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Potential adverse effects of cyclosporin A on kidneys after spinal
cord injury

N Lonjon1,2,7, G Boniface1,2,7, R Feifel3, R Endres3, M Gimenez y Ribotta4, A Privat1 and FE Perrin1,5,6

1INSERM U583, Institute for Neurosciences of Montpellier, Pathophysiology and Therapy of Sensory and Motor Deficits, Saint Eloi
Hospital, Montpellier Cedex 05, France; 2Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier Cedex 5, France;
3Novartis Institutes for BioMedical Research, Metabolism and Pharmacokinetics, Novartis Pharma AG, Basel, Switzerland; 4Instituto
de Neurociencias, CSICFUniversidad Miguel Hernandez, San Juan de Alicante, Spain; 5IKERBASQUE Basque Foundation for
Science, Integrative Biology of Neurodegeneration Laboratory, Department of Neuroscience, University of the Basque Country UPV/
EHU, Bilbao, Spain and 6Biotechnology and Biotherapy, Centre de Recherche de l’Institut du Cerveau et de la Moelle Epiniere, Centre
National de la Recherche Scientifique (CNRS) UMR 7225, Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS
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Study design: Cell transplantation strategies are gaining increasing interest for spinal cord injury (SCI)
with the objective of promoting spinal cord repair. To avoid allogenic graft rejection, an adequate
immune suppression is required, and one of the most potent and commonly used immunosuppressives
is cyclosporin A (CsA). In SCI, permanent sensory motor loss is combined with modifications of drug
absorption, distribution and elimination.
Objectives: The objectives of this study were to thoroughly explore histological and functional
outcomes of CsA treatment in a rat model of spinal cord compression.
Setting: Experiments were carried out at the Institute for Neurosciences of Montpellier (France), the
Integrative Biology of Neurodegeneration Laboratory (Spain) and in the Novartis Institutes for
BioMedical Research (Switzerland) for CsA blood concentration determination.
Methods: We first evaluated histological outcomes of CsA treatment on kidneys and spinal cord after
SCI. We then investigated whether SCI modified CsA blood concentration. Finally, using behavioral
analysis, we assessed the potential CsA impact on functional recovery.
Results: When spinal-cord-injured rats were treated with a CsA dose of 10 mg kg�1 per day, we
observed deleterious effects on kidneys, associated with modifications of CsA blood concentration.
Adding an antibiotic treatment reduced kidney alteration without modifying CsA blood concentration.
Finally, we showed that CsA treatment per se modified neither functional recovery nor lesion extension.
Conclusion: This study pinpoints the absolute requirement of careful CsA monitoring in the clinical
setting for patients with SCI to minimize potential unexpected effects and avoid therapeutic failure.
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Introduction

Cell transplantation approaches are promising potential

therapies for central nervous system disorders. This is

particularly true for spinal cord injury (SCI) that leads to

permanent sensory motor loss with no current therapy. In

SCI, cell grafting, among other objectives such as replace-

ment of lost cells, may be used as a tool to provide trophic

support to preserve undamaged tissues and promote spinal

cord repair (for review see Barnabe-Heider and Frisen1).

To avoid allogenic graft rejection, an immune suppression is

required and one of the most commonly used immune

suppressants is cyclosporin A (CsA). Besides complete or

partial deprivation of sensory and motor functions, SCI

induces several systemic and metabolic alterations such as

reduction of hepatic microvascular blood flow.2 Owing to

modification in drug absorption, distribution and elimina-

tion, SCI alters CsA bioavailability in a complex time- and

route-administration-dependent manner.3 At an acute stage

after spinal cord injury, CsA availability is either increased or

decreased when delivered intraperitonealy or orally. At a

chronic stage, no difference is observed whatever the

administration route.4 Increased availability of CsA may
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result from an impairment in drug clearance,2,4 whereas

decreased bioavailability may be because of modification in

gastrointestinal tract absorption.4

Besides its effects in prevention of allograft rejection, CsA

shows various adverse side effects such as nephrotoxicity5

and leads to reduction in both renal blood flow and

glomerular filtration rate. Conversely, CsA has been reported

to be neuroprotective following SCI.6 Rats subjected to spinal

compression7 or contusion8 present a better motor outcome

when treated with CsA. However, in other studies, absence of

CsA neuroprotection at both behavioral and morphological

levels was reported after SCI.9–10

In the perspective of possible clinical application of

allogenic cell transplantation after SCI, we investigated

outcomes of CsA treatment in a well-defined rat model of

spinal cord compression.11

Results

Combined SCI and CsA immunosuppressive therapy induced

severe kidney alterations

Male rats that underwent spinal cord compression and were

treated with CsA presented exacerbated suffering. This was

strikingly different to SCI-only or to uninjured rat (sham)

