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Abstract. We consider the translocation of a one-dimensional polymer through a

pore channel helped by a motor driven by a dichotomous noise with time exponential

correlation. We are interested in the study of the translocation time, mean velocity

and stall force of the system as a function of the mean driving frequency. We find

a monotonous translocation time, in contrast with the mean velocity which shows

a pronounced maximum at a given frequency. Interestingly, the stall force shows a

nonmonotonic behavior with the presence of a minimum. The influence of the spring

elastic constant to the mean translocation times and velocities is also presented.
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1. Introduction

Translocation features of polymers through natural and artificial pores is a current active

research topic in biophysics and nanotechnology [1, 2, 3]. Motivated by many broad

interest experimental results, different models have been introduced to describe and

study in a simple way this and related problems. For instance, single barrier potentials

[4], as well as flashing ratchet models [5], have been studied to describe the polymer

translocation and polymer transport dynamics. The passage of small molecules through

passive cell channels can be also modeled by stochastic and rachetlike forces [6]. In

some cases the transport phenomena involves not translocation through pores, but also

molecular motors, whose complex action has been recently addressed at high attention

[7, 8]. In addition, nanotechnological applications try to emulate the complex biological

process related to the translocation dynamics [9, 10].

Recently, we have studied different models for the 1d translocation of a spring-bead

polymer helped by a motor using a sinusoidal force [11]. The introduction of a time

dependent driving force imposes a new time scale on the system, and provides new and

richer phenomenology: for sinusoidal driving, the translocation time shows an oscillatory

behavior as a function of the frequency.

In order to introduce stochasticity in the motor action and motivated by the relevant

role played by dichotomous noise in biological problems, in this manuscript we consider

the case of a polymer driven by a two-state force: constant force which pushes the

polymer chain in one direction during the activity of the motor, and zero force which

leaves the polymer to diffuse freely otherwise. This pure dichotomous mechanism

constitutes a first approach in describing a machine working dichotomously between

two on-off states [12, 13].

The motor modeled in [12, 13] acts during a fixed time, while the waiting times

are exponentially distributed with a mean time depending on the ATP concentration.

In the present work a simpler dichotomous mechanism which can well point out, by

contrast, the specific behavior of the ATP based machines is studied.

On the other hand, pure dichotomous driving makes sense in the nanotechnological

context as well as in the biophysical one. In the first case the passage of a polymer can

be induced through a graphene pore or solid state channeling [14, 15] by applying a

dichotomous force between the two sides of the layer. In the second case, the model can

describe the translocation of a linear molecule through a cell membrane gate having a

chemical potential difference between their two sides. The driving is in this case induced

by the typical open/close mechanism which follow the purely dichotomous switching

largely used in literature [6, 16, 17].

The purpose of our work is to model phenomenologically the possible physical

systems described above. We want to stress here the qualitative specific results

connected to the purely dichotomous driving.

Thus, differently from the sinusoidal case, no special behavior is observed in

the mean translocation time of the polymer for the case here studied. However, for
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this problem, another observable parameter can be studied. In fact, single molecule

experiments are able to detect and use the instantaneous velocity in order to quantify the

translocation process in forced systems [7]. Remarkably, we find a non trivial behavior of

the polymer translocation velocity as a function of the mean frequency ν of the driving

with the presence of a maximum, even if the translocation time shows only a monotonic

behavior. This difference reveals the importance of dealing with several measures to

explore the complex behavior of the polymer translocation.

The dependence of the stall force Fstall of the machine is also calculated. We find,

again, a strong nonmonotonic behavior of Fstall with the frequency, similar to the one

found in [11].

The paper is organized as follows: first we present the model for polymer and the

properties of the stochastic driving force. The main properties of the translocation

process are then calculated: translocation time, mean velocity and stall force. Finally,

we analyze the dependence of the above properties with the chain stiffness.

2. The model

η(t)

t

T

Figure 1. Scheme of a linear chain driven by a dichotomous force restricted to a small

space region (width LM ). T is the mean time during which the force maintains a same

value {0, FM}.

The polymer is modeled as a unidimensional chain of N dimensionless monomers

connected by harmonic springs [20].

1d models are suitable in order to describe the dynamics of polymers constrained to

move in confined channels [15]. Also, in many experimental situations [7] the polymer is

stretched, thus removing the dimensionality dependence of the measured quantities.

