024 DQ839065 DQ847269 EF011193 EF380136 EU600222 AF495569 AY714196 DQ241525 DQ659548 DQ659588 DQ839025 DQ839066 DQ847270 EF011194 EF380137 EU600226 AF495571 AY714197 DQ241526 DQ659549 DQ659589 DQ839026 DQ839067 DQ847271
EF011195 EF380138 EU600222 AF495572 AY714198 DQ241527 DQ659550 DQ659590 DQ839027 DQ839068 DQ848727 EF011196 EF380138 EU600222 AF495576 AY714199 DQ241528 DQ659551 DQ659591 DQ839028 DQ839069 DQ991068 EF011197 EF380140 EU600222 AF495578 AY714200 DQ241529 DQ659551 DQ659551 DQ839029 DQ839070 DQ991069 EF011198 EF380141 EU600223 AY167247 AY714202 DQ241531 DQ659554 DQ838988 DQ839030 DQ839071 DQ991070 EF032870 EF380142 EU600233 AY167248 AY714203 DQ241531 DQ659555 DQ838989 DQ839031 DQ839071 DQ991071 EF153638 EF380143 EU600233 AY167248 AY714203 DQ241533 DQ659555 DQ838990 DQ839031 DQ839071 DQ991071 EF153639 EF380145 EU600233 AY167249 AY714204 DQ241533 DQ659555 DQ838991 DQ839031 DQ839074 DQ991071 EF153649 EF380145 EU768328 AY455660 AY714205 DQ241534 DQ659557 DQ838992 DQ839035 DQ839075 DQ991074 EF153641 EF380146 EU883534 AY455660 AY714205 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991074 EF153642 EF380145 EU788353 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ9 | AF465560 | AY640135 | DQ241518 | DQ659541 | DQ659581 | DQ839016 | DQ839059 | DQ847263 | EF011187 | EF380130 | EU600219 | | AF495549 AY640143 DQ241521 DQ659544 DQ659584 DQ839021 DQ839062 DQ847266 EF011190 EF380133 EU600222 AF495564 AY640145 DQ241522 DQ659545 DQ659585 DQ839022 DQ839063 DQ847267 EF011191 EF380134 EU600222 AF495566 AY714194 DQ241523 DQ659546 DQ659586 DQ839023 DQ839064 DQ847268 EF011192 EF380135 EU600222 AF495568 AY714195 DQ241524 DQ659547 DQ659587 DQ839024 DQ839065 DQ847269 EF011193 EF380136 EU600222 AF495569 AY714196 DQ241525 DQ659548 DQ659588 DQ839025 DQ839066 DQ847270 EF011194 EF380137 EU600222 AF495571 AY714197 DQ241525 DQ659549 DQ659589 DQ839025 DQ839066 DQ847270 EF011194 EF380137 EU600222 AF495572 AY714198 DQ241527 DQ659549 DQ659589 DQ839027 DQ839066 DQ847270 EF011195 EF380138 EU600222 AF495576 AY714199 DQ241528 DQ659550 DQ659590 DQ839027 DQ839068 DQ848877 EF011196 EF380139 EU600222 AF495576 AY714200 DQ241528 DQ659551 DQ659591 DQ839028 DQ839069 DQ991068 EF011197 EF380140 EU600222 AF495578 AY714200 DQ241529 DQ659552 DQ838987 DQ839029 DQ839070 DQ991069 EF011198 EF380141 EU600230 AF495578 AY714201 DQ241530 DQ659555 DQ838988 DQ839030 DQ839071 DQ991070 EF032870 EF380141 EU600230 AY167247 AY714202 DQ241531 DQ659555 DQ838989 DQ839031 DQ839071 DQ991071 EF153638 EF380141 EU600233 AY167248 AY714203 DQ241532 DQ659555 DQ838999 DQ839031 DQ839074 DQ991072 EF1536639 EF380144 EU676191 AY167249 AY714204 DQ241533 DQ659555 DQ838990 DQ839031 DQ839075 DQ991072 EF153640 EF380145 EU7608328 AY167249 AY714204 DQ241533 DQ659555 DQ838992 DQ839031 DQ839075 DQ991074 EF153640 EF380146 EU883534 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839075 DQ991074 EF153641 EF380146 EU883534 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839075 DQ991075 EF153642 EF380147 EU883535 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 D | AF465561 | AY640136 | | DQ659542 | DQ659582 | DQ839019 | DQ839060 | DQ847264 | EF011188 | EF380131 | EU600220 | | AF495564 AY640145 DQ241522 DQ659545 DQ659585 DQ839022 DQ839063 DQ847267 EF011191 EF380134 EU600223 AF495566 AY714194 DQ241523 DQ659546 DQ659586 DQ839023 DQ839064 DQ847268 EF011192 EF380135 EU600224 AF495568 AY714195 DQ241524 DQ659547 DQ659587 DQ839024 DQ839065 DQ847269 EF011193 EF380136 EU600225 AF495569 AY714196 DQ241525 DQ659548 DQ659588 DQ839025 DQ839066 DQ847270 EF011194 EF380137 EU600226 AF495571 AY714197 DQ241526 DQ659549 DQ659589 DQ839026 DQ839067 DQ847271 EF011195 EF380138 EU600227 AF495572 AY714198 DQ241527 DQ659550 DQ659590 DQ839027 DQ839068 DQ8484877 EF011196 EF380139 EU600228 AF495576 AY714199 DQ241528 DQ659551 DQ659591 DQ839028 DQ839069 DQ991068 EF011197 EF380140 EU6002228 AF495577 AY714200 DQ241529 DQ659552 DQ838987 DQ839029 DQ839070 DQ991069 EF011198 EF380141 EU600230 AF495578 AY714201 DQ241530 DQ659553 DQ838988 DQ839030 DQ839071 DQ991070 EF032870 EF380142 EU600231 AY167247 AY714202 DQ241531 DQ659554 DQ838989 DQ839031 DQ839072 DQ991071 EF153638 EF380142 EU600231 AY167248 AY714203 DQ241531 DQ659555 DQ838990 DQ839031 DQ839073 DQ991071 EF153638 EF380144 EU676191 AY167249 AY714204 DQ241533 DQ659556 DQ838990 DQ839033 DQ839074 DQ991072 EF153640 EF380145 EU708328 AY167250 AY714205 DQ241531 DQ659557 DQ838992 DQ839035 DQ839075 DQ991074 EF153641 EF380146 EU883534 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU8835354 | AF495548 | AY640137 | DQ241520 | DQ659543 | DQ659583 | DQ839020 | DQ839061 | DQ847265 | EF011189 | EF380132 | EU600221 | | AF495566 AY714194 DQ241523 DQ659546 DQ659586 DQ839023 DQ839064 DQ847268 