treated with the same CsA dose. Forensic analysis revealed

major kidney alterations; all ‘SCI-CsA’ animals developed

major hydronephrosis (Figure 1a) and/or ulceration and

necrosis (Figure 1b), whereas all ‘sham’, ‘injured-only’ and

‘CsA-only’ rats presented normal kidneys (Figures 1a and b).

SCI combined with CsA treatment induced prominent

glomerular (Figure 1d) and tubular (Figure 1f) changes with

respect to all other groups (Figures 1c and e). Severe

glomerular hydronephrosis (Figure 1d) associated with

periglomerular fibrosis (arrow, Figure 1d) was observed.

Moreover, tubular necrosis was associated with severe

constriction due to thickening of the tubular wall

(Figure 1f). Morphometric analysis of the median long-

itudinal section revealed dose–response kidney alterations;

70, 50 and 10% of the rats had normal kidneys in the 5, 7.5

and 10 mg kg�1 per day groups, respectively, whereas 0, 40

and 60% of animals presented extremely severe kidney

alterations (scores 2þ3) in the same-dose group (Table 1).

Kidney alterations in the 10 mg kg�1 per day group were

reduced by administration of gentamicin treatment and 75%

of the animals had normal kidneys (Table 1).

CsA blood concentration is modified by SCI

To determine whether deleterious effects of CsA on kidneys

in ‘SCI-CsA’ animals were correlated to a modification in

drug disposition, we carried out whole-blood CsA dosage

analysis. Daily subcutaneous injection of CsA started 2 days

before surgery; on the day of surgery, injection was

administered just after injury and CsA blood concentration

was analyzed 2 and 24 h after injury and concomitant

injection. Four groups of rats were used: rats with or without

(sham) SCI were injected with either NaCl or CsA

(10 mg kg�1) (Table 2A). Sham and SCI rats injected with

NaCl presented the same zero CsA baseline level (Figure 2a).

At 2 h after injection, injured rats had a lower CsA blood

concentration (2.0±0.17 mM) than did sham animals

(2.56±0.21 mM) (Figure 2a). This difference was exacerbated

24 h after injection: injured rats had a CsA blood concentra-

tion of 1.34±0.09 mM and sham animals 1.98±0.19 mM

(Figure 2a). Even if CsA levels decreased over time (2 and

24 h) in sham rats (2.56 and 1.98 mM) and injured animals

(2.0 and 1.34 mM), they did not return to the baseline level

(Figure 2a). In the injured group, 48 h after injection, CsA

blood level almost dropped to baseline (1.98 mM) (Figure 2b).

CsA dose–response analysis in both sham and injured

animals using three CsA concentrations (5, 7.5 and

10 mg kg�1; Table 2B) showed that, in the sham group, CsA

blood concentrations correlated with CsA doses (Figure 2c).

Conversely, SCI rats presented equivalent CsA blood con-

centrations (0.49±0.07 and 0.45±0.08 mM) for the 5 and

7.5 mg kg�1 doses (Figure 2c). At 10 mg kg�1, CsA concentra-

tion was 1.25±0.27 mM. Thus, CsA blood concentration was

lower in SCI animals for a CsA treatment of 7.5 and

10 mg kg�1, at variance with the 5 mg kg�1 dose (Figure 2c).

Combined antibiotic and immunosuppressive therapy reduced

kidney alterations without modifying CsA disposition

To minimize urinary tract infection, we combined treat-

ments with both CsA and gentamicin (2 mg kg�1), and

evaluated the outcomes on kidneys and CsA blood level

(Table 2C). When gentamicin was added, 75% of animals

showed normal kidneys, 16% presented minor alterations

and only 9% presented more severe lesions (Table 1). CsA

disposition was not modified in either group; levels were

similar 24 and 48 h after injection (Figure 2d).

