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About 75% of extant sponge species use dissolved silicon (DSi) to build a siliceous skeleton. We show that
silicon (Si) uptake by sublittoral Axinella demosponges follows an enzymatic kinetics. Interestingly,
maximum uptake efficiency occurs at experimental DSi concentrations two orders of magnitude higher
than those in the sponge habitats, being unachievable in coastal waters of modern oceans. Such uptake
performance appears to be rooted in a former condition suitable to operate at the seemingly high DSi values
characterizing the pre-Tertiary (.65 mya) habitats where this sponge lineage diversified. Persistence of
ancestral uptake systems causes sponges to be outcompeted by the more efficient uptake of diatoms at the
low ambient DSi levels characterizing Recent oceans. Yet, we show that sublittoral sponges consume
substantial coastal DSi (0.01–0.90 mmol Si m22 day21) at the expenses of the primary-production circuit.
Neglect of that consumption hampers accurate understanding of Si cycling on continental margins.

S
ilicic acid, a biologically assimilable dissolved form of silicon (DSi), is a key ocean nutrient1–3. It fuels
primary production by enhancing growth of diatoms, which polymerize DSi to elaborate their skeletons of
biogenic silica (BSi). Increased photosynthesis in diatom populations decreases DSi, nitrate, and phosphate

levels in surface waters and facilitates transfer of atmospheric carbon dioxide to the ocean, hence connecting
silicon to carbon, phosphate, and nitrogen cycles4–6. Therefore, there is strong interest in predicting the interplay
between DSi and BSi budgets and many efforts have been made during the last decades to unravel the route of Si
through the oceans. In the current global model describing the Si cycle in the ocean, diatoms are thought to
biologically dominate Si cycling, with other Si-consuming organisms, such sponges, radiolarians, choanoflagel-
lates and silicoflagellates, playing negligible roles2–3,7. Nevertheless, a concatenation of findings relative to the
contribution by siliceous sponges8–13 has alerted us that the notion of a Si cycle exclusively revolving around
diatoms incurs an unrealistic oversimplification that also neglects ocean history.

There have always been suspicions that the contribution of sponges to the marine Si cycle, even if never
quantified in global terms owing to its complexity, could be of some importance4,14. More recent studies evalu-
ating the contribution of sponges on continental-shelf and slope habitats have revealed that Si standing stocks in
sponges may surpass the combined Si stock in living diatoms and ambient DSi of the diverse local systems
investigated8–9,12–13. Moreover, upon death, sponge skeletons are far more refractory to dissolution than diatom
frustules, irrespective of potential differences in skeleton surface area12,15–16. Consequently, benthic populations of
siliceous sponges appear to function as BSi traps on continental margins, retarding recycling of BSi into DSi. A
serious problem limiting our understanding of the magnitude of Si turnover through sponges is the current lack of
data regarding uptake kinetics, with only a single available study to date10.

Fossil records and molecular clocks arguably suggest that sponges were already present in the Precambrian17–19,
but the oldest unequivocal fossil spicules date back to the Lower Cambrian20, about 542 my ago. It means that the
Si-consuming activity by sponges evolved before that of the two others major Si consumers characterizing
modern oceans, namely radiolarians and diatoms. Radiolarians are also quite an old group, with arguable fossils
from as early as the Lower Cambrian21 and the earliest unequivocal fossils dating from the Lower Ordovician,
about 488 my ago22. Compared to sponges and radiolarians, diatoms are newcomers, with controversial remains
reported from Jurassic sediments23 and unequivocal fossils from the Early Cretaceous24, about 140 my ago.
Geochemical modeling25 and analysis of marine chert formations4,26 support the notion that the Precambrian
and Cambrian oceans in which sponges and radiolarians thrived had average DSi concentrations ranging from 1
to 2.2 mM, that is, at least two orders of magnitude higher than the average (10 mM) in the Recent world ocean.
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Likewise, from the Cambrian to the Jurassic, ocean average DSi
concentrations have been estimated not lower than 650 mM4,6,26.
Those paleo-estimates along with an abundant fossil record of highly
silicified spicules and tests27 support that the Si-uptake systems of
sponges and radiolarians operated with notable success in waters
with very high DSi concentrations for about 400 to 500 million years,
until the evolutionary emergence and the subsequent ecological
expansion of diatoms. There is a congruent body of evidence sup-
porting that the expansion of diatoms during the Late Cretaceous
and the Lower Tertiary drastically decreased DSi concentrations in
surface waters, leading to the low values characterizing modern
oceans, which appear to have experienced only minor variations
for the last 60 my4. Such a decrease in DSi availability put a selective
pressure on both sponges11,28 and radiolarians29–31 to evolve skeletons
that required less silica. This process is well illustrated by the extant
shallow-water demosponge Crambe crambe (Family Crambeidae,
Order Poecilosclerida). Long-term exposure of this sponge to DSi
concentrations much higher than those in its natural habitats
induces secretion of not only thicker and larger spicules, but also
additional types that are never produced in wild populations11. Such
a response suggests that the genetic systems controlling Si-uptake
and silicification are up-regulated by threshold DSi concentrations
higher than those naturally available to the sponge. This opens the
intriguing possibility that extant sponge species belonging to lineages
that diversified before the expansion of diatoms may still silicify
through uptake systems originally suitable to deal with the high
DSi concentrations that seemingly characterized pre-Tertiary
oceans. A better knowledge of the performance of these uptake sys-
tems could help us to understand the evolution of nutrient concen-
trations as well as that of the biosilicification process characterizing
modern sponges . Additionally, by improving our knowledge on
sponge Si uptake, we will be able to approach more realistically the
role of these organisms on Si cycling in Recent marine ecosystems.
To these aims, we have investigated Si-uptake kinetics in axinellid
demosponges, members of a lineage with a fossil record thought to
pre-date the Cretaceous-Tertiary boundary, as rhabdostyles and
styles characterizing some axinellid sub-lineages have been reported
from the middle Triassic (245 to 228 my ago)32.