EF011192 EF380135 EU600224 AF495568 AY714195 DQ241524 DQ659547 DQ659587 DQ839024 DQ839065 DQ847269 EF011193 EF380136 EU600225 AF495569 AY714196 DQ241525 DQ659548 DQ659588 DQ839025 DQ839066 DQ847270 EF011194 EF380137 EU600226 AF495571 AY714197 DQ241526 DQ659549 DQ659589 DQ839026 DQ839067 DQ847271 EF011195 EF380138 EU600227 AF495572 AY714198 DQ241527 DQ659550 DQ659590 DQ839027 DQ839068 DQ847271 EF011195 EF380138 EU600225 AF495576 AY714199 DQ241528 DQ659551 DQ659591 DQ839027 DQ839068 DQ8484877 EF011196 EF380139 EU600225 AF495577 AY714200 DQ241528 DQ659551 DQ659591 DQ839028 DQ839069 DQ991068 EF011197 EF380140 EU600225 AF495578 AY714201 DQ241529 DQ659552 DQ838987 DQ839029 DQ839070 DQ991069 EF011198 EF380141 EU600230 AY167247 AY714202 DQ241531 DQ659553 DQ838988 DQ839030 DQ839071 DQ991070 EF032870 EF380142 EU600231 AY167248 AY714203 DQ241531 DQ659554 DQ838989 DQ839031 DQ839072 DQ991071 EF153638 EF380144 EU600233 AY167248 AY714203 DQ241532 DQ659555 DQ838990 DQ839031 DQ839073 DQ991072 EF153649 EF380144 EU6766191 AY167249 AY714204 DQ241533 DQ659555 DQ838990 DQ839031 DQ839074 DQ991070 EF153640 EF380145 EU708328 AY167250 AY714205 DQ241534 DQ659557 DQ838992 DQ839035 DQ839075 DQ991074 EF153641 EF380146 EU883534 AY167250 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 | AF495549 | AY640143 | DQ241521 | DQ659544 | DQ659584 | DQ839021 | DQ839062 | DQ847266 | EF011190 | EF380133 | EU600222 | | AF495568 AY714195 DQ241524 DQ659547 DQ659587 DQ839024 DQ839065 DQ847269 EF011193 EF380136 EU600225 AF495569 AY714196 DQ241525 DQ659548 DQ659588 DQ839025 DQ839066 DQ847270 EF011194 EF380137 EU600226 AF495571 AY714197 DQ241526 DQ659549 DQ659589 DQ839026 DQ839067 DQ847271 EF011195 EF380138 EU600227 AF495572 AY714198 DQ241527 DQ659550 DQ659590 DQ839027 DQ839068 DQ848877 EF011196 EF380139 EU600228 AF495576 AY714199 DQ241528 DQ659551 DQ659591 DQ839028 DQ839069 DQ991068 EF011197 EF380140 EU600229 AF495577 AY714200 DQ241529 DQ659552 DQ838987 DQ839029 DQ839070 DQ991069 EF011198 EF380141 EU600230 AF495578 AY714201 DQ241530 DQ659553 DQ838988 DQ839030 DQ839071 DQ991070 EF032870 EF380142 EU600231 AY167247 AY714202 DQ241531 DQ659554 DQ838989 DQ839031 DQ839072 DQ991071 EF153638 EF380143 EU600232 AY167248 AY714203 DQ241532 DQ659555 DQ838990 DQ839031 DQ839073 DQ991072 EF153639 EF380144 EU676191 AY167249 AY714204 DQ241533 DQ659556 DQ838991 DQ839033 DQ839074 DQ991073 EF153640 EF380145 EU708328 AY167250 AY714206 DQ241534 DQ659557 DQ838992 DQ839035 DQ839076 DQ991074 EF153641 EF380146 EU883534 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU8835354 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU8835354 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU8835354 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU8835354 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU8835354 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU8835354 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU8835354 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU8835354 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU8835354 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ8 | AF495564 | AY640145 | DQ241522 | DQ659545 | DQ659585 | DQ839022 | DQ839063 | DQ847267 | EF011191 | EF380134 | EU600223 | | AF495569 AY714196 DQ241525 DQ659548 DQ659588 DQ839025 DQ839066 DQ847270 EF011194 EF380137 EU600226 AF495571 AY714197 DQ241526 DQ659549 DQ659589 DQ839026 DQ839067 DQ847271 EF011195 EF380138 EU600227 AF495572 AY714198 DQ241527 DQ659550 DQ659590 DQ839027 DQ839068 DQ884877 EF011196 EF380139 EU600228 AF495576 AY714199 DQ241528 DQ659551 DQ659591 DQ839028 DQ839069 DQ991068 EF011197 EF380140 EU600229 AF495577 AY714200 DQ241529 DQ659552 DQ838987 DQ839029 DQ839070 DQ991069 EF011198 EF380141 EU600230 AF495578 AY714201 DQ241530 DQ659553 DQ838988 DQ839030 DQ839071 DQ991070 EF032870 EF380142 EU600231 AY167247 AY714202 DQ241531 DQ659554 DQ838989 DQ839031 DQ839072 DQ991071 EF153638 EF380143 EU600232 AY167248 AY714203 DQ241532 DQ659555 DQ838990 DQ839032 DQ839073 DQ991072 EF153639 EF380144 EU676191 AY167249 AY714204 DQ241533 DQ659556 DQ838991 DQ839033 DQ839074 DQ991073 EF153640 EF380145 EU708328 AY167250 AY714205 DQ241534 DQ659557 DQ838992 DQ839035 DQ839076 DQ991075 EF153641 EF380146 EU883534 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU8835353 | AF495566 | AY714194 | DQ241523 | DQ659546 | DQ659586 | DQ839023 | DQ839064 | DQ847268 | EF011192 | EF380135 | EU600224 | | AF495571