CsA treatment did not modify functional recovery and lesion

extension after SCI

The potential neuroprotective effect of CsA in SCI is under

debate.6–10,12,13 Therefore, we conducted an analysis of

functional locomotor and histopathological outcomes after

SCI using various CsA concentrations and a combined

treatment of CsA and gentamicin. Before injury, and for 7

(dose response) or 12 (combined treatment) days after injury,

we carried out functional tests for motor, sensory and reflex

recovery.11 We did not observe differences among the

Nacl-, 5- and 7.5 mg kg�1-treated groups in any of the tests

(Supplementary Figure). Comparison of combined CsA–

gentamicin treatments with control did not reveal differ-

ences in motor and sensory recovery rates but bladder

recovery was significantly improved (Figure 3). We carried

out a histological analysis (Figure 4) and evaluated the lesion

area on a 2.5-cm spinal cord segment centered on the lesion.

For all time points analyzed (24 h, 1, 2 and 5 weeks), there

was no difference in lesion extension between groups.

At 24 h after SCI, approximately 90% of the tissue was

injured at the epicenter in both NaCl- (88.8±6.5%) and

CsA (91.5±3.1%)-treated groups (data not shown). No CsA

dose difference was detected in the percentage of injured

tissue at the epicenter (90.9±4.9 and 90.5±0.3% for 5 and

7.5 mg kg�1, respectively; data not shown). At 2 weeks after

injury, damaged areas were similar in all groups (87.7±8.5,
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84.3±8.7 and 89.1±6.6 for NaCl, CsA 10 mg kg�1 only and

CsA and gentamicin-treated animals, respectively; data

not shown). At 5 weeks after SCI, both antibiotic-only and

CsA–antibiotic groups presented the same area of damaged

tissue at the epicenter (75.8±12.5 and 80.8±8.1, respec-

tively; Figure 4f). The total lesion extension along the

rostrocaudal axis was similar in all groups for each time

point (Figure 4f).

Discussion

We observed deleterious effects on kidneys when CsA was

subcutaneously administered to spinal-cord-compressed rats.

Nephrotoxicity is a widely described side effect of CsA

treatment,5,14–15 but increased CsA nephrotoxicity has never

been reported in SCI. In our experiments, animals developed

major glomerular hydronephrosis, ulceration and tubular

necrosis that eventually led to death. In parallel, CsA blood

concentration was modified by SCI; not only did injured rats

present a lower CsA blood concentration compared with

Figure 1 Combined SCI and CsA treatment induced severe nephrotoxicity. (a, b) Macroscopic kidney views. (a) Internal and (b) external
sagittal view of kidneys from ‘injured-only’ (left) and ‘SCI-CsA’ rats (right). Kidneys of ‘injured-only’ rats appeared normal, whereas ‘SCI-CsA’
animals presented (a) major hydronephrosis and/or (b) ulceration and necrosis. (c–f) Light microscopic kidney sections (hematoxylin and
eosin; original magnification, �400). (c, e) ‘Injured-only’ animals. (d, f) ‘SCI-CsA’. (c, d) Renal glomeruli were normal in ‘injured-only’ rats (c),
whereas those from ‘SCI-CsA’ rats showed severe hydronephrosis and periglomerular fibrosis (d, arrow). (e, f) Renal proximal tubules were
normal in ‘injured-only’ animals. (e) Severe tubular atrophy and necrosis was observed in the ‘SCI-CsA’ group (f). Note that ‘sham’, ‘injured-
only’ and ‘CsA-only’ rats presented similar normal kidneys. For clarity, only pictures from ‘injured-only’ animals are presented. CsA: 10 mg kg�1.
Scale bar¼50mm.

Table 1 Morphometric quantification of kidney alterations

CsA (mg kg�1 per day) Score
0 (%)

Score
1 (%)

Score
2 (%)

Score
3 (%)

5 70 30 0 0
7.5 50 10 30 10
10 10 30 20 40
10+gentamicin 75 16 9 0

Abbreviation: CsA, cyclosporin A.