Moreover, in this work, we want to fix our attention to the motor activity in the

translocation more than the delay given by other effects, such as entropic contributions.

The total potential energy is

Vhar =
k

2

N
∑

i=1

(xi+1 − xi − d0)
2, (1)
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where k is the elastic constant, xi the position of the i-th particle, and d0 the equilibrium

distance between adjacent monomers.

The translocation is helped by the presence of a motor which is activated

dichotomously. The machine has a spatial working width LM and the position x = 0

represents the right edge of its action (see Fig. 1). Thus the monomers i such that

xi ∈ [−LM , 0] experience a force made by the motor. We define η(x, t) to represent the

dichotomous force, which fluctuates between two values 0 (no force) and FM . Thus

〈η(t)〉 =
FM

2
and 〈η(t)η(t′)〉 =

F 2
M

4
(1 + e−2

(t′−t)
T ) (2)

Here T gives the mean residence time in each state. With respect to the spatial

dependence

η(x) =

{

FM x ∈ [−LM , 0]

0 otherwise
(3)

The dynamics of the ith monomer of the chain is then described by the following

overdamped Langevin equations:

ẋi = −
∂Vhar

∂xi
+ η(t, xi) + ξi(t) (4)

where the viscosity parameter for each monomer is included in the normalized time

units. ξi(t) stands for Gaussian uncorrelated thermal fluctuation and follows the usual

statistical properties 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t
′)〉 = 2Dδijδ(t

′ − t).

3. Results

We performed a set of Nexp = 20, 000 numerical experiment with a stochastic Runge-

Kutta algorithm, using a time step of dt = 0.01. The polymer is compound by N

monomers and starts with all the spring at the rest length (d0 = 1), and the last

monomer of the chain lies at (xN = 0), just in the final action range of the dichotomous

force. The noise intensity is held fixed at the value D = 0.001, LM = 5.5, and N = 12.

The choice of the number of monomers N , or equivalently the length L, is arbitrary

and this small number has been used for computational convenience. We note that in a

previous work [11], also with 1d chain, it was found that τ scales with L2 = (N − 1)2.

Similarly we find that v scales with 1/N .

In this first part, the elastic constant k is held equal to 1, a meaningful choice that

corresponds to a not too rigid approximation for the polymer. We will study the main

observables of the system as a function of the mean frequency transition ν = 1/T .

3.1. Translocation times

The translocation time τ is computed as a mean first passage time of the center of

mass of the polymer: the average over the Nexp realizations of the time spent by the

center of mass of the chain to reach the position x = 0. In Fig. 2 we see the value of τ
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Figure 2. Polymer translocation time τ as a function of the frequency ν of the

fluctuating force. The solid line shows the theoretical prediction of Eq. 6. In the inset

is shown the standard deviation of the exit times distribution.

plotted as function of the mean frequency of the driving, and, in the inset, the standard

deviation σ whose values are of the same order of magnitude than the mean time values,

as expected. We find that τ is a monotonic function of ν. This result is different from

that for a periodic force (sinusoidal or square wave ones) where it is observed a minimum

in the translocation for ν ∼ 10−2 and an oscillating behavior for higher frequencies [11].

In contrast with the behavior of the translocation time, as we will see, the velocity

is not a monotonic function of ν and a maximum is found in this function for ν ∼ 10−2

(see Fig. 3). Both effects (minimum translocation time [11] or maximum mean velocity)

reveal some interesting similarities with the resonant activation phenomenon [18, 19].

We can make a simple analytical prediction for τ(ν) in the low frequency region

which however is found to be valid in a broad frequency range (see solid line in Fig. 2).

Let τon be the value of the exit time when a constant force FM is applied during all the

dynamics. In the ν → 0 limit we have to distinguish between two cases depending on

the initial value of the force, FM or 0. In the first case the translocation time is τon
corrected in a first approximation by a long waiting time T if the system switches to

the off state before τon, which occurs with a probability ps = 1− eτon/T . This correction

gives a contribution of τon(1 − ps) + (T + τon)ps to the total time. In the second case

there is an additional time T in the off state for escaping. Thus the total translocation

time is

τ ≃
1

2
(τon + T (1− eτon/T )) +

1

2
(τon + T + T (1− eτon/T )) (5)

Since this equation is derived in the low frequency limit where 1 − eτon/T ≃ τon/T we

have

τ ≃ 2τon + T/2 (6)