AY714197 DQ241526 DQ659549 DQ659589 DQ839026 DQ839067 DQ847271 EF011195 EF380138 EU600227 AF495572 AY714198 DQ241527 DQ659550 DQ659590 DQ839027 DQ839068 DQ884877 EF011196 EF380139 EU600228 AF495576 AY714199 DQ241528 DQ659551 DQ659591 DQ839028 DQ839069 DQ991068 EF011197 EF380140 EU600229 AF495577 AY714200 DQ241529 DQ659552 DQ838987 DQ839029 DQ839070 DQ991069 EF011198 EF380141 EU600230 AF495578 AY714201 DQ241530 DQ659553 DQ838988 DQ839030 DQ839071 DQ991070 EF032870 EF380142 EU600231 AY167247 AY714202 DQ241531 DQ659554 DQ838989 DQ839031 DQ839072 DQ991071 EF153638 EF380143 EU600232 AY167248 AY714203 DQ241532 DQ659555 DQ838990 DQ839032 DQ839073 DQ991072 EF153639 EF380144 EU676191 AY167249 AY714204 DQ241533 DQ659556 DQ838991 DQ839033 DQ839074 DQ991073 EF153640 EF380145 EU708328 AY167250 AY714205 DQ241534 DQ659557 DQ838992 DQ839034 DQ839075 DQ991074 EF153641 EF380146 EU883534 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU8835353 | AF495568 | AY714195 | DQ241524 | DQ659547 | DQ659587 | DQ839024 | DQ839065 | DQ847269 | EF011193 | EF380136 | EU600225 | | AF495572 AY714198 DQ241527 DQ659550 DQ659590 DQ839027 DQ839068 DQ884877 EF011196 EF380139 EU600228 AF495576 AY714199 DQ241528 DQ659551 DQ659591 DQ839028 DQ839069 DQ991068 EF011197 EF380140 EU600229 AF495577 AY714200 DQ241529 DQ659552 DQ838987 DQ839029 DQ839070 DQ991069 EF011198 EF380141 EU600230 AF495578 AY714201 DQ241530 DQ659553 DQ838988 DQ839030 DQ839071 DQ991070 EF032870 EF380142 EU600231 AY167247 AY714202 DQ241531 DQ659554 DQ838989 DQ839031 DQ839072 DQ991071 EF153638 EF380143 EU600232 AY167248 AY714203 DQ241532 DQ659555 DQ838990 DQ839032 DQ839073 DQ991072 EF153639 EF380144 EU676191 AY167249 AY714204 DQ241533 DQ659556 DQ838991 DQ839033 DQ839074 DQ991073 EF153640 EF380145 EU708328 AY167250 AY714205 DQ241534 DQ659557 DQ838992 DQ839034 DQ839075 DQ991074 EF153641 EF380146 EU883534 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883533 | AF495569 | AY714196 | DQ241525 | DQ659548 | DQ659588 | DQ839025 | DQ839066 | DQ847270 | EF011194 | EF380137 | EU600226 | | AF495576 AY714199 DQ241528 DQ659551 DQ659591 DQ839028 DQ839069 DQ991068 EF011197 EF380140 EU600229 AF495577 AY714200 DQ241529 DQ659552 DQ838987 DQ839029 DQ839070 DQ991069 EF011198 EF380141 EU600230 AF495578 AY714201 DQ241530 DQ659553 DQ838988 DQ839030 DQ839071 DQ991070 EF032870 EF380142 EU600231 AY167247 AY714202 DQ241531 DQ659554 DQ838989 DQ839031 DQ839072 DQ991071 EF153638 EF380143 EU600232 AY167248 AY714203 DQ241532 DQ659555 DQ838990 DQ839032 DQ839073 DQ991072 EF153639 EF380144 EU676191 AY167249 AY714204 DQ241533 DQ659556 DQ838991 DQ839033 DQ839074 DQ991073 EF153640 EF380145 EU708328 AY167250 AY714205 DQ241534 DQ659557 DQ838992 DQ839034 DQ839075 DQ991074 EF153641 EF380146 EU883534 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU8835353 | AF495571 | AY714197 | DQ241526 | DQ659549 | DQ659589 | DQ839026 | DQ839067 | DQ847271 | EF011195 | EF380138 | EU600227 | | AF495577 AY714200 DQ241529 DQ659552 DQ838987 DQ839029 DQ839070 DQ991069 EF011198 EF380141 EU600230 AF495578 AY714201 DQ241530 DQ659553 DQ838988 DQ839030 DQ839071 DQ991070 EF032870 EF380142 EU600231 AY167247 AY714202 DQ241531 DQ659554 DQ838989 DQ839031 DQ839072 DQ991071 EF153638 EF380143 EU600232 AY167248 AY714203 DQ241532 DQ659555 DQ838990 DQ839032 DQ839073 DQ991072 EF153639 EF380144 EU676191 AY167249 AY714204 DQ241533 DQ659556 DQ838991 DQ839033 DQ839074 DQ991073 EF153640 EF380145 EU708328 AY167250 AY714205 DQ241534 DQ659557 DQ838992 DQ839034 DQ839075 DQ991074 EF153641 EF380146 EU883534 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU8835353 | AF495572 | AY714198 | DQ241527 | DQ659550 | DQ659590 | DQ839027 | DQ839068 | DQ884877 | EF011196 | EF380139 | EU600228 | | AF495578 AY714201 DQ241530 DQ659553 DQ838988 DQ839030 DQ839071 DQ991070 EF032870 EF380142 EU600231 AY167247 AY714202 DQ241531 DQ659554 DQ838989 DQ839031 DQ839072 DQ991071 EF153638 EF380143 EU600232 AY167248 AY714203 DQ241532 DQ659555 DQ838990 DQ839032 DQ839073 DQ991072 EF153639 EF380144 EU676191 AY167249 AY714204 DQ241533 DQ659556 DQ838991 DQ839033 DQ839074 DQ991073 EF153640 EF380145 EU708328 AY167250 AY714205 DQ241534 DQ659557 DQ838992 DQ839034 DQ839075 DQ991074 EF153641 EF380146 EU883534 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU8835353 | AF495576 | AY714199 | DQ241528 | DQ659551 | DQ659591 | DQ839028 | DQ839069 | DQ991068 | EF011197 | | EU600229 | | AY167247 AY714202 DQ241531 DQ659554 DQ838989 DQ839031 DQ839072 DQ991071 EF153638 EF380143 EU600232 AY167248 AY714203 DQ241532 DQ659555 DQ838990 DQ839032 DQ839073 DQ991072 EF153639 EF380144 EU676191 AY167249 AY714204 DQ241533 DQ659556 DQ838991 DQ839033 DQ839074 DQ991073 EF153640 EF380145 EU708328 AY167250 AY714205 DQ241534 DQ659557 DQ838992 DQ839034 DQ839075 DQ991074 EF153641 EF380146 EU883534 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 | AF495577 | AY714200 | DQ241529 | DQ659552 | DQ838987 | | DQ839070 | DQ991069 | EF011198 | EF380141 | EU600230 | | AY167248 AY714203 DQ241532 DQ659555 DQ838990 DQ839032 DQ839073 DQ991072 EF153639 EF380144 EU676191