Scores: 0, normal kidney; 1, between 5 and 40% of the increased median area

without ulceration or dilatation of the pyelocalyceal cavities; 2, 440 % of the

increased area without ulceration and up to a 25 % increased in pyelocalyceal

cavities; 3, 440 % of the increased area associated with 425 % increase of

pyelocalyceal cavities or with ulceration. Gentamicin (2 mg kg�1 per day).
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sham animals but also, and unlike with sham rats, CsA blood

concentration did not correlate with CsA doses. CsA

pharmakokinetics is modified by SCI.3 in an administra-

tion-route manner.4 We observed a decreased CsA bioavail-

ability, as found when the drug is administered orally;14 this

may likely be because of preferential accumulation in organs,

as CsA-treated mice present a higher CsA concentration peak

in the spleen and in kidneys than in blood.16 Moreover,

CsA accumulates preferentially in organs susceptible to CsA

toxicity (brain, kidneys, liver, thymus and spleen) than in

resistant organs (heart, lungs and muscles).17 Modification of

CsA kinetics induced by SCI could therefore contribute to its

toxicity by means of increased retention and/or accumula-

tion in susceptible organs such as kidneys.

Urological infections are the most reported secondary

effects for SCI patients and immunosuppressive therapies

exacerbate infections. When animals were treated with

gentamicin, 75% of rats presented normal kidneys as

compared with 90% of kidney alterations without antibiotic

treatment. Gentamicin is known for its nephrotoxicity;

however, CsA–gentamicin treatments never enhanced kid-

ney alterations. Thus, kidney alterations most likely resulted

from combined urinary tract infection due to SCI and CsA

treatments; however, control of the infection reduced, if not

abrogated, CsA nephrotoxicity.

Cyclosporin neuroprotection after SCI has been reported

in some studies (for review see Rezzani15) but not in

others.9–10 When CsA is administered after spinal cord

contusion, improved motor function is reported.8 After

spinal cord compression, CsA treatment improves motor

performance but does not increase the extent of spared

tissues.7 Conversely, no improvement in motor perfor-

mance, or in the amount of spared cord tissue, is reported

after spinal cord contusion when CsA is administered before,

during or after injury.9–10 In our model of compression

injury, CsA treatment did not have a neuroprotective effect,

as it did not modify the functional recovery and the lesion

extension. The model and the severity of the lesion certainly

account for some of these discrepancies in the potential

neuroprotective effect of CsA. The strain of animal used, the

Table 2 animal assignments

Surgery Sham Compression

Treatment NaCl CsA (10 mg kg�1) NaCl CsA (10 mg kg�1)

(A) CsA blood concentration is modified by SCI
CsA blood concentration 2 h 2 h 24 h 2 h Surgery 2 h 24 h 48 h
Number of animals 6 6* 6* 6 7# 7# 7# 7
Killing and histology (24 h after SCI) (kidneys and spinal cord) Yes Yes Yes Yes

Surgery Sham Compression

(B) CsA dose response
Treatment: CsA (mg kg�1) 5 7.5 10 5 7.5 10
Number of animals 5 5 5 5 5 5
CsA blood concentration 24 h after the last injection
Behavioral evaluation Daily for 12 days
Killing and histology (kidneys and spinal cord) 2 weeks after surgery

Surgery Compression Compression

Treatment:
CsA (10 mg kg�1)
Gentamicin (2 mg kg�1) NaCl+Gentamicin CsA CsA+Gentamicin CsA+Gentamicin NaCl+Gentamicin

(C) CsA and gentamicin treatments
Number of animals 6 6 6 8 7
CsA blood concentration 24 and 48 h after last injection
Behavioral evaluation Daily for 12 days
Killing and histology (kidneys and spinal cord) 2 weeks after surgery 5 weeks after surgery

Abbreviations: CsA, cyclosporin A; SCI, spinal cord injury.

*and # different time points obtained with same animals.

(A) For CsA blood concentration analysis after SCI, we analyzed 32 animals. 12 animals had undergone a sham surgery (6 rats received NaCl and 6 CsA

(10 mg kg�1)). 13 animals had undergone a compression injury (6 rats received NaCl and 7 CsA (10 mg kg�1)), 7 other animals received CsA (10 mg kg�1) for

blood analysis at 48 h. CsA blood concentration was analyzed at different time points after injection. For histological kidneys and spinal cord analysis animals were

killed 24 h after surgery. (B) For CsA dose response we analyzed 30 rats. 15 animals had undergone a sham surgery and received either different CsA doses (5, 7.5

and 10 mg kg�1; 5 animals per group) or NaCl. 15 animals that had undergone a compression injury were similarly treated (CsA: 5, 7.5 and 10 mg kg�1 or NaCl; 5

animals per group). CsA blood concentration was analyzed 24 h after the last injection. Behavioral evaluation was carried out daily for 12 days. Animals were killed