Results
Experimental DSi uptake. Silicon uptake was investigated in indivi-
duals of three Atlantic-Mediterranean demosponges of the genus
Axinella (fam. Axinellidae; order Halichondrida) collected from
sublittoral north-western Mediterranean populations (see SI 1). The
bulk of uptake data was obtained from individuals of A. damicornis, a
species scattered in moderated density on sublittoral rocky walls.
Additional information was obtained from individuals of both
A. verrucosa and A. polypoides, which are rarer, to-be-protected
species. One experiment (Exp. I) examined uptake responses of 10
individuals of A. damicornis and 3 of A. verrucosa to DSi concentra-
tions that were increased, in 48h steps, from field values (1.6 mM) to
10, 20 30, 40, 50, 100, 150, and 200 mM, using sodium hexa-
fluorosilicate (SFS) as DSi source. In response, average Si uptake by
the set of assayed sponges progressively increased with increasing DSi,
significantly fitting a linear regression (Fig. 1; n5 13, r5 0.978, P,

0.001). After the 200 mM DSi step, sponges were transferred back to
the natural concentration (1.6 mM) for a 5-day resting period, then
exposed again to 20, 70, and 100 mM DSi experimental steps for 48h
periods each. Sponges responded to these treatments after resting with
readjustments in uptake rate that mirrored the marked shifts in DSi
availability, showing at each concentration step an average uptake rate
that fell within the 95% prediction interval of the previously calculated
linear regression (Fig. 1). These results indicated that the Si uptake
system of the sponges is able to react quickly and, more importantly,
predictably to rapid, abrupt changes in ambient DSi.

After the 48h step in the 100 mM DSi treatment, sponges were
exposed to 300 mM DSi and, surprisingly, their average uptake rate
decreased (Fig. 2). Furthermore, average uptake rates at subsequent
400 and 600 mM DSi treatments were even lower (Fig. 2). When
sponges were transferred from 600 down to 185 mM DSi, a concen-
tration that had elicited nearly maximum uptake during the first part
of the experiment, they showed no perceptible Si uptake (Fig. 2:
dashed line). Such a physiological inactivity suggested that the
sponges had somehow been damaged during treatments at 300,
400 and/or 600 mM DSi. Although no sponge died either partially
or entirely during those treatments, slow progressive darkening of
the bright yellow-orange skin (ectosome) was noticed, supporting
our concern of potential sponge damage. We suspected that the use
of SFS as DSi source could proof harmful when aiming for high DSi
concentrations. When using SFS to increase DSi concentration by a
factor of 1 in the experimental bottles, fluorine concentration (as
fluoride) was concomitantly increased by a factor of 6. For instance,
in the 300 mM DSi treatment, the sponges were simultaneously
exposed to 1800 mmol L21 fluoride. Such concentration is far higher
than the natural seawater average, estimated around 70 mM33.
Fluoride concentrations considerably above the natural average are
known to favor rapid accumulation of fluorine in many aquatic
organisms, leading to internal concentrations that eventually become
harmful or even lethal34. This also appeared to be the case of the
assayed sponges, the external epithelia of which were sub-lethally
poisoned by fluorine. For this reason, we complemented the initial
experiment with a second one (Exp. II) based on the use of non-toxic
sodium metasilicate (Na2SiO3 5H20) to re-assess sponge uptake, par-
ticularly at high DSi concentrations. For Exp. II, we used 10 newly
collected individuals of A. damicornis, 2 of A. polypoides, and 1 of
A. verrucosa. After 5 days under natural DSi concentration for accli-
mation to laboratory conditions, Exp. II started by exposing the
sponges to 200 mM DSi for 48h, conducting subsequent 48h steps
at 300, 450, 600, and 800 mM.

