
Execution of a Dual-Object (Pushing) Action with
Semantic Event Chains

Eren Erdal Aksoy1, Babette Dellen1,2, Minija Tamosiunaite1 and Florentin Wörgötter1

1Bernstein Center for Computational Neuroscience
University of Göttingen

Friedrich-Hund Platz 1, D-37077
Email: [eaksoye,minija,worgott]@physik3.gwdg.de

2Institut de Robòtica i Informàtica Industrial (CSIC-UPC),
Llorens i Artigas 4-6, 08028 Barcelona, Spain

Email: bdellen@iri.upc.edu

Abstract—Execution of a manipulation after learning from
demonstration many times requires intricate planning and con-
trol systems or some form of manual guidance for a robot.
Here we present a framework for manipulation execution based
on the so called “Semantic Event Chain” which is an abstract
description of relations between the objects in the scene. It
captures the change of those relations during a manipulation and
thereby provides the decisive temporal anchor points by which a
manipulation is critically defined. Using semantic event chains a
model of a manipulation can be learned. We will show that it is
possible to add the required control parameters (the spatial anchor
points) to this model, which can then be executed by a robot in a
fully autonomous way. The process of learning and execution of
semantic event chains is explained using a box pushing example.

I. INTRODUCTION

If one wants to build robots which participate in everyday
human life, learning from demonstration is perhaps the most
practical paradigm. Although learning from demonstration has
much advanced in recent years [1], [2], manipulation learning
from demonstration has not yet come to its conclusion as
here one has to bring together a sequence of demonstrated
movements and task knowledge [3]. In our previous works
[4], [5] we have introduced the so-called “Semantic Event
Chain” (SEC) which is a compact and generic encoding
scheme for manipulations. We have shown that the SECs can
be used to allow an agent by observation to classify different
manipulations and to categorize the manipulated objects based
on their roles exhibited in the manipulation. Furthermore, we
have demonstrated that an agent can learn an archetypical
SEC model in an unsupervised way by watching about 10
demonstrations. The main advantage of this framework is that
SECs link the signal domain (observed image sequences) to a
symbolic rule-like domain encoding a manipulation in a highly
invariant way, where – for a given manipulation – objects,
poses, perspectives and trajectories can be interchanged to a
very large degree. Thus, SECs provide one possible, quite
efficient way to perform manipulation recognition and to learn
a manipulation model.

SECs are essentially a symbolic representation encoding the
manipulation by a temporal sequence of rules. Manipulations

appear now in an abstract form, stripped from all pose and
trajectory information and this makes it initially impossible “to
invert the process” using a SEC for executing a manipulation.
Thus, in the current paper we address the question how to
actually do this and perform a manipulation starting from a
SEC. Clearly, this requires that in the process of learning a
manipulation model (learning the SEC) additional information
must be stored, for example the start and endpoint of move-
ment trajectories. But, because the SEC provides a temporal
sequence of rules, we have well defined temporal anchor points
when we have to store the additionally required trajectory
information. Furthermore, as will be shown below, SECs also
provide us with exact instructions, which spatial coordinates
(spatial anchor points) are relevant for defining a movement.

The goal is to arrive at a fairly generic instruction set which
allows “bringing two objects in close contact”. Hence, to
perform a basic dual-object action. Pushing two objects against
each other but also pick one object up and placing it in contact
to a second object fall into this category. To do this we will
provide at the end a macro where we define an instruction
set (D1-D8) which produces the basic movement segments
for the execution. It is important to note that this macro will
be applicable for all dual-object actions using the semantic
event chains to structure and define the different execution
primitives.

The structure of the paper is as follows. In Section II we
discuss related works. In Section III, we briefly summarize our
own prior work on how to learn a SEC from observation. Here
we address the (new) problem, how to store information which
is additionally required for execution. Next, in section IV, we
describe how to actually execute a manipulation starting from
a SEC showing simulation results. In Section V, the results are
discussed and directions for future research are given. Finally,
the work will be concluded in Section VI.

