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Introduction

Biogenic Volatile Organic Compounds (BVOCs) are

produced and emitted by many plant species and have a series of

relevant physiological and ecological functions (Peñuelas and Llusià,

2001, 2004). Emission of these compounds has also major

consequences for ambient air quality. In particular, these plant-

generated compounds can react rapidly with anthropogenic and

biogenic trace components of atmosphere (e.g. OH radical, ozone

and NO
3
 radical) and contribute to tropospheric ozone and

photochemical smog formation, thereby significantly curbing the quality

of ambient air (Atkinson, 2000; Chameides et al., 1988; Fehsenfeld

et al., 1992). In addition, BVOCs might play an important role in

altering the climate at regional and global scales (Penuelas and

Llusia, 2003; Kulmala et al., 2004; Tunved et al., 2006). Because of

potentially important role of BVOC in tropospheric air quality and

climate, there is continuous interest in developing BVOC emission

models to quantify plant-generated volatile flux over large areas

(Guenther et al., 1993, 1995, 2006; Niinemets et al., 2002; Martin et

al., 2000; Arneth et al., 2007).

Some monoterpene-emitting species like needle-leaved

conifers all across the world and many odorous species in

Mediterranean macchia have specialized tissues such as resin ducts

or glandular trichomes for storage of produced volatile isoprenoids.

On the contrary, some other strong monoterpene-emitting species

like Mediterranean evergreen oaks such as Quercus ilex L. do not

have specific storage tissues for monoterpenes (Llusia and Penuelas,

2000; Loreto et al., 1996a). These anatomical differences are
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We compared the role of instantaneous temperature and temperature history in the determination of α-pinene

emissions in Mediterranean conifer Pinus halepensis that stores monoterpenes in resin ducts, and in Mediterranean

broad-leaved evergreen Quercus ilex that lacks such specialized storage structures. In both species, α-pinene

emission rates (E) exhibited a significant exponential correlation with leaf temperature and the rates of photosynthetic

electron transport (JCO
2
+O

2
) started to decrease after an optimum at approximately 35oC. However, there was a

higher dependence of E on mean temperature of previous days than on mean temperature of current day for P.

halepensis but not for Q. ilex. JCO
2
+O

2
 showed a maximum relationship to mean temperature of previous 3 and

5 days for P. halepensis and Q. ilex respectively. We conclude that although the best correlation of emission

rates were found for instantaneous foliar temperatures, the effect of accumulated previous temperature conditions

should also be considered in models of monoterpene emission, especially for terpene storing species.
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important as the terpenoid emission from specialized storage is

expected to depend only on the diffusion from the storage pools,

while in the species lacking the storage pools, the emission is mainly

driven by the immediate rate of synthesis (Fall, 1999; Kesselmeier

and Staudt, 1999; Niinemets et al., 2004).

The rate of terpene emission (E) strongly depends on

environmental conditions, in particular, on instantaneous leaf

temperature (Penuelas and Llusia, 2001, 2003; Atkinson 2000;

Kesselmeier and Staudt, 1999; Ozkan, 2009; Tingey et al., 1980).

Typically, the emission rates depend exponentially on temperature,

and such an exponential dependence of emissions on instantaneous

temperature has been implemented in all terpene emission models.

Currently, plant terpene emissions are mostly predicted using

Guenther et al. algorithm (G93 model (1993). For species with

specialized storage structures, this model simulates the emission

rates using a species-specific basal emission rate (E
0
) and scaling

the values of E
0
 to different temperatures according to an exponential

relationship (the temperature correction factor). For monoterpene-

emitting species lacking storage structures, isoprene emission

algorithm (Guenther et al., 1993) that uses additionally light as an

emission driver has been implemented (Bertin et al., 1997; Ciccioli

et al., 1997).

Recently, complementary modeling approaches have been

developed that use plant physiological properties to predict emissions

(Martin et al., 2000; Niinemets et al., 1999; Zimmer et al., 2000). For

instance, the rate of monoterpene emission in species lacking

specialized storage structures has been predicted on the basis of

photosynthetic electron transport rate (JCO
2
+O

2
) and monoterpene

synthase activity (Niinemets et al., 2002). Monoterpene synthase

activity provided an estimate of basal emissions analogous to E
0

(fraction of electrons in monoterpene synthesis on the model), while

JCO
2
+O

2
 that depends on instantaneous environmental variables,

temperature and photosynthetic photon flux density, was used to

scale the basal emissions to different temperature and light conditions

(Niinemets et al., 2002). In other physiological models, the emission

were also linked to photosynthetic carbon metabolism in various

ways (Martin et al., 2000; Niinemets et al., 1999; Zimmer et al.,

2000; Bäck et al., 2005). It has been stated that such modeling

approaches allow consideration of stress effects on volatile isoprenoid

emissions (Grote and Niinemets, 2008). For example, stress-

dependent reductions in JCO
2
+O

2
 are suggested to explain the rapid

decline in monoterpene emissions in stressed plants (Niinemets et

al., 2002).