Figure 1 | Relationship between DSi uptake and DSi availability during
initiation of experiment I. The uptake-rate response by the sponges (mmol

Si per h and ml of sponge) was linearly related to DSi concentration in the

experimental bottles, whenever DSi availability ranged from natural values

(1.6 mM) to 200 mM. Crosses are 3 further treatment steps (20, 70 and

100 mM DSi) conducted as a test after allowing sponges to rest for 5 days at

natural DSi concentration. Note that all 3 test responses fell within the 95%

prediction interval of the previously calculated regression equation.
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Interestingly, the set of new sponges exposed to the 200 mM DSi
treatment during Exp. II (Fig. 2) showed an average uptake rate
(0.1160.06 mmol Si h21 ml21 sponge) nearly identical to that mea-
sured for the previous set of individuals during the "healthy" 200 mM
DSi step of Exp. I (0.1260.09 mmol Si h21 ml21), confirming repeat-
ability in the sponge responses. Experiment II also revealed that
subsequent increases in DSi to 300, 600, and 800 mM neither stimu-
lated nor decreased uptake rates, relative to the 200 mM DSi treat-
ment (Fig. 2). We even run a final 72 h step at 850mM DSi to examine
the possibility that the uptake system could need several days to get
adapted to those high concentrations. Nevertheless, such an
extended treatment—resulting in a total of five days of exposure to
800–850 mM DSi— did not stimulate any significant shift in uptake
relative to values achieved at 200 mM DSi. Therefore, the results
strongly suggest that the uptake system becomes saturated some-
where around 200 mM DSi.

When the uptake responses of each sponge in the various DSi
concentrations in both experiments were compared, considerable
inter-individual variability was found (Fig. 3 a–b). It is worth noting
that the few individuals of A. verrucosa and A. polypoides that we
assayed for exploratory purposes did not show uptake rates substan-
tially different from the bulk of individuals of A. damicornis, suggest-
ing that interspecific differences in uptake kinetics, if any, should be
minimal (Fig. 3 a–b). Interindividual variability showed a consistent
pattern, as individuals taking up faster at a given DSi concentration
were also good performers at most other concentrations (Fig. 3 a–b).
Maximum uptake rate (average6sd; recorded in both experiments
at 200 mM DSi) was 0.1260.07 mmol Si h21 ml21 (sponges of both
experiments pooled; n5 26), but again it was affected by a large inter-
individual variability, ranging from 0.002 mmol Si h21 ml21 in indi-
vidual 10 to 0.387 in individual 6 of Exp. I.

At least some of the detected inter-individual variability can be
attributed to size differences. Volume of assayed sponges (ranging
from 4 to 37 ml) appeared to have a moderate effect on uptake rate,

with smaller individuals (,9 ml) showing slightly higher rates on
average than larger individuals (.9 ml). Such relationship between
size and uptake can be perceived (even if diffuse) on Fig. 3, where
green lines (large sponges) often run above blue lines (smaller
sponges). Likewise, the relationship between saturated uptake rate
(i.e., that at 200 mM DSi) and sponge volume grossly fitted an
inverted, first order polynomial regression (sponges from both
experiments pooled: n5 26, r5 0.600, P5 0.001; Fig. 4), confirming
a subtle negative relationship between both variables. Interestingly,
in nearly all DSi concentrations assayed (Fig. 3a), the highest uptake
rates were achieved by individual 6, which was the second smallest
(4.4 ml) sponge out of the 26 assayed (Fig. 4). In this individual, silica
spicules largely protruded from the epithelium, making a velvety
body surface visible by the naked eye and indicating that the sponge
was involved in a more intense process of skeletal production than
the other individuals.

When average uptake data from the "healthy" phase of Exp. I (i.e.,
DSi treatments ,300mM) and Exp. II were pooled together and
analyzed by non-linear regression, the equation better fitting the data
was a hyperbolic function (Fig. 5; n5 16, r50.948 , P, 0.001), similar
to that of a Michaelis-Menten ligand-binding kinetic with one site
saturation. Consequently, DSi uptake (V, mmol Si per hour and per
sponge ml) by Axinella spp. can be regarded as an enzyme-mediated
transport, with a half-saturation constant (Km) of 74.47 mM and a
saturated uptake rate (Vmax) of either 0.13 mmol per hour and sponge
ml or 1.74 mmol h21 g21, if expressed as ash-free dry weight (AFDW).

Estimates of field DSi demands. Conservative field surveys along
100 km of the relatively sponge-poor and oligotrophic
Mediterranean rocky sublittoral where Axinella spp. grew (see
Methods and Supplementary Information: Section 1) revealed that
siliceous sponges average 0.3460.52 L m22 (n5 100 quadrats) and
ambient DSi 0.7360.44 mM (n5 240 water samples over a year
cycle). At that ambient DSi concentration, sponge uptake rate is

Figure 2 | Summary of sponge uptake responses during experiments I and II. The solid line indicates the course of average uptake rates (mmol Si per h

and ml of sponge 6 s.d.) by "healthy" (i.e., non-fluorine poisoned) sponge sets in response to experimental DSi concentrations during the first

phase of the hexafluorosilicate-based experiment I (yellow circles) and through the metasilicate-based experiment II (blue triangles). Crosses are