II. RELATED WORK

In our previous works [4], [5] we have shown that SECs
can both, classify manipulations and categorize manipulated
objects in a model free way, needing prior representations
neither for objects nor for actions. In [6] the authors built

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36071518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. Block diagram of the whole framework.

Fig. 2. Pushing action. (a) Original images from a movie recorded during the
action. (b) Corresponding depth map from a range finder. (c) Corresponding
HSV color based segmented images with extracted 3D scene graphs (See steps
(1-2) in Fig. 1). Note that each object is represented by a unique segment
label (e.g. 1, 2, 3, and 4 that represent table, red box, green box, and robot
arm, respectively). Graph nodes represent the segments’ centers and graph
edges encode whether or not two segments touch each other in 3D. In red are
indicated Touching relations between segments. The bottom part of the figure
shows a magnified view of frames 5 from above.

a kernel based vectorial representation of event chains, which
makes SECs more compatible with machine learning tech-
niques. However, they have not addressed object categoriza-
tion, learning and execution issues at all. Different from that,
in the current work we will focus on execution of a learned
pushing action by using SECs.

In the literature many works focus more on the (mechani-
cal) aspects of controllability and planning of stable pushing
actions [7], [8]. Such aspects are not in the core of our paper.

In [9] the authors showed how an agent can learn simple
pushing actions on a toy object and then execute them as goal-
directed behaviors. During the training phase, time evolution
of the initial hand position and the direction of object displace-
ment at the moment of contact were continuously recorded.
As will be shown below, this is to some degree similar to
our approach. In each trial the robot learns to map from
initial hand position to the direction of object movement.
However, the robot had only four possible initial positions
which restricts the flexibility of manipulations in the execution

phase of the learned maps. The high number of required trials
(approximately 70) is another unrealistic drawback of this
work.

In a different study [10] the problem of learning a general
pushing rule has been addressed. The rule represents the
relationship between the point and angle of push on the
object’s boundary and the observed object motion right after
the pushing action. In the learning case the robot experimented
with different pushing actions on different objects at different
positions. The normalized retinal images of the experimental
data served as input to a neural network to predict the object
velocity in all directions. However, the input images had to be
down-sampled to 20x15 pixels which causes much information
loss. Moreover, in the testing case the robot has to drive an
optimization process, the computational complexity of which
is relatively high.

In [11] the authors described an on-line learning method
for pushing an object to a desired (image) position. The
system used past pushing operations to estimate future pushing
actions. The main handicap of their approach is that the object
is connected to the robot with a rotational point contact.

III. METHODS

In the current study, we perform execution of a pushing
action by means of SECs. For this purpose we used the Webots
software that simulates a 6 DOF Neuronics Katana robot
arm. The experiment consists of two phases: Learning and
execution (Fig. 1). In the first phase we perform manipulation
demonstration. For this we already use the robot simulation
and program it by hard-coding to push a red box to a green
box on a table until they touch each other and then the robot
is going to a home position. We could have used human
demonstration instead, like in our older papers, but this is not
of any relevance. The only thing needed is that demonstration
is repeated using different setups.

Note, sophisticated object recognition is not part of this
work. This is a difficult additional problem for which there
are no generic solutions. In limited scenarios, such as those
commonly used in state of the art robotics experiments, one
could resort to conventional model-based object recognition
methods. This step is simplified in our study and we get object

Fig. 3. Semantic event chain representation. (a) Original “Key Frames”. (b)
Corresponding depth maps. (c) Corresponding HSV color based segmented
images with extracted main graphs (See step 3 in Fig. 1). (d) Corresponding
semantic event chain (See step 4 in Fig. 1), which is a sequence-table, where
each entry encodes the spatial relations between each segment pair ρi,j at each
main graph. T means that segments touch (denoted by red edges), N means
that there is no edge between two segments, and absence of a previously
existing segment yields A.

identities (boxes, robot arm) by a unique color code, as more
complex object recognition does not add to the relevant aspects
of this study.