E
o
 values were initially supposed to be constant and represent

the inherent plant capacity for production of a particular volatile

compound (Winer et al., 1992; Seufert et al., 1995; Karlik and Winer,

2001). However, it has become increasingly apparent that the basal

emission rates can change over time (Llusia and Penuelas, 2000;

Kuhn et al., 2004; Gray et al., 2003, 2006; Goldstein et al., 1998),

but the factors controlling such temporal modifications are still poorly

understood. Furthermore, the available emission algorithms have

mainly focused on the influence of instantaneous leaf temperature on

the emission rates and JCO
2
+O

2
. However, many plant physiological

processes are known to strongly acclimate to previous leaf

temperature environment (Yamori et al., 2005; Huve et al., 2006;

Bauerle et al., 2007), and temperature history likely alters terpene

emission rates as well. Already Schurmann (1993) suggested that in

some plants, the monoterpene emission may involve distinct long-

term kinetic mechanisms. It has been further suggested that isoprene

basal emission rate is altered by leaf thermal history (Sharkey et al.,

1999; Fuentes and Wang, 1999; Geron et al., 2000; Lehning et al.,

2001; Petron et al., 2001), but the way plant emissions adjust to leaf

temperature environment is not fully understood. While it has been

suggested that leaves respond to average temperature of previous

days (Sharkey et al., 1999; Fuentes and Wang, 1999; Geron et al.,

2000; Lehning et al., 2001; Petron et al., 2001), it is also not clear

over what time period ambient leaf temperatures alter leaf emissions.

Given that the internal pool sizes are much larger in species with

specialized storage structures, it is expected that the emissions respond

to longer historical temperature signal in species with specialized

storage structures than in species lacking such storage structures in

the foliage.

The aim of the present study was to evaluate the relative

importance of instantaneous temperature and temperature history in

determining α-pinene emissions in monoterpene-storing

Mediterranean evergreen conifer Pinus halepensis Mill. and in

Mediterranean evergreen broad-leaved species Quercus ilex L.

that lacks specialized monoterpene storage tissues. Emissions were

monitored during the entire season simultaneously with leaf

environmental conditions and the correlations of E and JCO
2
+O

2 
with

instantaneous temperatures and with average temperature over

different number of days prior to measurements were determined to

assess the strength of instantaneous and historical temperature

signals.

Materials and Methods

Plant material: Full experimental details and the protocol for

α-pinene emission measurements are provided in Blanch et al.

(2007). In short: the experiment was conducted in the campus of the

Universitat Autonoma of Barcelona, Catalonia, Spain (41o29’ N, 2o6’

E, elevation 147 m) throughout the summer of 2004. Two-year-old

potted (2 l. pots) seedlings of Pinus halepensis (seedling source:

Apromi breeding ground, Juneda, Lleida, Spain) and Quercus ilex

(seedling source: Forestal Catalana, Breda, Girona, Spain) were

used for the experiments. The plants were grown outside under

typical Mediterranean conditions in an open plastic tunnel. The plants

were watered every two days up to soil field capacity, giving an

equivalent of 1 l. of water per week and pot.

α-Pinene emission rates in Pinus halepensis and Quercus

ilex were measured every 6 days over the growing season.

Instantaneous leaf temperatures and incident quantum flux densities

were measured during the emission measurements, while mean

daily temperatures were obtained from a climatic station in the locality

of the study. The α-pinene emission measurements were conducted

at the leaf-level: one leaf of Q. ilex and one shoot of P. halepensis

2
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were clamped in the cuvette, the emission measurements were

conducted using an ADC gas exchange system: we divided the

output flow tube using a T-system: a part of the flow went into a new

tube, in which we placed a three-bed carbon trap tube, and a pump

at the end, so, the output air from the cuvette was forced to pass

through the carbon tube at a controlled flow (with the pump). In order

to substract the outgoing monoterpenes from the ingoing air stream

and in order to consider the carry-over effect of the cuvette we made

one blank sample every 3 samples: we sampled one cartridge with

the cuvette closed without clamping any shoot or leaf. Moreover, we

waited 10 minutes between each sample with the cuvette opened in

order to get the system ventilated.