3 treatment steps (20, 70 and 100 mM DSi) conducted as a test after allowing sponges to rest for 5 days at natural DSi concentration prior to initiating the

second phase of experiment I. The dashed line indicates average (6 s.d.) uptake rates during the second phase of experiment I (i.e., DSi .200 mM), in

which sponges became poisoned by high concentrations of fluorine released from sodium hexafluorosilicate.

www.nature.com/scientificreports
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predicted to average 1.3160.79 3 1023 mmol Si per h and sponge ml
(according to equation in Fig. 2). It means that the sponge fauna per
m2 of rocky habitat at this Mediterranean coast use yearly about
3.965.9 mmol DSi. Such consumption represents yearly about
21.4632.7% of the average DSi available in a 30m overlying
sublittoral water column and about 10.7616.3% of that in a 50 deep
water column. Similarly, we have conservatively estimated (see

Methods) on 21 km2 of a Mesoamerican continental shelf (Belize)
that the abundance of siliceous sponges averages 2.6614.3 L per m2

of bottom13. Mean yearly DSi concentration in the 25m-deep water
column of such continental-shelf system is about 3.660.6 mM13, being
the sponge communities predicted to consume DSi at an average rate
of about 14.560.35 31023 mmol per h and sponge ml (according to
the equation in Fig. 2). It means that yearly sponge uptake is about
33261826 mmol DSi m22, and that it would virtually deplete that
shallow Belizean shelf of DSi once every 98.9683.7 days, if there is
no DSi replenishment. The estimated Si consumption rate by the poor
(in volume) sponge fauna of the oligotrophic Mediterranean
sublittoral is about 0.0160.01 mmol Si m22 day21, while that of the

Figure 4 | Relationship between sponge size and uptake. A weak negative

relationship between uptake rate (mmol Si h21 ml21) at 200 mM DSi and

sponge size (ml) was detected, grossly fitting an inverted, first order,

polynomial regression. The highest uptake rate corresponded to individual

6 of Exp. I.

Figure 5 | DSi uptake model for Axinella. Michaelis-Menten kinetics

function modeling the relationship between Axinella spp. average uptake

rate and ambient DSi in the experimental bottles, obtained after pooling

data of experiments I and II.

Figure 3 | Summary of individual uptake data. Some variability was noticed in the individual uptake responses during the "healthy" phase of experiment

I (a) and through experiment II (b). Green and blue lines indicate small (, 9ml) and large (. 9 ml) individuals of Axinella damicornis, respectively.

Red lines indicate individuals of Axinella verrucosa or Axinella polypoides. Note that the sponge individuals used for experiments plotted in "a" and "b"

graphs are different.
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richer Caribbean sponge assemblages would be 0.9065.00 mmol Si
m22 day21. Both sponge figures are lower than the demand average
estimated for diatoms in diverse marine systems (Table 1).

Discussion
Our experimental approach revealed that sponges react to ambient
DSi availability with a rapid and predictable response of their uptake
rate. Interestingly, the assayed sponges achieved their highest uptake
rates at concentrations around 200 mM DSi, that is, nutrient values
that are not available to them in shallow waters of modern oceans and
that are more than 100 times the yearly DSi average experienced by
these animals in their natural habitats (see Supplementary
Information: Section 1). Consequently, these sponges are suffering
a severe, chronic limitation by DSi (, 2mM) in their natural habitats.
The idea that low DSi concentration in Recent shallow waters might
limit sponges was originally disregarded35–37, as their Si-uptake sys-
tem was expected to have adapted to the post-Cretaceous decline in
the availability of this nutrient. However, a strong DSi limitation
appears to be the rule in the few sponges investigated so far in this
regard, i.e., H. panicea10, C. crambe11, and Axinella spp. (current
results).

It is difficult to decide what accounts for the Axinella spp.’s ability
to deal with high levels of ambient DSi. This ability could be the mere
ancestral condition of the Si uptake system. Alternatively, such an
ability could have resulted from evolvement of the original uptake
system in order to maximize exploitation of the elevated DSi con-
centrations characterizing Jurassic and Cretaceous shallow waters,
an adaption that would not have reverted during the subsequent
post-Cretaceous DSi crisis and that makes these sponges little effi-
cient Si users at the low ambient DSi concentrations characterizing
modern oceans. If this is the case, investigation of DSi uptake kinetics
in selected extant sponge lineages could be a potential tool to infer
DSi concentrations in the particular habitats of past oceans where
their ancestors thrived. There have also been recent proposals to use
Si isotope analysis of fossil sponge spicules38–39 to infer past DSi
concentrations. A combination of both techniques could provide
an interesting biological congruence test for hypotheses on DSi con-
centration in ancient marine environments, which are often formu-
lated from strictly geological approaches.