We also do not require that the red and green box should
touch each other in some exact configuration. As a conse-
quence, relative pose information can be neglected. However,
it is also possible to store different touching types (i.e. pose
information) between boxes in addition at the exact touching
moment which is provided by the SEC. But, for the purpose
of demonstrating the process of macronizing execution from
a SEC it is sufficient to focus on the “ballistic push”.

From these demonstrations a SEC-model is then learned.
During learning also additional decisive information, for ex-
ample relative coordinate frames and information about motion
start and endpoints, is recorded. In the second phase (execu-
tion), we use the SEC and the additional information to let the
robot execute a similar pushing action regardless of the initial
state of the table.

A. Segmentation and SEC-generation (Steps 1-4)

Fig. 2 and Fig. 3 show a processing example of a manip-
ulation resulting in its semantic event chain representation.
We first extract all frames from the manipulation movie
(Fig. 2 (a)) with corresponding depth maps from a range
finder (Fig. 2 (b)). Frames are then segmented by a simple
HSV color based segmentation algorithm, which allows for
consistent marker-less tracking of each object (Fig. 2 (c)).
Note that each object is represented by a unique segment label
(e.g. 1, 2, 3, and 4). Once segments are calculated we drive
a simple color based object recognition algorithm to replace
those unique labels with object names (e.g. table, red box,
green box, and tip of robot arm instead of 1, 2, 3, and 4,
respectively). After this step the agent knows which segment
corresponds to which object. The scene is then represented
by undirected and un-weighted graphs (Fig. 2 (c)). Nodes

represent object center points and edges between nodes exist
whenever two objects touch each other in 3D. Note, during
a manipulation, graphs can change by continuous distortions
(lengthening or shortening of edges) or, more importantly,
through discontinuous changes (nodes or edges can appear
or disappear). This happens when objects touch (or un-touch)
each other. Such a discontinuous change represents, thus, a
natural breaking point: All graphs before are topologically
identical and so are those after the breaking point. Hence,
we can apply an exact graph-matching method [12] at each
breaking point and extract the corresponding topological main
graphs. The sequence of these main graphs represents all
structural changes (manipulation primitives) in the scene. The
movie frames that hold such changes are called “Key Frames”.
Fig. 3 (a-c) shows the “Key Frames” with corresponding depth
map, segments, and main graphs for the action in Fig. 2.
This type of graph representation is then encoded by the
semantic event chain (Fig. 3 (d)), which is a sequence-table.
Hence continuous time is now replaced by time-chunks where
the same main graph persists until in the next chunk a new
one appears. Each row in a SEC represents the temporally
changing relations between one pair of objects in the scene,
for example the first row in (Fig. 3 (d)) shows the relation
between the red box and green box. There are three possible
spatial relations defined between segments: absence (A), no
connection (N), and touching (T). N means that there is no
edge between two segments, corresponding to two spatially
separated segments, and T represents segments that touch each
other1. A special case exists when a segment has disappeared,
which will be denoted by A.

Consequently, the complete image sequence, which has here
roughly 320 frames, is represented by an event chain with
a size of only 3 × 7. Note that several spatial relations, for
example between green box and robot arm (ρ3,4), are not
included in this SEC since they do not contain any N-T or
T-N transitions, which are decisive for a manipulation. Thus,
we can always ignore such rows in the semantic event chain
since they do not describe any manipulation relevant event.

These aspects are represented by steps (1-4) in Fig. 1,
showing the block diagram of the complete algorithm.

B. Defining Temporal Anchor Points by Learning the SEC
Model (Steps 5,6)

For learning we record the same pushing action from 10
different perspectives by changing the camera positions and
extract the corresponding SECs. Fig. 4 shows the same, spe-
cific moment of the manipulation for each of the 10 different
manipulation instances which allows us to get an impression
of the level of perspective difference.