AY167249 AY714204 DQ241533 DQ659556 DQ838991 DQ839033 DQ839074 DQ991073 EF153640 EF380145 EU708328
AY167250 AY714205 DQ241534 DQ659557 DQ838992 DQ839034 DQ839075 DQ991074 EF153641 EF380146 EU883534
AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 | AF495578 | | ~ | DQ659553 | ~ | DQ839030 | ~ | ~ | | | EU600231 | | AY167249 AY714204 DQ241533 DQ659556 DQ838991 DQ839033 DQ839074 DQ991073 EF153640 EF380145 EU708328
AY167250 AY714205 DQ241534 DQ659557 DQ838992 DQ839034 DQ839075 DQ991074 EF153641 EF380146 EU883534
AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 | AY167247 | | ~ | DQ659554 | ~ | DQ839031 | ~ | ~ | | | EU600232 | | AY167250 AY714205 DQ241534 DQ659557 DQ838992 DQ839034 DQ839075 DQ991074 EF153641 EF380146 EU883534 AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 | AY167248 | | ~ | DQ659555 | ~ | DQ839032 | ~ | ~ | | | EU676191 | | AY455660 AY714206 DQ241535 DQ659558 DQ838993 DQ839035 DQ839076 DQ991075 EF153642 EF380147 EU883535 | | | ~ | ~ | ~ | ~ | ~ | ~ | | | EU708328 | | | | | ~ | ~ | ~ | ~ | ~ | ~ | | | EU883534 | | $-\Lambda V A 5 5 6 6 1$ $-\Lambda V 7 1 A 2 0 7$ $-\Lambda C C C C C C C C C C C C C C C C C C C$ | | | ~ | | | | | ~ | | | EU883535 | | | AY455661 | AY714207 | DQ241536 | DQ659559 | DQ838994 | DQ839036 | DQ839077 | DQ991076 | EF153643 | EF380148 | | | AY455662 AY714208 DQ241537 DQ659560 DQ838995 DQ839037 DQ839078 EF011166 EF153644 EF380149 | | | ~ | ~ | ~ | ~ | | | | | | | AY455663 AY714209 DQ241538 DQ659561 DQ838996 DQ839039 DQ839079 EF011167 EF153645 EF380150 | | | ~ | ~ | ~ | ~ | | | | | | | AY540195 AY714210 DQ451403 DQ659562 DQ838997 DQ839040 DQ839080 EF011168 EF380111 EF380151 | | | ~ | | ~ | ~ | | | | | | | AY540197 AY714211 DQ451404 DQ659563 DQ838998 DQ839041 DQ839081 EF011169 EF380112 EF380152 | | | ~ | | ~ | ~ | ~ | | | | | | AY540200 AY817747 DQ451405 DQ659564 DQ838999 DQ839042 DQ839082 EF011170 EF380113 EF380153 | | | ~ | | ~ | ~ | ~ | | | | | | AY540206 AY817756 DQ451406 DQ659565 DQ839000 DQ839043 DQ839083 EF011171 EF380114 EF380154 | | | | | | | | | | | | | AY540207 AY831747 DQ451407 DQ659566 DQ839001 DQ839044 DQ839084 EF011172 EF380115 EF380155 | AY540207 | AY831747 | DQ451407 | DQ659566 | DQ839001 | DQ839044 | DQ839084 | EF011172 | EF380115 | EF380155 | | Fig. 1. Restriction fragments electrophoretically resolved on 5% polyacrylamide gel using primers 3760F/4292R. Two lineages of Haemoproteus from Chilean birds (H), 2 lineages of Plasmodium from Chilean birds (P) and 2 mixed infections (M) can be distinguished on the gel. Arrows show the length of fragments in base pairs. MW (molecular weight, 100 bp ladder). of these 9 sequences showing the DNA region containing the second restriction site is presented in Fig. 3. Another 6 problematic sequences (AF069613, DQ241534, DQ241553, EF380131, EF380157 and EF380163) were incorrectly assigned at the genus level as shown by phylogenetic analysis, probably due to errors during the GenBank submission (Fig. 4). The alignment of Leucocytozoon sequences including the fragment where the endonuclease could produce the first cut (204 sequences) showed that all of them present it. However, 50% of the 84 sequences including the fragment where Hpy CH4III nuclease could produce the second cut showed this restriction site. Accordingly, in the hypothetical case that Leucocytozoon would be amplified using the primers specifically selected for Plasmodium and Haemoproteus species, in one half of the cases the electrophoretic restriction maps would be identical to Plasmodium and in the other half to Haemoproteus. The average genetic divergence calculated on a nucleotide fragment of 332 bp (from first to second Hpy CH4III restriction site, see Fig. 2) using Kimura-2 model in MEGA 4.0 showed a divergence within groups of 4·1%, 5·1% and 12·2% for Plasmodium (185 sequences), Haemoproteus (141 sequences) and Leucocytozoon (83 sequences), respectively. Otherwise, genetic divergence between groups was 8·3%, 15·8% and 15·5% for Plasmodium/Haemoproteus, Plasmodium/Leucocytozoon and Haemoproteus/Leucocytozoon, respectively. In order to test the efficacy of this assay to detect mixed infections, we first selected birds infected with both parasites from 168 blue-tit samples using the specific primers for Haemoproteus (HML/HMR) and Plasmodium (Plas-F/4292Rw). The results showed 87.5 % (147) and 44 % (74) of samples infected with Haemoproteus and Plasmodium, respectively. In total, 59 samples found infected by both parasite genera using specific primers were then amplified using general primers 3760F/4292Rw and