In Axinella spp., DSi uptake appears to be an enzyme-meditated
process. Uptake in the only other sponge investigated to date in terms
of kinetics – i.e., Halichondria panicea (family Halichondriidae,
order Halichondrida) – also conformed to a Michaelis-Menten
model, with saturation around 100 mM DSi10, which is nearly half
the value in Axinella spp. Surprisingly, saturated uptake rate for
H. panicea was 19.33 mmol Si h21 g21 AFDW, an order of magnitude

higher than that measured for Axinella spp. Such differences in Vmax

could be explained by both species having very different affinity by
DSi. An alternative explanation is that H. panicea uptake measure-
ments were not taken from complete individuals but from explants,
i.e., regenerating pieces that had been obtained for the experiment by
fragmenting larger sponges10. It is well known that sponges regen-
erate rapidly large portions of their body (including production of
new silica skeleton), accomplishing regeneration at rates that are up
to 2,900 times the undisturbed growth rates40. It is also worth noting
that the experimental DSi concentrations to which H. panicea was
exposed, which ranged from 1 to 200 mM10, were based on SFS, a
compound that proved toxic for Axinella spp when used at concen-
trations equal or higher than 300 mM.

Although the available evidence is still scarce, it congruently sup-
ports that sponge uptake conforms to an enzymatic kinetics.
Nevertheless, it remains little understood what mechanism is
responsible for binding and transporting Si from seawater to the
cytoplasm of the silica-secreting cells located in the internal
mesenchyme (mesohyl) of the sponge body. To date the only
enzymes properly identified in connection with sponge silicification
belong to the silicatein family41–42, but neither this compound nor the
process of direct polymerization of DSi into BSi inside the sclerocyte
cells are having a demonstrated role in the internalization of DSi
from ambient seawater. Suggestions have been made that a
sodium-bicarbonate co-transporting system could somehow be
involved in taking up silicic acid from seawater43, which would be
consistent with the detected enzymatic kinetics. Although active DSi
uptake in diatoms has been shown to be supplemented by some
passive diffusion across the cell membrane44, which is in direct con-
tact with the ambient water, a similar diffusion process is unlikely in
sponges. Silica secreting cells of sponges (sclerocytes) occur typically
at the inner mesohyl regions of the sponge body, isolated from ambi-
ent seawater by epithelial cell layers and dense intercellular deposits
of collagen and other macromolecules. Furthermore, the possibility
that DSi can passively diffuse into the sponges has been discarded
experimentally by demonstrating that DSi uptake rates are abated
following sponge starvation, what indicates that most DSi internali-
zation results from an active process that requires energy45. Likewise,
when the epithelial cells of the Axinella individuals were sub-lethally
poisoned with fluorine during our experiment I, rates of DSi uptake
decreased inversely to DSi concentrations, corroborating that DSi
transport is not a passive diffusion process (Fig. 2). The finding that
smaller Axinella individuals incorporate DSi at higher rates than
larger individuals (Fig. 4) also supports active DSi uptake, because
the opposite pattern should occur under a passive diffusion model,
particularly in these branching sponges (Fig. S1), in which surface
area increases almost exponentially with increasing individual
volume. Further evidence of non-diffusive uptake is provided by
investigations on the relationship between the Si isotopic composi-
tion of ambient DSi and that of sponge spicules. Sponges are known
to fractionate Si isotopes during their BSi production process46, with
D30Si (i.e., d30Sisponge- d30Siseawater) fractionation increasing (i.e.,
lower values) with increasing ambient DSi concentration38–39. More
importantly, Si isotopic data in sponges show good agreement with a
Michaelis-Menten function for Si uptake, what again supports
uptake and d30Si fractionation being biologically -rather than diffu-
sively- controled38. Likewise, isotopic analyses strongly suggest that
DSi transport from the ambient water to the specific silicificying sites
within the sponge body is well differentiated from the process of DSi
polymerizing as BSi around the organic template, because the frac-
tionation factor is constant during uptake transport, but it appears to
decrease in value (i.e., more intense fractionation) with increasing
DSi concentration during strictly the polymerization process38

Ample between-individual variability in DSi uptake rate has been
found in our study and it was also reported in H. panicea10,45. The
physiological reasons behind such an inter-individual variability

Table 1 | Average rates of Si use by communities of planktonic
diatoms and sublittoral sponge communities in various marine sys-
tems. Diatom Si demands were originally measured as BSi produc-
tion rates1–3, while sponge demands have been derived from Si
uptake rates.

HABITAT/ SYSTEM

Si DEMAND

(mmol Si m22 day21)

Planktonic diatoms
Coastal upwelling 90
Other coastal conditions 15
Southern ocean 15
Deep ocean 2.3
World ocean average 1.6 – 2.1
Sublittoral sponges
Outer shelf of Belize 0.90
Baltic sublittoral bottoms 0.44
Mediterranean rocky bottoms 0.01
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remain unclear. Nevertheless, the level of variability detected in
laboratory studies is consistent with many field studies reporting
that neighboring conspecific sponges subjected to nearly identical
environmental conditions in terms of food supply, oxygen, DSi, and
others, exhibit puzzling differences in body growth rates—and impli-
citly in BSi production to skeletonize the new soft tissues—over
months or years40,47–48.