All movies used in this study can be found at http://
www.dpi.physik.uni-goettingen.de/∼eaksoye/movies.html. As
described elsewhere [4], [5], we then calculate the pairwise
percent-similarity between the manipulations. Normally this

1In our older papers [4], [5] we had also used an overlapping relation (O),
which in general, however, is not needed and is omitted here.

Fig. 4. Differences between the same moment of the pushing manipulation
in all 10 different versions.

step is used to classify different manipulations; here we use
it to show that indeed a high mutual similarity exists between
those 10 repetitions (see Fig. 5 for the confusion matrix),
where one outlier with only 54% similarity occurred due to
some error in the image segmentation.

Having assured that the individual SECs represent indeed
the same manipulation we are allowed to perform a weighted
average and extract all re-occurring rows and columns in the
ten SECs. The resulting SEC is shown in Fig. 6. Weights
ω represent the normalized occurrence frequency of a given
row or column and are sometimes less than 1.0 due to the
situation that not all rows and columns are present all the
time in the individual SECs. This is also visible by comparing
model (Fig. 6) with the single SEC in Fig. 3. Thus, the
model represents the archetype-SEC for this particular pushing
action.

Details of all those steps (Fig. 1) can be found in our
previous works [4], [5]. At this stage it is important to note
that the start points of each temporal chunk, given by the
time moments of the different columns in the model-SEC,
represent temporal anchor points (Key Frames of the movie
sequence). The SECs, thus, solve a difficult chunking problem
in a natural way: By these anchor points the different motor
primitives needed for a manipulation are defined. Furthermore,
these moments are also decisive for defining the spatial anchor
points at the objects, needed to define and actually execute an
action.

C. Defining Spatial Anchor Points

The temporal anchors tell us “what happened when?”, but
they do not yet answer the question “how did it happen?”. In
the most general case, we would also have to know, (1) which
objects are moved, (2) how the final spatial configuration (rel-
ative poses) of the objects looks like, and how the movement
trajectories are shaped requiring (3) start- and endpoints and
(4) trajectory shapes.

We will in the following section show that an analysis at
the temporal anchor points, hence of the Key Movie Frames,
suffices to extract components 1-3: 1) objects involved, 2)
required poses, and 3) movement start and end-points, which
define motion segments. Only when wanting information about
(4) the complete movement trajectory we need to analyze also
movie frames between the key frames.

Fig. 5. Similarity values between 10 different versions of the pushing action.

Fig. 6. The learned SEC model for the pushing action with correspond-
ing normalized row (ωr

i) and column (ωc
i) weight values. Boxes indicate

important transitions during this manipulation.

To keep the algorithm general we assume that only one
prime mover exists (usually the robot arm), bimanual manip-
ulations need a different treatment. As the robot arm can only
do “one thing at a time” we can in general state that for all
possible manipulations the manipulation is started when the
robot arm produces the first N-T (non-touching to touching)
transition in the SEC and that it ends when the arm produces
a T-N transition. Thus, we first have to find the prime mover
by analyzing the image segments. Furthermore, it is evident
that all other existing N-T transitions are decisive for the
manipulation. Hence, we need to analyze those – one after
the other – too. Somewhat more unusual, we will also make
use of the fact that continuous contact of prime mover with
another object effectively makes the other object a secondary
mover allowing us to use vector addition in task space for
defining the complete motion path. For example, as long as the
robot arm remains in contact with the red object (unchanging
T relation), we can neglect the robot arm and just consider
the newly resulting spatial relations of red object with other

Fig. 7. Start (S1, S2) and end (E1, E2, E3) point distribution as provided by the training dataset. Starred points are the average locations. Robot manipulator
travels along the path given by vectors V1, V2, V3. The coordinate origin is at the center of the red object. The motion vector for pushing is depicted by the
color-changing vector that connects red with green object. Distance ∆ is defines as |E2 − S2| and vector V2 has length ∆.

objects (here the green object) as spatial anchors2. Note, this
reflects also the aspect of a robot using a tool. As long as the
machine holds the tool, the robot’s body is essentially extended
and the tool defines now the end-effector of the machine [13].