2 weeks after surgery and histological analysis of kidneys and spinal cord were carried out. (C) For CsA and CsA–gentamicin combined treatments we analyzed 33

rats. They all had undergone spinal cord compression. 13 animals received a combined NaCl and gentamicin treatment, 6 received only CsA and 14 received a

combined CsA and gentamicin treatment. CsA blood concentration was analyzed 24 and 48 h after the last injection. Behavioral evaluation was carried out daily for

12 days. 18 and 15 animals were killed 2 and 5 weeks after compression and histological analyses of kidneys and spinal cord were carried out. For all experiments,

treatments (NaCl, CsA and combined CsA–gentamicin) started 2 days before surgery.
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level of injury, the route, dose and frequency of CsA

administration may also have a significant effect.

One of the limitations of autologous grafting may be the

availability of a sufficient amount of cells to be grafted.

Indeed, delay in obtaining enough autologous cells to be

transplanted may be incompatible with the optimal time

window for treatment. In this case, heterologous grafting,

which requires immunosuppression, may become the only

possibility. In clinics, most drug regimens do not take into

consideration the specificity of SCI patients. However, SCI

influences drug disposition in a complex manner and may

thus predispose patients to adverse side effects. This points to

the absolute necessity not only to consider drug pharmaco-

kinetics but also to design unique protocols for SCI patients

that will require further prospective studies.

In conclusion, we show that (1) combined spinal cord

compression and CsA treatment induced deleterious effects

on kidneys that are reduced if not abrogated when an

antibiotic therapy is added; (2) SCI induced modification in

CsA blood concentration probably because of specific organ

retention; (3) gentamicin treatment had no effect on

CsA blood concentration; and finally (4) CsA showed no

neuroprotective effect in spinal cord compression.

Materials and methods

Animal, surgery, pharmacological treatments, CsA concentration

measurement

Experimental procedures followed the European legislation

for animal experimentation (86/609/EEC). All applicable

institutional and governmental regulations with regard to

the ethical use of animals were followed during the course of

this research. We used 8- to 9-week-old male Wistar rats

(Charles River, Lyon, France). Surgeries were conducted with

1 liter per min O2 supply and anesthesia was induced by

4% isoflurane and maintained at 2.5%.11 Compression

injury was carried out similarly to that described pre-

viously.11 A 2-French Fogarty catheter (Edwards Lifesciences,

Nyon, Switzerland) was introduced into the epidural space;

the balloon was positioned at thoracic level 8, inflated (15 ml)

and left in place for 5 min. Sham animals underwent the

same protocol, except for balloon inflation. Animals were

killed with an overdose of pentobarbital and perfused

transcardially with 4% paraformaldehyde (Table 2). For

histological studies, 2.5 cm spinal cord segments centered

on the lesion and kidneys were dissected, postfixed,

cryoprotected and embedded in Tissue-Tek OCT Compound

(Sakura Finetech, Zoeterwoude, The Netherlands).

Pharmacological treatment consisted of daily subcuta-

neous injection of CsA (Novartis, Basel, Switzerland) at 5,

7.5 and 10 mg kg�1. CsA injection started 2 days before

surgery. Controls received the equivalent volume of NaCl

(Table 2). Antibiotic therapy consisted of daily i.m. injection

of gentamicin (2 mg kg�1) for 7 days starting at the time

of surgery.

Blood was drawn under light isoflurane anesthesia in

heparin-rinsed tubes. Blood samples were spiked with a

structurally closely related internal standard (cyclic peptide

with one additional methyl group as compared with CsA),

lysed and deproteinated using acetonitrile, centrifuged, the

supernatant was evaporated and the pellet was redissolved in

Figure 2 CsA blood concentration is modified by SCI. (a) Cyclosporin A blood level in sham (uninjured) and SCI rats. At 2 and 24 h after
injection, CsA blood levels were lower in rats that underwent SCI. CsA treatment: 10 mg kg�1. (b) Time course analysis of CsA blood
concentrations in SCI rats. At 48 h after injection, CsA concentration almost returned to baseline. CsA treatment: 10 mg kg�1 (c) CsA dose–
response comparison between sham and injured rats. Analysis was carried out 24 h after the last CsA injection. (d) Comparison of CsA blood
concentration in injured rats that received either CsA-only (10 mg kg�1) or combined CsA–gentamicin treatment (10 and 2 mg kg�1,
respectively). Statistical analysis: t test, *Po0.05 and **Po0.01; data represent the mean±s.e.m of at least six animals per group.
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60% methanol. This solution was separated on a Macherey-