Palu-F/Palu-R. The efficacy in detecting mixed infections by both pairs of primers in the two study regions was tested by one-tailed Fisher exact test comparing the expected versus observed number of mixed to single infections. The primers Palu F/R detected fewer mixed infections than expected in both Spanish and Chilean bird groups ($x_1^2=69.57$, P<0.0001 and $x^2_1 = 22.18$, P<0.0001, respectively). Similar results were obtained for the primers 3760F/4292Rw both, for Spanish (x^2 ₁=117, P<0.0001), and Chilean birds $(x^2 = 10.82, P = 0.001)$. However, the primers Palu F/R detected more mixed infections than the primers 3760F/4292Rw in the Spanish bird group (Fisher exact test, two tailed $x_1^2=13.38$, P=0.0001) although the difference was not significant for the Chilean group (Fisher exact test, two tailed $x_1^2=0.22$, P= 1.00). In addition, the primers Palu F/R detected more Plasmodium infections than the primers 3760F/ 4292Rw in the Spanish bird group (Fisher exact test, two tailed $x_1^2=12.53$, P=0.0003) but there was no significant difference between both sets of primers detecting Plasmodium or Haemoproteus infections in the Chilean bird group (Fisher exact test, two tailed $x^{2}_{1}=0.25$, P=0.76 and $x^{2}_{1}=0.40$, P=0.68, respectively) or Haemoproteus infection in the Spanish group (Fisher exact test, two tailed $x_1^2=0.04$, P= 0.90). A summary of the results is shown in the Table 2. #### DISCUSSION This restriction enzyme-based assay is valid to discriminate between avian parasites of the genera Plasmodium and Haemoproteus in the vast majority of cases, but it has a possible error rate of about 3%. Next, we discuss the non-conforming sequences found in GenBank. (i) The sequence with Accession number AF069613 (Haemoproteus columbae from Venezuela) has the second Hpy CH4III restriction site typical of the genus Plasmodium while the sequences EF380157 (Plasmodium spp. LIN29D) and EF380163 (Plasmodium spp. LIN34) do not show this site. However, a phylogenetic analysis including these sequences confirms that they are incorrectly assigned at the genus level because (see Valkiūnas et al. 2008 for a similar conclusion for H. columbae) those assigned to Plasmodium are in fact Haemoproteus and vice versa. This result strongly suggests that a revision of nomenclature for these three Fig. 2. Schematic representation of the cytochrome B sequence showing the Hpy CH4III restriction sites and the regions recognized by the different sets of primers used in this study (based on AF465554 sequence of Plasmodium). | Hpy CH4III | | 5' AC NGT 3' | |------------------|------------|---| | Haemoproteus sp. | (EF380167) | CATCCTGATA ATGCAATTAGATAGA TATGCA.end | | Haemoproteus sp. | (EF380194) | CATCCTGATA ATGCAATTAGATAGA TATGCA.end | | Haemoproteus sp. | (EF380198) | CATCCTGATA ATGCAATTAGATAGA TATGCA.end | | Plasmodium sp. | (EF380142) | CATCCAGATA ATGCAATA.TAGATAGA TATGCT.end | | Plasmodium sp. | (EF380143) | CATCCAGATN ATGCAATA.TAGATAGA TATGCT.end | | Plasmodium sp. | (DQ241515) | CATCCAGATA ACGCAATT.TAGATAGA TATGCT.end | | Plasmodium sp. | (DQ659567) | CATCCAGATA ATGCTATT.TAGATAGA TATGCTACTC CTTTACATAT- | | Plasmodium sp. | (DQ659576) | CATCCAGATA ATGCTATTA.AGATAGA TATGCTACTC CTTTACATAT- | | Plasmodium sp. | (AY540221) | CATCCTGATA ATGCTATTGAGATAGA TATGCTACTC CTTTACATAT→ | Fig. 3. Alignment of the Plasmodium and Haemoproteus cytochrome B sequences that cannot be differentiated using the Hpy CH4III restriction site-based assay. Only the fragment corresponding to the second restriction site is shown. Fig. 4. Phylogenetic tree based on a cytochrome B fragment of 304 bp (A) or 256 bp (B) using the Neighbour-Joining method (Kimura substitution model). The misidentified sequences are marked in bold. lineages is needed. (ii) The sequence EF607291 (Plasmodium spp. BUBT1) is the only parasite lineage without the first restriction site, but it is far from clear that this sequence was really a Plasmodium or even an Haemoproteus as it is not clearly grouped within these parasites (identity with other lineages only reach 85%; see also Krone et al. 2008). (iii) Sequences DQ241534 (Plasmodium sp. G27) and EF380131 (Plasmodium sp. LIN17B) are clearly errors because sequences DQ241553 (Haemoproteus sp. G46) and EF380174 (Haemoproteus sp. LIN11) respectively are completely identical. These sequences do not present the specific restriction site for Plasmodium and phylogenetic analysis grouped it within Haemoproteus. (iv) Only the sequences DQ659576 (Plasmodium sp. P35), DQ241515 (Plasmodium sp. U8), DQ659567 (Plasmodium sp. P26), (Plasmodium sp. LIN24A), EF380143 (Plasmodium sp. LIN24B), AY540221 (Plasmodium sp. OZ42), EF380167 (Haemoproteus sp. LIN5), EF380194 (Haemoproteus sp. LIN29) and EF380198 (Haemoproteus sp. LIN33) are not correctly assigned to their genera using the assay described here because the