The intermediate frequency region is characterized by the presence of the constant

force alternated by the absence of the force (diffusive dynamics) with an average time
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ratio between them different for different values of the mean frequency. Surprisingly,

Eq. (6) also describes in a good way that frequency region. The third region is instead

characterized by a high frequency switching rate between the two force states. There

the translocation time is much smaller than T , the polymer experiences a mean force

FM/2, and τ ≃ 2τon. A careful observation of our numerical results show that in this

high frequency regime

τ ≃ 2τon + T, (7)

not observable in Fig.2.
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Figure 3. Mean velocity and number of monomers inside the motor while in its active

state (inset) as a function of the mean frequency ν of the fluctuating force.
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3.2. Mean velocity

Fig. 3 shows the mean velocity v of the polymer as a function of ν. The inset of the figure

shows the average number of monomers inside the motor during the active states, nmot.

We can see that this number is not constant for different values of the mean frequency

ν, at least for the value of the elastic constant k = 1 used in those calculations.

The main result in the velocity curves is the presence of a well pronounced

maximum, which put in evidence the qualitative difference between the calculation of

the mean first passage time and the mean velocity. In fact, the velocity is computed as

vcm = 1/Nexp

∑Nexp

i L/ti, where ti is the escape time in the i-th realization.

As visible in Fig. 4, the exit times distribution changes in shape by changing the

mean driving frequency ν. For high values of ν, the time distribution is very narrow

around its mean value τ . The corresponding probability distribution function for the

velocity is also a narrow function. Decreasing the value of ν, the distributions are more

asymmetric and the width increases. The maximum of the time distribution moves

toward lower values of time, but the asymmetry changes and higher and higher values

of translocation times are involved. That’s why in that region the mean first passage

time τ increases, although the time of the P (t)’s maximum decreases. The distribution

of the velocity change as well; but because of the increased width of the time distribution,

the mean value of the velocity in that region does not follow the relation vmed = 1/τ

and increases with respect to the high frequency limit, in opposite direction as the one

expected from the time behavior. The reason of this effect is that in the average, the

smaller times have a higher weight in the inverse 1/ti than bigger ones. Thus the mean

velocity increases up to a maximum. Decreasing ν in the low frequency region, the

average of the times continues rising up, because the distribution involves higher and

higher times. The velocity, however, now decreases since the very high times escapes do

not contribute importantly to the mean velocity.

In a first approach the translocation velocity in the high frequency limit is given by

vl =
FM

2

nmot

N
, (8)

a fraction of monomers given by nmot/N experience a force FM/2. Then, the

corresponding translocation time is 2τon (remind that τon is the escape time if the

motor is always working). On the contrary, in the low frequency limit one half of the

realizations give a very long escape time (and velocity goes to zero) and another half

give τon. Thus for low frequencies we obtain the same value of the velocity that for high

frequencies.

However, we can see in Fig. 3 that the low frequency limit of the mean velocity

does not satisfy the relationship just derived, being lower than the high frequency value

vl. This happens because the force exerted on the polymer is affected by the number of

monomers inside the motor which, as shown in the inset of the figure, also depends on ν.

We will see below a confirmation of the given relation by using a strong elastic constant

between the monomers, which guarantees a constant number of monomers inside the

motor nevertheless the dynamical conditions are (see Fig. 7).
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From Eq. (4) it is easy to derive the following equation for the mean velocity

v =
1

N

1

Nexp

Nexp
∑

i=1

〈ηi(t)〉T =
FM

N

1

Nexp

Nexp
∑

i=1

non
mot,i(ν)t

on
i

ti
, (9)

where, for each experiment i, non
mot,i(ν) is the average number of particles inside the motor

when the motor is on, toni is the total motor working time, and ti is the translocation

time of each realization.

At high frequency, toni = 1

2
ti. However, decreasing the frequency for most of the

cases, toni > 1

2
ti, during the translocation the motor spends more time activated that

deactivated since most translocations happen during the activation stage of the motor.

Thus both, the translocation time and the mean velocity increase‡. This behavior

changes when 1/ν ∼ τon. Then toni remains constant in Eq. (9), ti increases when ν

decreases and the velocity also decreases towards the expected vl value moderate by the

mean number of monomers in the motor in the low frequency limit. This explains the

presence of the maximum in the velocity.