Si uptake by diatoms shows some fundamental differences with
that of sponges. Planktonic diatoms arguably follow a Michelis-
Menten kinetics, saturating at 10 mM DSi on average49 and with a
half saturation constant that ranges from 0.3 to 549–51, except for some
Antarctic species that have shown a Km from 12 to 22 mM in labor-
atory cultures52. Beside saturating at relatively low concentrations,
planktonic diatoms are able to achieve high, diffusion-mediated
uptake rates with non-saturable kinetics during short periods, what
allows them to transiently store much DSi if high ambient concen-
trations are sporadically encountered44. Diatom uptake uses an elec-
trogenic, sodium/silicic acid symporter53, being also able to transport
the ionized form SiO (OH)3

254. Consequently, Recent planktonic
diatoms are finely tuned to work with maximum efficiency under
relatively low DSi values. This tuning probably resulted from their
genetic uptake system being more "plastic" than that characterizing
sponges, so that it was able to evolve in an Early Tertiary ocean where
ambient DSi concentrations were progressively decreasing owing to
their own ecological expansion. The available evidence to date indi-
cates that the genetic systems controlling biosilicificaton in sponges,
diatoms, and Si-using plants are completely unrelated, correspond-
ing to independent evolutionary acquisitions44,55–56. Interestingly, by
maintaining ambient DSi values low in the long run, planktonic
diatoms favor proliferation of Si users with similar uptake kinetics
(i.e., more planktonic diatoms), while limiting any other Si user
characterized by a higher saturation constant, hence becoming
strong competitors for sponges, radiolarians, and probably benthic
diatoms (see Supplementary Information: Section 3).

Despite chronic DSi limitation of siliceous sponges owing to
diatom overcompetence, measured uptake rates (which ranged from
V1mM5 0.001 to V200mM5 0.098 mmol Si per h and sponge mL)
suggest that DSi consumption by sponges on coastal systems is of
some relevance. We conservatively estimated average Si consump-
tion rate by the poor (in volume) sponge fauna of the oligotrophic
Mediterranean sublittoral in about 0.0160.01 mmol Si m22 day21,
while that of the richer Caribbean sponge assemblages is about
0.9065.00 mmol Si m22 day21 (Table 1). Note that these calculations
are not maxima, but conservative averages. They come from esti-
mates of sponge biomass with enforced mechanisms to prevent over-
estimation (see Methods) and are based on highly-replicated field
measurements scattered over large continental shelf areas, realist-
ically including large extensions of habitats that are not favorable
to sponges, as indicated by the large standard deviation values assoc-
iated to mean sponge volumes per bottom area unit (i.e., 0.3460.52
and 2.6614.3 L m22 for the investigated Mediterranean and
Mesoamerican continental shelf, respectively). Similarly, by using
available uptake data for the seasonal Baltic populations of the
sponge H. panicea10 and the mean biomass (20 ml m22) in the less
favorable sponge habitat57, a conservative average consumption of
0.44 mmol Si m22 day21 during summer months may be arrived at.
These Si consumption rates by sponges (Table 1) are somewhat
smaller than the average BSi production by diatoms in the global
ocean, estimated at 1.6–2.1 mmol Si m22 day21 1–2.

At present, it is impossible to estimate with any accuracy Si con-
sumption by sponges in the world oceans—as will be the case for
decades to come owing to the extremely variable distribution of
sponge biomass on the continental margins at depths that prohibit
extensive measurements of individual Si contents per bottom area.
However, if the Si consumption rates herein estimated for sponges
per unit area of bottom at the Mediterranean, the Baltic, and the

Caribbean sea are extrapolated over the entire continental shelf of
the earth (22 3 106 Km2), a first, very tentative estimate of the global
Si consumption by sponges could be suggested, falling somewhere
between 8.6 3 1010 and 7.3 3 1012 mol Si year21. This figure would
still be about two to four orders of magnitude smaller than the 2.0 to
2.8 3 1014 mol Si year21 estimated for diatoms1. By incorporating
into the calculations the large sponge populations that are being
discovered at bathyal depths by the advent of ROVs and manned
oceanographic submersibles12,58–62, a generous -but unlikely to be
ever globally quantified- increase of the yearly sponge Si demands
herein estimated for only continental shelves might be arrived at (see
Supplementary Information: Section 4 and Figs. S5).