Analyzing the Demonstration Examples: Let us first ana-
lyze the 10 demonstration pushes to see how the movement
segments actually looked like. By D1-D8 we denote in the fol-
lowing those constraints which are used to actually define the
movement segments for execution. As we do not need poses
(ballistic push!), we did not implement any pose estimation
steps.

To find the prime mover, we take the first N-T transition
(N2,2 − T2,3) in the model-SEC (Fig. 6). Here we use con-
ventional row,column indices just for making it easier to find
the entries in the SEC. Now we subtract the image segment
configuration at key frame at N2,2 from that at T2,3, leading
to a difference image only at the robot-arm image segment as
the red box has not yet moved.

D1:Thus, we obtain as prime mover the “robot arm seg-
ment”.

Then we consider the actual start points of the movement
(red points in Fig. 7), which are widely distributed. The
average is given by the starred red point.

D2: Hence there are essentially no constraints on the
starting point S1 of the complete sequence.

Next, we record at key frame at T2,3 the coordinates of the
red object at the touching point (see green points in Fig. 7).

D3: This defines the endpoint E1 for this specific motion
segment V1.

2There might be some complicated manipulation actions where the arm
(or hand) touches (or picks up) a second object before releasing the first.
In this case, the argument about secondary mover would not hold. But such
manipulations are uncommon and even for a human quite difficult. Hence,
we do not consider them.

We need to make sure that execution can cope with all kinds
of different spatial configurations of robot arm and object.
This requires defining a coordinate system which allows for
such a generalization. To this end we use as the coordinate
origin the segment center of the first touched object. This
definition holds true for all conceivable basic single- or dual-
object manipulation actions as relations between objects are
decisive for the manipulation(s). Hence, we can always fix the
origin on the first one touched and define coordinates relative
to this3, where we use any generic cartesian coordinate system
just keeping it fixed for the remainder of the process.

D4: Thus, the center of the first touched object defines the
coordinate origin.

The second found N-T transition concerns the red and the
green object (N1,3−T1,4). As there is no change between the
relation of robot arm and red object (relation remains T2,4)
we have indeed found a “secondary” mover (the red box) and
a second touched object (the green box).

The segment center of the green object (the second touched
object) defines together with the coordinate origin (center of
red object) the so-called dual object connection vector (short:
connection vector). Also this definition holds for all dual-
object manipulations where a first object is supposed to make
contact with a second object. In all these cases the first object
must travel along a path (vector) that connects it to the second
one. Clearly, in many dual-object manipulations additional
difficult pose-constraints may arise, but the general connection
vector will remain the same.

D5: Thus, the connection vector is spanned between the

3Most basic, uni-manual manipulations are performed either at one object,
leading to some configuration change at the object, or at two objects, where the
first touched object is combined with the second one. Other manipulations,
where more objects are directly involved are very rare (e.g. grasping two
objects keeping both in the hand and combining them with a third one) or
they can be considered as a chain of single- or dual-object manipulations.

Fig. 8. Start and end points as given by demonstration (A), and as calculated
for execution (B).

centers of the first and second touched object. Movement
segment V2 should follow the direction of this vector.

Now we need to define the path length. So far the definitions
do not require any prior knowledge about the actual action to
be performed. They hold for pushing as well as, for example,
for pick-and-place actions. The fact that we want to perform a
pushing action only comes in now: Similar to above, we record
for key frame at T1,4 the coordinates of the red and green
objects at their touching point. They are shown back-projected
onto the start frame in Fig. 7 (pink and blue). One can see
that for a push, start and endpoints E1, S2, E2 of the motion
segments are roughly aligned with the connection vector (see
Fig. 8 A and Fig. 7).

D6: Points E1, S2, E2 can be computed from the 3D-
coordinates representing the intersection of the connection
vector with the edges of the objects (Fig. 8 B).