A rough estimation of nmot is given by the fixed value nmot = 5.5, corresponding

to the distribution of monomer inside the motor in the case that they maintain the

same relative distance, equal to the rest, over all the dynamics. This condition will be

completely satisfied for high values of the elastic constant k (rigid chain limit), when

nmot becomes independent on ν. As we will see below, both the high and low frequency

limits for the mean velocity take in that case the same value (see the inset of Fig. 7)

vl,theor =
0.2 · 5.5

2 · 12
= 0.04583,

which is slightly higher than the limit value vl shown in the inset of Fig. 2 because

nmot(k = 1) < 5.5.

3.3. Stall Force

The stall force Fstall is the force that we need to apply against the motor in order to

stop the polymer translocation. It is a measure of the strength of the motor and, in this

model, it depends on the frequency of the driving.

Figure 5. A force pull is applied at the first monomer to measure the motor stall

force.

‡ This is not the case at low values of k, where the strong change in nmot with the frequency dominates

the overall behavior and suppress the velocity maximum as shown in the inset of Fig. 7 for k = 0.1.
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A set of simulations have been performed by applying a pull force Fp (see Fig. 5)

on the left extremum of the chain, in opposite direction to the motor driving force. The

initial condition for the chain has been fixed with the polymer center of mass in the

center of the motor. Then, the velocity of the center of mass is measured waiting for

the exit on the left or on the right of the motor region. That way, the force for which

the mean velocity is zero gives Fstall.

Fig. 6 shows the stall force as a function of the frequency. As shown in the lower

inset, for a given frequency the mean velocity decreases linearly with Fp. The upper

inset, shows that for pull forces of the order of the stall force the velocity presents a

minimum, contrary to the behavior at Fp = 0 (Fig. 3). Then the stall force, which

presents a similar trend, shows a clear minimum in the same frequency region.
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Figure 6. Stall force as a function of the frequency ν of the driving. The upper

inset shows the mean velocity as a function of ν for the three pull force values

Fp = 0.447, 0.454, 0.465. The bottom inset shows the linear behavior of the mean

velocity as a function of the pull force for the three frequency values ν = 0.032, 0.02, 0.1.

The other parameters are the same of Fig. 2.

As in the oscillating case [11], the scale variation of the stall force is small (around

7.5%), and an experimental verification of its behavior with the mean frequency the

minimum could be not immediately simple to perform.

3.4. Elastic constant dependence

Finally, we investigate the dependence of translocation time and velocity on the elastic

constant k of the polymer. A magnitude that strongly depends on k is the mean number

of monomer inside the motor during the pushing cycle, nmot. This number modules the

velocity as it is show in Eq (9). Results are plotted in Fig. 7, where the translocation

time and velocity (in the inset) are presented for different value of k. We can see that

notable differences (especially visible in the mean velocity plot) are evident by changing

the value of k. For the case k = 0.1 the velocity looses the maximum, which is always
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Figure 7. Translocation time and mean velocity (in the inset) of the polymer chain

for different values of the elastic constant k.

present for the higher values of k. As expected, a clear saturating behavior of the whole

curve is evident by increasing k when the chain behaves like a rigid bar. As announced

before in the text, in this limit the mean velocity in the cases of both high and low

switching frequency gives the expected value vl,theor given above. This limit is already

fulfilled for k = 5.

4. Conclusions

The interest in the introduction of simple models is that they can capture the more

relevant features of different processes. In that way, they can result to be very useful

for a coarse-grain description of different systems.

The model described here studies the translocation process of a polymer driven by

a simple motor which exerts a dichotomous force. We analyze the dependence of the

translocation time with the mean frequency of the driving field, and find an analytical

expression for the low frequency regime. In spite of the monotonic behavior of the

translocation time, the velocity presents a clear maximum at a resonant value of the

mean frequency. We argue that this maximum comes from the optimization of the ”on

states” duration of the driving forces with the corresponding translocation time. The

detection of this maximum, (also seen in the periodic case) could be tackled with the

recent single molecule experimental techniques.

The stall force able to stop the polymer translocation against the motor has been

also evaluated, finding in our calculations results very close to the oscillating driving,

previously studied. The stall force show a very clear minimum at a resonant mean

frequency of the driving.

The model can have application in artificial nanotechnological devices driven by

dichotomously fluctuating fields, as well as biological pore membrane with intrinsic

noise.
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