Estimation of photosynthetic electron transport rate

(JCO
2
+O

2
): The photosynthetic electron transport rate (JCO

2
+O

2
,
 
µmol

m–2 s–1) needed to achieve a rate of net carbon assimilation A (µmol

m–2 s–1) was calculated as (Brooks and Farquhar, 1985):

( )( )
*

i

*

id

OCO

84

22 Γ−

Γ++
=+

C

CRA
J

where R
d 
is rate of mitochondrial respiration continuing in the light

(µmol m–2 s–1), Γ* (µmol mol-1) is the hypothetical CO
2
 compensation

point in the absence of R
d
 (Laisk; 1977) and C

i
 is the intercellular

CO
2
 concentration (µmol mol-1).

R
d
 is estimated from the proportionality between A and R

d

observed at 25oC (R
d
=0.15 A). Γ* at different leaf temperatures was

estimated according to Lambers et al. (1998), using the following

equation:

Γ* = Γ*
25 

+ 0.0188(T-25) + 0.0036(T-25)2

where Γ*
25
 is constant (3.7 Pa).

Measurement of average temperature of previous days:

Average temperature of days preceding the measurements T
n
 (n =

1-15) was calculated as:

n

T

T

nd

d

∑
=

== 1

d

n

where n is the number of days preceding the measurements and T
d

is the average daily air temperature corresponding to day d.

Statistical analyses: In both species, correlations between E and

JCO
2
+O

2
 and averages of temperature were calculated with different

number of days prior to measurements,
 
starting with the mean

temperature of the day of sampling (T
1
) and ending with the mean

temperature of the 15 days preceding the measurements (T
15
).

The effects of leaf temperature and mean temperature of

previous days (T
n
, Eq. 4) on the instantaneous α-pinene emission

rates (E) were analyzed by exponential regressions. The effects of

leaf temperature and mean temperature of previous days (T
n
,

Eq. 4) on the rate of photosynthetic electron transport (JCO
2
+O

2
)

were analyzed by quadratic regressions (adjust to a 2nd grade

polynomial).

All the statistical analyses were performed with R 2.7.2 for

Windows (R Foundation for Statistical Computing, Vienna, Austria).

Results and Discussion

The emission rates of α-pinene in P. halepensis range from

1.3 to 19.8 µ g-1 h-1 and those of Q. ilex between 0.11 and 14.7

µg-1 h-1. E exhibited a significant positive exponential correlation with

leaf temperature during the measurements in both species, P.

hapelensis (r = 0.64, p<0.001) and Q. ilex (r = 0.57, p<0.001)

(Fig. 1). JCO
2
+O

2
 showed a significant quadratic correlation with leaf

temperature in P. halepensis (r = 0.59, p<0.01) but not in Q. ilex

(Fig. 2).

The storing species P. halepensis showed an increase of

the correlation coefficient of α-pinene emission rates with mean

temperature of previous days when considering increasing number

of days, reaching the highest correlation coefficient with the mean

temperature of the previous 13 days (T
13
, Fig. 3).
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Fig. 1: Relationships between α-pinene emission rates (E) and leaf

temperature in evergreen conifer Pinus halepensis and evergreen broad-

leaved tree Quercus ilex. Each datapoint corresponds to a separate leaf.
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The non-storing species Q. ilex did not show any

improvement of the correlation coefficient with previous days for E

(Fig. 3). On the contrary, the best correlation was found with the

mean temperature of the day of sampling (T
1
, Fig. 3, r = 0.27, p<0.1).

The correlation coefficient of JCO
2
+O

2 
with mean temperature

of previous days increased from the first to the following previous

days reaching a maximum at the mean temperature of the three

previous days for P. halepensis (r = 0.47, p < 0.05) and at the mean

temperature of the five previous days for Q. ilex (Fig. 4, r = 0.39,

p<0.1).

Previous studies have generally reported lower total

monoterpene emission rates for P. halepensis.  Alessio et al. (2004)

found emissions of α-pinene of 0.4 µg g-1 [d.m.] h-1, Ormeno et al.