D7: From this, we also note that the distance ∆ = |E2 −
S2| defines the length of the second motion segment V2. Its
direction is given by the connection vector.

The core of the manipulation ends at the T2,4 − N2,5

transition of robot arm with red object. The final homing
motion of the robot arm, which follows thereafter, is not
relevant for the manipulation and can be performed in any
possible way. We look at the now following N2,5 − A2,6

transition at the prime mover and plot the end points E3

from A2,6 (black points in Fig. 7) producing a set of actually
observed final endpoints of the robot arm, which are also
widely distributed.

D8:Any endpoint for the motion can be used as long as the
robot arm withdraws from the red object in a collision free
way.

D. Execution (Step 8)

The actual execution now is simple. For this, the model-SEC
is used and every transition is treated like a rule. Constraints
D1-D8 are attached to the transition rules as defined above.

For example the first N-T transition corresponds to a rule
that demands that some movement by the prime mover should
take place such that at the end the robot arm touches the red
box and so on.

Thus, a new visual scene is presented to the system and
segmented as usual. Robot arm, red box, and green box are

recognized by their color or by any other object recognition
algorithm. The model-SEC is split into its rules and the actual
movement sequence is prepared by calculating the movement
segments relative to the target objects. Start point S1 is given
by the momentary location of the robot arm. Again we use
as coordinate origin the center of the red object and the
connection vector points to the center of the green object.
This origin- and vector-definition holds for all dual-object
manipulations. For the specific purpose of pushing, and as
explained above, the respective start and endpoints E1, S2, E2

are now computed from the 3D-coordinates representing the
cross-section of the connection vector with the edges of the
objects (Fig. 8 B). The movement amplitude for the second
N-T transition is in the same way given by ∆ = |E2 − S2|.
We note that the touching point of the second object can be
a bit over-estimated by this procedure if the diagonal of the
object is aligned with the connection vector. In this case we
will get a bit of a “push-second-object-away” when executing
the action. This shows that pose estimation will at some point
have to be added, too. Movement from S1 to E1 is defined
by any collision free trajectory all other motion segments are
straight. The last motion segment is a homing movement to
any desired endpoint (E3).

Without having to explain the details, execution now pro-
ceeds by following the N-T or T-N transitions from the model-
SEC using conventional inverse kinematics for the Katana arm
by vector addition of all motion segments until the sequence
of motion segments has been consumed.

It is important to note the the robot has now immediately
also a means to check whether the outcome of its actions are
correct. After each movement of the arm, the machine needs
to check the resulting relational changes between the image
segments. These should match the changes in the model-SEC
(see [5] for an example).

IV. SIMULATION RESULTS

We let the agent realize the pushing action considering
the learned model-SEC, and the motion segments as defined
above. Fig. 9 (a-c) shows how the robot arm pushes the red
box to the green box even if the object locations are different.
In Fig. 9 (d-e) we used a red sphere and a bigger red box as
pushable objects. In such cases the robot arm can still execute
the manipulation. In Fig. 9 (f) a red cone and one more blue
sphere were used. Finally, the robot arm chose and pushed the
red conic to the bigger green box. All those simulation results,
with corresponding depth, segment, and graph representa-
tions, can be found at http://www.dpi.physik.uni-goettingen.
de/∼eaksoye/movies.html. Finally we performed a self-check
and Figure 10 shows the SEC obtained from the last execution
example in Fig. 9, which is very similar to the model-SEC by
which the robot can accept its own execution as correct. This
is true for all executed examples.

These results show that with such a semantic representation
the agent can learn and imitate a ballistic pushing manipulation
independent of object shapes and positions.

Fig. 9. Execution results. (a-c) Robot arm pushes the red box to the green box even if the object locations are different. (d-e) A red sphere and a bigger red
box are used as pushable objects. (f) A red cone is used as a pushable object and one more blue sphere is added in the scene.