Plasmodium sequences do have not the second restriction site for Hpy CH4III endonuclease whereas Haemoproteus sequences have it. Therefore, all sequences from both parasite genera show the first Table 2. Efficiency of two sets of general primers amplifying Plasmodium and Haemoproteus from birds infected with both parasites and tested applying the Hpy CH4III restriction assay (Sample size is shown in parentheses.) | Primers | Birds (N) | Haemoproteus | Plasmodium | Mixed infection | |---------------|--------------------|--------------|-------------|-----------------| | 3760F/4292Rw | Spanish birds (59) | 97 % (57) | 3% (2) | 0% | | | Chilean birds (9) | 22·2 % (2) | 100% (9) | 22%(2) | | Palu-F/Palu-R | Spanish birds (59) | 91·5 % (54) | 33·9 % (20) | 25·4 % (15) | | | Chilean birds (15) | 40% (6) | 73·3 % (11) | 13·3 % (2) | restriction site and only 9 do not follow the rule of the second restriction site. Among these 9, chromatograms for DQ659576 and DQ659567 were reinspected and did not contain any obvious errors; in addition, unpublished sequence data appear to confirm the validity of AY540221 (J. Beadell, personal communication) Although the other 6 nonconforming sequences may also be exempt from any errors, we can venture several reasons to explain the origin of hypothetical errors. (i) The hypothetical errors could be generated during the GenBank submission process. (ii) In some sequences, the second restriction site is very close to the extreme 3k, a very sensitive zone where wrong readings are often observed. (iii) In some of them, the nucleotide change that knocks out the second restriction site consists of a thymine appearing instead of a cytosine and in another there is a guanine instead of an adenine. This points to the existence of a possible mistake in sequence readings due to the presence of a low DNA quantity of Haemoproteus in those samples because 96% and 94% of the Haemoproteus sequences present thymine and guanine in the second and the first position, respectively, within the second restriction site. This possibility cannot be ruled out due to the fact that general primers were used to amplify the parasite DNA and Haemoproteus presence may be unnoticed. In any case, we have evidence that at least 3 sequences, as mentioned above, do not contain errors and, therefore, strictly speaking the proposed test will be useful only after first surveying the lineage diversity in the host or geographical area under study. The possibility that the general primers used in the present study could amplify Leucocytozoon species is remote, as indicated by performing a normal NCBI BLAST with the primers used in this study. The analysis BLAST showed that the primers HML, 4292Rw and Palu-R are unlikely to hybridize efficiently to the gene encoding the cytochrome B of Leucocytozoon species, whereas the other primers will do so. In addition, the high average genetic divergence between the Leucocytozoon group and Plasmodium or Haemoproteus groups (higher than 15%) also indicates that the amplification of Leucocytozoon is unlikely. Moreover, we have never amplified this parasite genus using the mentioned primers on samples with well-known Leucocytozoon infection and, to our knowledge, nobody has communicated it. Thus, we can state with relative confidence that the presence of Leucocytozoon does not affect the specificity of the test presented. Nonetheless, this should be tested using DNA from other Leucocytozoon isolates. It is also important to note that, as previously mentioned, the genera Haemoproteus and Parahaemoproteus cannot be discriminated using this assay. The effectiveness of the assay in detecting double infections from samples of Spanish or Chilean birds was less than expected. The primer sets behaved very differently in the two groups of birds. While both primer sets detected over 90% of Haemoproteus infections in Spain, the case was just the opposite in the Chilean birds where both sets of primers detected a relatively high proportion of Plasmodium infections but failed to amplify a similar high proportion of Haemoproteus infections. In addition, primers Palu-F/Palu-R detected significantly more Plasmodium infections that primers 3760F/4292Rw in blue-tits. These facts could be due to a different affinity of the primers for the parasite lineages present in both areas or a lower intensity of Haemoproteus or Plasmodium infection in the Chilean or Spanish population, respectively. In this respect, previous data from the Spanish population of blue-tits indicated that only about 10% of samples were infected with Plasmodium using microscopy (authors' unpublished data; see also Merino et al. 2000), implying that Plasmodium DNA is probably in lower concentration as compared to Haemoproteus DNA in our blue-tit samples. In fact, detection of Plasmodium increased up to 70% by PCR using specific primers Plas-F/4292Rw (J. Martínez, unpublished data). As mixed infections were constituted by different lineages, we can suspect that detection is completely dependent on the