(2007) found emissions between 0.5 and 1.2 µg g-1 h-1, and

Penuelas and Llusià (1999) found emissions of 1.5 µg g-1 [d.m.] h-1

However, our data was collected in a Mediterranean ecosystem

during the high temperatures of the Mediterranean summer in a

range between 30 and 44oC. High precaution was taken while

conducting the measurements to avoid clamping damage of the

needles.

Regarding the α-pinene emission rates of Q. ilex, our data

(0.11 to 14.7 µg g-1 h-1) agrees with previous studies. Alessio et al.

(2004) found emissions of 1.7 µg g-1 [d.m.] h-1, Street et al. (1997)

found emissions between 2.5 and 3 µg g-1 [d.m.] h-1, Owen et al.

(Owen et al., 1997) reported α-pinene emissions rates between 0.5

and 20 µg g-1 [d.m.] hr-1 and Llusia and Penuelas (2000) found

maximum α-pinene emissions of 5 µg g-1 [d.m.] hr-1.

Both species, P. halepensis and Q. ilex showed high

correlation coefficients (r) of α-pinene emission rates (E) with instant

leaf temperature (0.64 and 0.59 respectively, Fig. 1), as it was

expected. It has been widely reported that monoterpene emission

rates depend exponentially on instantaneous temperatures (Atkinson

2000; Penuelas and Llusia, 2003; Kesselmeier and Staudt, 1999;

Tingey et al., 1980).

The Arrenhius-type curve describing the dependence of

JCO
2
+O

2 
on instant temperatures in both species (Fig. 2) indicates that

the measurements were done around the maximum JCO
2
+O

2 
of the

plant, which supports the high values of α-pinene emissions. Because

of that, there were also some measurements that were conducted

above the maximum and therefore those plants could have suffered

photoinhibition due to the high temperatures.

Terpene emissions in a terpene-storing species such as P.

halepensis are expected to rely mainly on the extensive storage

pools, and are thus, believed to be less sensitive to rapid modifications

in the rate of terpene synthesis, for instance, after changes in light

(Guenther et al., 1993; Tingey et al., 1991). The increase of the

correlation coefficients of E from T
1
 to T

13
 (Fig. 3) indicates that the

pools of monoterpenes depend more on the historical temperature of

previous days than of the current day.

The emissions of α-pinene in non-storing species such as

Q. ilex are on the contrary directly dependent on the rate of terpene

synthesis (Fall, 1999), that can be altered by temperature, light and

water availability (Loreto et al., 1996b; Staudt and Seufert, 1995;

Kesselmeier et al., 1996). Consequently, the emissions of non-storing

species are more dependent on the temperature and light conditions

in the day of sampling than on the mean temperature of previous

days (Fig. 3). These weaker correlation of E with historical

temperature may reflect the importance of the initial rapid change in

the emission potentials as outlined by Hanson and Sharkey (2001).

In both species P. halepensis and Q. ilex there was evidence

of previous days adjustment in JCO
2
+O

2
 that was completed after

three and five days respectively (Fig. 3). Given that JCO
2
+O

2
 may

partly control terpene emission rate through NADPH and ATP

availability for terpene synthesis (Niinemets et al., 2002), such long-

term changes may reflect coupled adjustment in JCO
2
+O

2
, for instance

through anatomical adjustments such as modifications in chloroplast

to total leaf surface area ratio (Oguchi et al., 2003; 2005) or

modifications in nitrogen investment in the components of

photosynthetic machinery and in enzymes controlling terpene

synthesis (e.g. Hikosaka et al., 1999). It has been observed that

Blanch et al.
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acclimation in the heat-stability of photosynthetic electron transport

takes between 5-7 days in deciduous trees (Huve et al., 2006).

The best correlations of emission rates were found for

instantaneous foliar temperatures, partly explaining the success of

simple empirical models based on temperature response such as

the Guenther model (Guenther et al., 1993), but overall, these data

also underscore the importance of previous leaf temperature

environment in determining monoterpene emission rate, in particular

in species with extensive foliar monoterpene reservoirs. There have

been attempts to include such adaptation responses in the volatile

isoprenoid emission models (Guenther et al., 2000), but species-

specific variation in the previous environmental signal and

environmental signals of various time length have, to our knowledge,

not been considered. The effect of accumulated previous day

conditions should thus be considered and implemented in modeling

of volatile isoprenoid emissions.
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