Fig. 10. SEC obtained from execution of the last example in Fig. 9.

V. DISCUSSION

In this paper we have introduced a novel representation for
the execution of manipulations by using the semantic event
chains, which focuses on the spatial relations between objects
in a scene. The representation generates column vectors in
a matrix where every transition between neighboring vectors
can be interpreted as an action rule, which defines which
object relations have changed in the scene. In the first step, the
approach learns from demonstration an archetypal event chain
(model-SEC) consisting only of consistently repeated rows
(spatial relations) and columns. Apart from the demonstration
no other supervision is needed in this step, hence SECs are
learned in a model-free way. In the second step, the learned
rules are enriched by determining the movement segments
by which the manipulation can be executed regardless of the
configuration of the objects in a scene. Execution can then
follow the enriched SEC rules and the robot can test its own
success by checking the SEC, which results from execution,
against the model-SEC.

To our knowledge this is the first approach which uses
a learnt abstract symbolic representation for manipulation
learning, execution, and self-recognition. We are aware of the

fact that the algorithm uses some simplifications such as no
object dynamics and pose estimations. Due to this fact, in some
cases it was observed that the object could not be pushed in
the desired direction, because of wrong object and/or gripper
poses and the frictional restrictions both on the background
and object surface.

It is important to note that this procedure can be macronized
for all dual-object manipulations. In a very abbreviated form
the instructions for such a macro would read:

1) Identify prime mover.
2) Identify first touched object by first

N-T transition and set coordinate origin.
3) Define first motion segment
4) (Extract relative poses between prime

mover and first object, if needed).
5) Identify second touched object and fix

connection vector and coordinate system.
6) Define second motion segment for

second N-T transition relative to this
coordinate system. (For pushing do this
by cross-sectioning with object borders).

7) (Extract relative poses between objects
involved, if needed).

8) Define third motion segment (home).

Such a macro can be enriched by adding pose information
from a pose estimation algorithm where required. This would
be needed for a pick&place manipulation (which is also a dual
object manipulation), where the final resulting relative pose
of the two combined objects is most of the time important.
Aspects of grasping an object (e.g. grasp preparation and
the performing of a grasp) are not considered at all in this

Fig. 11. SEC for the action “cutting a carrot with a knife”.

framework. Grasping is a very difficult technical problem but
for manipulation actions it takes usually just a preparatory role.
We do not wish to downgrade the importance of this role but
the actual outcome of the manipulation is in most cases only
in a secondary way affected by the way an object is grasped.
Clearly, if the grasp is totally unsuitable a pick&place action
will fail. But these considerations must happen before the first
N-T transition in the SEC and are not part of this paper.

Note, the presented approach can also be extended to more
general manipulation tasks, e.g. “cutting a carrot with a knife”.
In such a SEC we would observe more relational changes
compared to the pushing example as the newly cut carrot
pieces have to be also included into the representation. The
SEC for cutting two pieces off the carrot is given in Fig. 11.

For execution purposes we again have to analyze N-T and
T-N transitions, which in given cutting scenario will emerge
only between hand and knife, knife and carrot, and knife and
the two new appearing pieces. Therefore, fourth, sixth, and
seventh rows of the SEC given in Fig. 11 can be ignored for
clarity. In addition to the discussed pushing example, for the
cutting scenario grasping of a knife will be required, where
the SEC will provide the temporal anchor point for extracting
relative pose between hand and knife at the hand-knife N-
T transition. The relative pose between knife and carrot will
be important at the transitions N-T in the relation knife-carrot.
Also movement trajectory information for the cutting (actually,
sawing) movement should be attached to the SEC between the
N-T and T-N transitions in the relation knife-carrot, which will
then be used in execution. This shows that the same anchoring
process can also be performed for other actions. Clearly, this
involves very difficult technical steps of pose estimation and
trajectory shaping.