parasitic lineage implied and on the DNA quantity available as it was previously suggested by Beadell and Fleischer (2005) and Pérez-Tris and Bensch (2005). These authors have tried to develop molecular methods to solve this problem but their efficiency is still very dependent on parasitic lineages and the intensity of infections. The most efficient method described to date to detect mixed infections is the highly expensive and timeconsuming method of sequencing and TA cloning described by Pérez-Tris and Bensch (2005). As the assay presented here has practically 100% efficacy to differentiate both genera in samples with single infections, it can be used in combination with TA cloning to identify the parasite genus present in each clone but without sequencing, thus reducing the economic costs of detection of mixed infections by cloning. Unfortunately, the amplicons obtained with the primers used by Pérez-Tris and Bensch (2005) do not contain the specific restriction site for Plasmodium as described here, thus, another set of primers should be used before applying the assay of the Hpy CH4III restriction site. The conclusions that we can extract from the present study are the following. (i) The general primers tested yielded a poor efficiency in detecting known mixed infections, although they were successful in detecting at least 1 of the 2 genera, thus they could be used with single-infected samples. (ii) This method may be a cost-effective way to discriminate Plasmodium and Haemoproteus infections when lineage-specific information and the exact number of mixed infections are not needed, or to reduce the costs of sequencing when using cloning to detect mixed infections. However, (iii) as the detection of mixed infections is completely dependent on the parasitic lineages and/or parasite intensity, we highly recommend the use of different pairs of general primers in the initial screening of samples, the genetic characterization of the amplicons obtained and the development of specific primers for the characterized lineages if the prevalence of each lineage is needed. This study has been partially financed by the following projects: CGL2006-14129-C02-01/BOS from the Spanish Ministry of Education and Science, FONDECYT grant 1060186, travel grants from CSIC (grants CSIC-Univ. de Chile 2003 CL0012 and 2004 CL0033), and a BBVA Foundation grant. This study forms part of the research activities of the Biological Field Station 'El Ventorrillo' (Spain) and Institute of Ecology and Biodiversity (ICM-P05-002; PFB-23-CONICYT; Chile). We thank Javier Donés (Director of 'Montes de Valsaín') for permission to work in the study area. The Junta de Castilla y León authorized the ringing and handling of birds. J. M.-P., S. d. C. and E. L. were supported by grants from 'El Ventorrillo'-CSIC, Comunidad de Madrid and MEC, respectively. J. R. A. is not supported by any grant. ## REFERENCES Beadell, J. S., Gering, E., Austin, J., Dumbacher, J. P., Peirce, M. A., Pratt, T. K., Atkinson, C. T. and Fleischer, R. C. (2004). Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region. Molecular Ecology 13, 3829–3844. - Beadell, J. S. and Fleischer, R. C. (2005). A restriction enzyme-based assay to distinguish between avian hemosporidians. Journal of Parasitology 91, 683–685. - Bensch, S., Stjerman, M., Hasselquist, D., Östman, Ö., Hansson, B., Westerdahl, H. and Torres Pinheiro, R. (2000). Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society of London, B 267, 1583–1589. - Bentz, S., Rigaud, T., Barroca, M., Martin-Laurent, F., Bru, D., Moreau, J. and Faivre, B. (2006). Sensitive measure of prevalence and parasitaemia of haemosporidia from European blackbird (Turdus merula) populations: value of PCR-RFLP and quantitative PCR. Parasitology 133, 685–692. - Durrant, K., Beadell, J. S., Ishtiaq, F., Graves, G. R., Olson, S. L., Gering, E., Peirce, M. A., Milensky, C. M., Schmidt, B. K., Gebhard, C. and Fleischer, R. C. (2006). Avian hematozoa in South America: a comparison of temperate and tropical zones. Ornithological Monographs 60, 98–111. - Fallon, S. M., Ricklefs, R. E., Swanson, B. L. and Bermingham, E. (2003). Detecting avian malaria: an improved polymerase chain reaction diagnostic. Journal of Parasitology 89, 1044–1047. - Feldman, R. A. and Freed, L. A. (1995). A PCR test for avian malaria in Hawaiian birds. Molecular Ecology 4, 