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Abstract.

Lagrangian Coherent Structures (LCS) act as the organizers of transport in fluid

flows and are crucial to understand their stirring and mixing properties. In the case

of oceanic flows, LCS are known to drive biological dynamics, from plankton to top

predators, which stresses the importance of their characterization in realistic flows.

Lyapunov exponents are useful tools to compute LCSs. In this paper we have used the

Finite-Size Lyapunov Exponent (FSLE) to identify LCSs in two different types of three-

dimensional turbulent velocity fields. First, in a canonical turbulent flow (channel flow

between two parallel plates) the LCSs have a complex three-dimensional shape and

are advected by the flow. Second, in an oceanographic setting (a regional simulation

of the Benguela area) the LCSs also show a complex pattern on the horizontal but the

small vertical velocities typical of oceanic flows result in a curtain-like shape.
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1. Introduction

The use of stretching quantifiers such as the Lyapunov exponents, which measure

the relative separation of transported particles [1, 2, 3, 4], has largely improved the

Lagrangian analysis of fluid flows. On the one hand Lyapunov methods provide

information on time scales for dispersion processes, with its relevance for mixing and

stirring of fluids [1, 2, 3, 5, 6, 7]. On the other, they are useful to detect the so-

called Lagrangian Coherent Structures (LCS). LCSs [8, 9] are templates for particle

advection in complex flows, separating regions with different dynamical behavior and

signalling the existence of barriers and avenues to transport, fronts or eddy boundaries

[9, 3, 4, 10, 6, 11, 12, 13].

The relationship of LCSs with ridges (local maxima) of Lyapunov fields has been

soundly established for the case of finite-time Lyapunov exponents (FTLEs) [14, 15],

although it should be mentioned that techniques more precise than Lyapunov methods

are available [11, 16]. In our work, we use instead finite-size Lyapunov exponents

(FSLEs), which quantify the separation rate of fluid particles between two given distance

thresholds [1, 2]. They turn out to be convenient for the case of bounded flows in which

characteristic spatial scales are more direct to identify than temporal ones. Following

many previous works [10, 6, 17, 12, 18] we assume that the mathematical results existing

for FTLEs are valid for FSLEs to a good approximation. In particular we assume that

LCSs can be computed as ridges of FSLEs, and that they are transported by the flow as

material surfaces/lines, with no flux of particles through them. Observations presented

here are consistent with those assumptions.

Despite its relevance in real flows, the full three-dimensional (3d) structure of

LCSs is still an open subject. In 3d flows, LCS were explored in atmospheric contexts

[19, 20, 21], and in a turbulent channel flow at Reτ = 180 in [22]. A kinematic ABC flow

was studied in [23]. In the ocean, where it is widely recognized that filamental structures,

eddies, and in general oceanic meso- and submeso-scale structures have a great influence

on marine ecosystems [24, 25, 26, 27], the identification of LCSs and the study of their

role in the transport of biogeochemical tracers has primarily been restricted to the two-

dimensional (2d) surface layers. There are two concurrent reasons for this: a) because

of stratification and rotation, vertical motions in the ocean are usually very small when

compared to horizontal displacements; b) synoptic measurements (e.g. from satellites) of

relevant quantities are restricted to the surface. A few previous results for Lagrangian

eddies in 3d were obtained in Refs. [28, 29], by applying the methodology of lobe

dynamics and the turnstile mechanism. Also, Refs. [30, 31] used 3d FSLE fields to

identify LCS in oceanic flows. In particular, a mesoscale eddy in the Southern Atlantic

was studied in [31], and it was shown that oceanic LCSs presented a vertical curtain-like

shape, i.e. they look mostly like vertical sheets, and that material transport into and

out of the mesoscale eddy occurred through filamentary deformation of such structures.

In this paper, we use 3d fields of FSLE to identify LCSs in a turbulent channel flow

and in an oceanic flow. Observations of the similarities and differences between the two
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systems, both in their computation and their physical meaning, helps to appreciate the

power and scope of this Lagrangian technique in the analysis of fluid flows. In Section

2 we describe the methodology used to identify LCSs in 3d turbulent flows. Sections 3

and 4 are devoted to the turbulent channel flow and the oceanic flow, respectively, and

Section 5 presents conclusions and ideas for future work.