Nevertheless, the ecological importance of sponge DSi demands
does not derive only from the magnitude of its uptake rate, but also
from the fact that it largely concentrates on continental margins,
where substantial amounts of coastal DSi are progressively accumu-
lated in long-lived (often centennial) sponges under the form of BSi
skeletal pieces that are extremely reluctant to dissolution following
sponge death12–13,15,63. Therefore, even when sponge DSi uptake rates
are clearly lower on average that those of diatoms, populations of
siliceous sponges may still operate as relevant biological traps, slow-
ing down Si cycling and favoring Si sinking on continental margins.
To improve the current knowledge of Si fluxes on continental mar-
gins is one of the most urgent needs in order to refine modeling of
both the Si cycle and its connections to the Carbon cycle64.
Unfortunately, most on-going research efforts towards these aims
are guided by the extended notion attributing the preponderance of
DSi removal on continental margins to formation and burial of BSi
primarily by diatoms and radiolarians, disregarding the contribution
by the large sponge populations characterizing most continental
margins (see also Figs. S5). For instance, after the recent realization
that early estimates of BSi accumulation in the Southern Ocean and
Antarctic deep sea were about 35% overestimated65, the widely
accepted model of steady-state balance for the marine Si cycle
became unbalanced, because a Si sink equivalent to approximately
one quarter of the global BSi burial is now missing. Because in order
to bring back the cycle into its assumed balance an additional BSi sink
should be identified, it has been proposed that BSi accumulation by
diatoms on continental margins should account for most of the
"missing" BSi burial64–65. Admittedly, reliable direct estimates of
diatom Si retention on continental margins are still lacking64. Our
current data on sponge DSi demands, along with those already avail-
able on BSi standing stocks in sponge populations12–13, suggest that
much of the "missing" BSi could correspond to that in the sponge
populations of continental margins. Therefore, if we are to refine
realistically our current understanding of continental margins as
transitory and permanent Si sinks, the role played by sponges has
to be incorporated into regional budget calculations. Additionally,
the fact that all DSi used by sponges on continental shelves is at
the expense of the stock available for diatoms deserves careful con-
sideration, as the DSi slowly –but progressively– accumulated into
sponge BSi on continental shelves (and slopes) is taken away from the
primary-production circuit for a long time, given the longevity of
most sponges and the low levels of dissolution characterizing sponge
BSi. By disregarding this sponge DSi-sequestering process while con-
sidering exclusively diatom-related DSi and BSi stocks, we are cur-
rently overestimating the real levels of connection between Si and C
cycles on continental shelves.

Methods
Uptake laboratory experiments. Silicon uptake was investigated in the laboratory
using erect, branching demosponges belonging to the genus Axinella (Family
Axinellidae, Order Halichondrida; see Fig. S1). Sponges for the uptake experiment
were collected from the rocky sublittoral bottoms of the Spanish Mediterranean,
between the sites 41u 42’ 21" N –2u 48’ 17" E and 41u 42’ 25" N –2u 54’ 51" E, at depths
ranging from 12 to 25 m.

There are three major reasons why species of Axinella were selected as a laboratory
model: 1) Unlike encrusting species, they can be detached from natural bottoms with
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minor damage and their volume can easily be calculated with minor error owing to
tissue retraction; 2) Unlike most other sponges, they cope well with laboratory
manipulation and can even be pulled out of the water periodically for a few seconds
with no further negative consequence; 3) They have an intermediate skeleton/
organic-tissue weight ratio (54.9611.5 %) suggesting that they may appropriately
represent a standard shallow-water sponge regarding Si use; and, 4) There is fossil
evidence indicating that the axinellid lineage was already diversified prior to the
Cretaceous-Tertiary boundary32. Indeed, the ancestry of the axinellid lineage
can be traced back -although no without controversy- to the Middle Ordovician
(471-461 my ago)66–67.

By using hammer and chisel, sponges were collected along with a small piece of the
rocky substratum on which they naturally grew (Fig. S3), preventing tissue damage at
their attachment zone. For 5 to 15 days, sponges acclimated to laboratory conditions
in a 40L food-grade polyethylene tank filled with unfiltered seawater that was re-
circulated and oxygenated using a pump, with water replacement every 3 days. Not
one sponge became sick or died during acclimating periods. Immediately prior to the
onset of the Si-uptake experiments, sponges were placed for a few minutes into a 3L
container filled with filtered seawater, a precautionary transitory step taken to min-
imizing the chance of diatom contamination when transferring specimens to their
experimental bottles. Uptake experiments were conducted using 13 individuals in
each run. Each sponge was placed into a translucent polycarbonate bottle filled with
3L of filtered seawater (Figs. S3–S4). We used 3mm-pore polycarbonate membranes,
so that bacteria (which serve as food) passed through the filter, but diatoms were
excluded. Further microscopic inspection of water subsamples revealed that diatom
contamination occurred at no step of the experiments. Each experimental bottle also
contained a Micra pump, the outlet of which lengthened into a 10 cm upright tube
ending 2 cm below the water surface (Fig. S4). Pumps automatically activated every
hour for 30 minutes, re-circulating seawater to prevent gradients of food, excretes,
and dissolved nutrients within bottles. Additionally, the outflow through the outlet
tube broke the air-water interface, oxygenating the seawater. As controls, we used an
additional set of 13 bottles (N513). They were filled with 3L of the same filtered
seawater as the sponge-treatment bottles and included a pump but no sponge. During
the experiment, bottles were exposed to a 1658 h light-dark cycle and a thermal
regime ranging from 20.0 to 21.7 uC within a cold room.