663–673. - Freed, L. A. and Cann, R. L. (2006). DNA quality and accuracy of avian malaria PCR diagnostics: A review. Condor 108, 459–473. - Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98. - Hamilton, W. D. and Zuk, M. (1982). Heritable true fitness and bright birds: A role for parasites? Science 218, 384–387. - Krone, O., Waldenström, J., Valkiūnas, G., Lessow, O., Müller, K., Iezhova, T. A., Fickel, J. and Bensch, S. (2008). Haemosporidian blood parasites in European birds of prey and owls. Journal of Parasitology 94, 709–715. - Martínez-de la Puente, J., Merino, S., Tomás, G., Moreno, J., Morales, J., Lobato, E. and García-Fraile, S. (2007). Can the host immune system promote multiple invasions of erythrocytes in vivo? Differential effects of medication and host sex in a wild malaria-like model. Parasitology 134, 651–655. - Martinsen, E. S., Perkins, S. L. and Schall, J. J. (2008). A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Molecular Phylogenetics and Evolution 47, 261–273. - Marzal, A., Bensch, S., Reviriego, M., Balbontin, J. and de Lope, F. (2008). Effects of malaria double infection in birds: one plus one is not two. Journal of Evolutionary Biology 21, 979–987. - Marzal, A., de Lope, F., Navarro, C. and Møller, A. P. (2005). Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142, 541–545. - Merino, S., Martínez, J., Møller, A. P., Barbosa, A., de Lope, F. and Rodríguez-Caabeiro, F. (2002). Blood stress protein levels in relation to sex and parasitism of barn swallows (Hirundo rustica). Ecoscience 9, 300–305. - Merino, S., Moreno, J., Sanz, J. J. and Arriero, E. (2000). Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits. Proceedings of the Royal Society of London, B 267, 2507–2510. - Merino, S., Moreno, J., Vásquez, R. A., Martínez, J., Sánchez-Monsálvez, I., Estades, C. F., Ippi, S., Sabat, P., Rozzi, R. and McGehee, S. (2008). Haematozoa in forest birds from southern Chile: latitudinal gradients in prevalence and parasite lineage richness. Austral Ecology 33, 329–340. - Nordling, D., Andersson, M., Zohari, S. and Gustafsson, L. (1998). Reproductive effort reduces specific immune response and parasite resistance. Proceedings of the Royal Society of London, B 265, 1291–1298. - Norris, K., Anwar, M. and Read, A. F. (1994). Reproductive effort influences the prevalence of haematozoan parasites in great tits. Journal of Animal Ecology 63, 601–610. - Pérez-Tris, J. and Bensch, S. (2005). Diagnosing genetically diverse avian malarial infections using mixed-sequences analysis and TA-cloning. Parasitology 131, 15–23. - Pérez-Tris, J., Hasselquist, D., Hellgren, O., Krizanauskiene, A., Waldenström, J. and Bensch, S. (2005). What are malaria parasites? Trends in Parasitology 21, 209–211. - Perkins, S. L. and Schall, J. J. (2002). A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. Journal of Parasitology 88, 972–978. - Richard, F. A., Sehgal, R. N. M., Jones, H. I. and Smith, T. B. (2002). A comparative analysis of PCR-based detection methods for avian malaria. Journal of Parasitology 88, 819–822. - Ricklefs, R. E., Fallon, S. M. and Bermingham, E. (2004). Evolutionary relationships, cospeciation, and - host switching in avian malaria parasites. Systematic Biology 53, 111–119. - Ricklefs, R. E., Swanson, B. L., Fallon, S. M., Martínez-Abrain, A., Scheuerlein, A., Gray, J. and Latta, S. C. (2005). Community relationships of avian malaria parasites in southern Missouri. Ecological Monographs 75, 543–559. - Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599. - Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680. - Tomás, G., Merino, S., Martínez, J., Moreno, J. and Sanz, J. J. (2005). Stress protein levels and blood parasite infection in blue tits (Parus caeruleus): a medication field experiment. Annales Zoologici Fennici 42, 45–56. - Tomás, G., Merino, S., Moreno, J., Morales, J. and Martínez-de la Puente, J. (2007). Impact of blood parasites on immunoglobulin level and parental effort: a medication field experiment on a wild passerine. Functional Ecology 2, 125–133. - Valkiūnas, G., Atkinson, C. T., Bensch, S., Sehgal, R. N. and Ricklefs, R. E. (2008). Parasite misidentifications in GenBank: how to minimize their number? Trends in Parasitology 24, 247–248. - Valkiūnas, G., Bensch, S., Iezhova, T. A., Krizanauskiene, A., Hellgren, O. and Bolshakov, C. V. (2006). Nested cytochrome B polymerase chain reaction diagnostics underestimated mixed infection of avian blood Haemosporidian parasites: microscopy is still essential. Journal of Parasitology 92, 418–422. - Waldenström, J., Bensch, S., Hasselquist, D. and Östman, Ö. (2004). A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. Journal of Parasitology 90, 191–194.