VI. CONCLUSION

In the current study we have shown how a learnt SEC can
be used to “push one object against another one.” We tried
to make clear that this example generalizes to all dual-object
actions, where for different instantiations different pieces of
information (e.g. addition pose information, etc.) have to be
stored. The anchor points for this information, however, exist
as demonstrated in the current study and the inversion of
an event chain is possible. Work has started to address this
problem for a large ontology of manipulation actions [14].

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 (Specific Programme Cooperation,
Theme 3, Information and Communication Technologies) un-
der grant agreement no. 270273, Xperience and grant agree-
ment no. 269959, IntellAct. B.D. acknowledges support from
the Spanish Ministry for Science and Innovation via a Ramon
y Cajal Fellowship.

REFERENCES

[1] A. Billard, S. Calinon, and F. Guenter, “Discriminative and adaptive
imitation in uni-manual and bi-manual tasks,” Robot. Auton. Syst.,
vol. 54, pp. 370–384, 2006.

[2] T. Asfour, P. Azad, F. Gyarfas, and R. Dillmann, “Imitation learning of
dual-arm manipulation tasks in humanoid robots,” Int. J. Hum. Robot.,
vol. 5, pp. 183–202, 2008.

[3] M. Pardowitz, S. Knoop, R. Dillmann, and R. D. Zollner, “Incremental
learning of tasks from user demonstrations, past experiences, and vocal
comments,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B, vol. 37, no. 2, pp. 322–332, 2007.

[4] E. E. Aksoy, A. Abramov, F. Wörgötter, and B. Dellen, “Categorizing
object-action relations from semantic scene graphs,” in IEEE Interna-
tional Conference on Robotics and Automation, ICRA2010 Alaska, USA,
2010.

[5] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter,
“Learning the semantics of object-action relations by observation,” The
International Journal of Robotics Research (IJRR), Special Issue on
’Semantic Perception for Robots in Indoor Environments’ (In press),
2011.

[6] L. Guoliang, N. Bergström, C. H. Ek, and D. Kragic, “Representing ac-
tions with kernels,” in IEEE/RSJ International Conference on Intelligent
Robots ans Systems (IROS), 2011, (To appear).

[7] K. Lynch and M. Mason, “Stable pushing: Mechanics, controllability,
and planning,” in Algorithmic Foundations of Robotics. Boston, MA:
A. K. Peters, 1995, pp. 239–262.

[8] Q. Li and S. Payandeh, “Manipulation of convex objects via two-
agent point-contact push,” Int. J. Rob. Res., vol. 26, pp. 377–403,
April 2007. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1274664.1274673

[9] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, G. Sandini, and G. S,
“Learning about objects through action - initial steps towards artificial
cognition,” in In Proceedings of the 2003 IEEE International Conference
on Robotics and Automation (ICRA, 2003, pp. 3140–3145.

[10] D. Omrcen, C. B. T. Asfour, A. Ude, and R. Dillmann, “Autonomous
acquisition of pushing actions to support object grasping with a hu-
manoid robot,” in IEEE/RAS International Conference on Humanoid
Robots (Humanoids), Paris, France, 2009.

[11] M. Salganicoff, G. Metta, A. Oddera, and G. Sandini, “A vision-based
learning method for pushing manipulation,” in In AAAI Fall Symposium
Series: Machine Learning in Vision: What Why and, 1993.

[12] M. F. Sumsi, “Theory and algorithms on the median graph. application to
graph-based classification and clustering,” Ph.D. dissertation, Universitat
Autonoma de Barcelona, 2008.

[13] F. Wörgötter, A. Agostini, N. Krüger, N. Shylo, and B. Porr, “Cognitive
agents - a procedural perspective relying on ”predictability” of object-
action complexes (oacs).” Robotics and Autonomous Systems, vol. 57(4),
pp. 420–432, 2009.

[14] F. Wörgötter, E. E. Aksoy, N. Krüger, J. Piater, A. Ude, and M. Tamo-
siunaite, Robotics and Autonomous Systems, (submitted).