The experiments consisted of a stepwise process. At each step, sponge-containing
bottles (n513) and control bottles (n513) were filled with experimental seawater at
an initially known DSi concentration and changes in concentration assessed after 48h
(Supplementary Information: Section 2). Because at least 40h are needed to built a 200
mm-long sponge spicule68, we opted for 48h monitoring periods to ensure that the
taken DSi was already being used by the sponges to built their spicules, which range
from about 300 to 1200 mm in length. Initial DSi concentration in each bottle was
determined by collecting a 20 ml water sample once the pump mixed the water for
10 minutes. Final DSi concentrations after 48h were determined by collecting
another 20ml sample while the pump was operating. All water samples were analyzed
immediately upon collection following a standardized colorimetric method69 run
through an Integral Futura Autoanalyzer (Alliance Instruments). Briefly, DSi con-
centrations (mM) were estimated as silicic acid converted to molybdate-reactive sil-
icate and the colorimetric reactions compared with that of a calibration equation
obtained from a 100062 mg/l Silicon standard solution (Merck 1.2310.0500). For
DSi concentrations higher than 40mM DSi, water samples were processed through the
appropriated dilution steps (determination precision about 4 to 6%); otherwise,
samples were processed undiluted (determination precision about 2%). Individual
uptake at each concentration step was estimated by subtracting the final DSi con-
centration from the initial one in each bottle and correcting by the average concen-
tration change in the set of control bottles, caused typically by Si adsorption to
container walls at high DSi concentrations (Supplementary Information: Section 2).

Using the above-described laboratory set-up, we performed two consecutive, but
complementary, experimental runs. In experiment I, we assessed uptake by 13
sponges, which were exposed to DSi concentrations ranging from natural values
(1.6 mM) to 600 mM DSi, using sodium hexafluorosilicate (Na2SiF6) as the source of
silicic acid. In experiment II, 13 different sponges were exposed to DSi concentrations
ranging from 200 to 850 mM DSi, using sodium metasilicate (Na2SiO3 5H20) as the
source of silicic acid. In both experiments, seawater Si concentrations were increased
by adding 500 ml of a previously prepared DSi stock solution to each of two 50L acid-
cleaned, food-grade polyethylene barrels provided with a tap to further delivering Si-
enriched seawater to the experimental 3L bottles. Both the DSi stock solution and the
100 L of Si-enriched seawater were prepared 12 hours before starting each treatment
step, a period required to take the large volume of seawater to the selected temperature
(21–21. uC) and allow the 500 ml of stock solution to homogeneously diffuse into the
49.5L of filtered seawater by pump mixing. While DSi stock solutions prepared from
sodium hexafluorosilicate did not need any special treatment once the powder had
slowly dissolved in distill water, sodium metasilicate solutions required further buf-
fering with 37% HCl to adjust their initial extremely basic pH (. 10) to values typical
for seawater in the natural sponge habitat (pH5 8.1–8.3).

After each experiment, we measured the size of the tested individuals by deter-
mining their displacement volume (ml). Subsequently, we weighed the sponges wet
(g), dried them at 60u to constant dry weight (g), and finally combusted them at 540uC
for 10 hours and weighed the ashes to estimate ash-free dry weight (AFDW). Hourly
uptake rates measured for each sponge individual were then normalized by volume
(ml) or AFDW weight (g). Finally, experimental uptake data over the assayed range of
DSi concentrations were fitted using linear and a non-linear regression approaches.

Field data on DSi availability and sponge abundance. To estimate the annual
average of DSi available to the Mediterranean sublittoral sponges in the study area, we
sampled seawater from 1 cm above the rocky substrata where sponges grew using
syringes during scuba dives; we also sampled the open water column above the
continental shelf (about 0.5 km off the coastline) using Niskin bottles (see
Supplementary Information: Section 1). These nutrient analyses (n5 240 water
samples) extended over a year cycle. To estimate field DSi demands by sponges, we
measured average volume of siliceous sponges per m2 of rocky bottom, using scuba
and 50 3 50 cm random quadrats (n5 100) scattered along 100 Km of
Mediterranean coastline (see Supplementary Information: Section 1), following the
methodology detailed elsewhere12–13. We finally extrapolated DSi average uptake rates
determined for Axinella spp. in the laboratory experiments to infer potential DSi
demand for field sponges. Additionally, we used recent field measurements published
by our team13 on sponge abundance (n5 409, 131m quadrats) and DSi availability
(n5 48 water samples) obtained from 21.7 km2 of Belizean continental shelf
(Caribbean Sea), including reefs, mangroves, seagrass beds, and sandy non-vegetated
bottoms, to comparatively infer the magnitude of the annual DSi demand by the
sponge populations in that ecosystem. It is worth noting that to prevent
overestimation, we applied a one-fourth reduction to volume values calculated for
each individual in both the Mediterranean and the Caribbean field studies.
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