Nagel Nucleodur Isis HPLC column (MACHEREY-NAGEL,

Düren, Germany; particle size: 1.8 mm). The flow from the

HPLC system was directly introduced into the ion source of a

TSQ Quantum Ultra MS (Thermo Scientific, Waltham, MA,

USA) and subjected to atmospheric pressure electrospray

ionization. CsA was specifically detected with a parent-

parent scan of its sodiated molecular ion (MþNa)þ at m/z

1224.8. Quantification of blood levels of the parent com-

pound CsA was based on a seven-level calibration curve (in

triplicate) using blank rat blood samples spiked with stock

solutions of external and internal standards.

Behavioral monitoring

Before injury, and for 7 or 12 days after injury, functional

tests were carried out daily for motor, sensory and bladder

control as previously described.11 Motor response was

evaluated by three tests: open-field walking and inclined

plane for gross motor performance and a grid-navigation test

Figure 3 Combined CsA–gentamicin treatment did not modify functional recovery but improved bladder recovery after SCI. (a, b)
Locomotor outcomes after spinal cord compression of injured rats treated either with NaCl or with a combination of CsA-gentamicin.
(a) Open-field test before and during 12 days after compression for evaluation of gross motor function and (b) grid navigation test for
evaluation of fine motor coordination over a 50-cm horizontal runaway grid. No difference was observed between groups; they were both
severely impaired. Open-field walking on the horizontal plane ranges from no hind limb movement and no weight bearing (0) to normal
walking (6). Scores grid: 0 corresponds to hind limb drag without foot placement and 5 to normal walking to normal course over the grid with
toes gripping the wire. (c) Pain withdrawal was used to evaluate superficial sensory function. Scores range from normal response (0)
to hyperalgesia (4). No difference was observed between the two groups, they were both hyperalgesic. (d) Reflexes were evaluated by hind
limb withdrawal after manual extension; both groups presented similar deficits. Scores range from normal response (0) to hyper reaction (3).
(e, f) Autonomic function corresponds to bladder control. (e) Animals treated with a combined CsA–gentamicin cocktail regained a better
bladder control 7 days after injury than did control animals. (f) A higher percentage of animals treated with a combined CsA–gentamicin
cocktail regained bladder control 7 days after injury. Scores: no bladder control (0) and bladder control (1). (a–e) Statistical analysis: two-way
ANOVA, followed by Bonferroni’s multiple comparison test (**Po0.01; ***Po0.001). (f) w2-Test on the percentage of animals reaching a given
score was used (**Po0.01, ***Po0.001).
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for fine motor performance. Evaluation of sensory response

consisted of pain and heat withdrawal for superficial

function and proprioception for deep function. Reflexes

were evaluated by hind limb withdrawal after manual

extension and hind limb and toe extension when the animal

is picked up by the tail. Bladders were manually emptied

until subjects regained bladder function.

Histology and lesion extension

Lesion extension was observed on 12-mm-thick Luxol fast

blue-stained cryosections of the spinal cord; one section was

stained each 360 mm. Morphometric quantification was

carried out with MetaMorph software (MDS Analytical

Technologies, Toronto, Canada). Longitudinal kidney cryo-

sections (12 mm) were stained with hematoxylin and eosin.

Morphometric quantification of the median section was

performed on all kidneys and scored in four categories: 0,

normal kidney; 1, between 5 and 40% of increased area

without ulceration or pyelocalyceal cavities dilatation; 2,

440% of increased area and up to a 25% increase of

pyelocalyceal cavities, without ulceration; 3, 440% of

increased area associated with 425% increase of pyelocaly-

ceal cavities or with ulceration. In cases of asymmetric

degradation, the score of the worst kidney was considered.

All volumetric analyses were performed according to the

Cavalieri principle.18

Statistical analysis

CsA blood concentration: t-test, *Po0.05, **Po0.01,

***Po0.001. Means are presented with s.e.m. Behavioral

analysis and lesion extension (area under the curve): two-

way analysis of variance followed by Bonferroni’s multiple

comparisons; behavioral analysis: w2-test on the percentage

of animals rising over a given score (*Po0.05; **Po0.01;

***Po0.001). Lesion extension: at the epicenter, t-test

analysis was used.
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