2. Methods

2.1. Finite-Size Lyapunov Exponents

In order to study non-asymptotic dispersion processes such as stretching at finite scales

and bounded domains, the finite size Lyapunov Exponent was introduced [1, 2, 3]. It is

defined as:

λ =
1

τ
log

df
d0
, (1)

where τ is the time it takes for the separation between two particles, initially d0, to reach

a value df . In addition to the dependence on the values of d0 and df , the FSLE depends

also on the initial position of the particles and on the time of deployment. Locations

(i.e. initial positions) leading to high values of this Lyapunov field identify regions

of strong separation between particles, i.e., regions that will exhibit strong stretching

during evolution, that can be identified with the LCS [3, 10, 6].

In principle, to compute FSLE in 3d, the method of [6] can be extended to

include the third dimension, by computing the time it takes for particles initially

separated by d0 = [(∆x0)
2 + (∆y0)

2 + (∆z0)
2]1/2 need to reach a final distance of

df = [(∆xf )
2 + (∆yf )

2 + (∆zf )
2]1/2. We will proceed this way for the turbulent channel,

but, as indicated in [31], vertical displacements are much smaller than horizontal ones

in ocean flows. Therefore, the displacement in the z direction does not contribute

significatively to the calculation of df in the ocean, which prompt us to implement a

quasi-3d computation of FSLEs: we use the full 3d velocity field for particle advection

but particles are initialized in 2d horizontal ocean layers and the contribution ∆zf is

not considered when computing df (see more details in [31]). In any case, since we allow

the full 3d trajectories of particles, we take into account the vertical dynamics of the

oceanic flows.

Concerning the turbulent channel, where we can implement a fully 3d computation

of the FSLE, we proceed as follows. A grid of initial locations x0 = (xi, yj, zk) is set

up at time t, fixing the spatial resolution of the FSLE field (Fig. 1). Particles are

released from each grid point and their three-dimensional trajectories are calculated.

The distances of each neighbor particle with respect to the central one (initially d0) is

monitored until one of the separations reaches a value df .

In both systems considered, we obtain two different types of FSLE maps by

integrating the three-dimensional particle trajectories backward and forward in time:
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(x,y,z)

(x,y,z-Δz0)

(x,y,z+Δz0)

(x-Δx0,y,z)

(x+Δx0,y,z)

(x,y-Δy0,z)

(x,y+Δy0,z)

Figure 1. Computational setup for the calculation of the FSLE field in 3d. The

FSLE at the location of the central particle (◦) is a measure of the time it takes for any

of the neighbor particles (•) to diverge from the central particle by a distance greater

than δf .

the attracting LCSs (for the backward), and the repelling LCSs (forward) [10, 6]. We

obtain in this way FSLE fields with a spatial resolution given by d0. When a particle

leaves the velocity field domain or reaches a no-slip boundary, the FSLE value at its

initial position and initial time is set to zero. If the interparticle separation remains

smaller than δf past a maximum integration time ∆t, then the FSLE for that location

is also set to zero.

2.2. Lagrangian Coherent Structures

The identification of LCS calculated from Lyapunov fields in 2d flows is straightforward

since they practically coincide with (finite-time) stable and unstable manifolds of

relevant hyperbolic structures in the flow [8, 9, 10] (but see [32, 16]). The structure

of these manifolds in 3d is generally much more complex than in 2d [23, 33], and they

can be locally either lines or surfaces.

Differently than 2d, where LCS can be visually identified as the maxima of the

FSLE field, in 3d they are hidden within the volume data and one needs to explicitly

compute and extract them, using the definition of LCSs as the ridges of the FSLE field.

A ridge L is a co-dimension 1 orientable, differentiable manifold (which means that for

a 3d domain D, ridges are surfaces) satisfying the following conditions [15]:

(i) The field λ attains a local extremum at L.

(ii) The direction perpendicular to the ridge is the direction of fastest descent of λ at

L.

This definition means that as we move away from the ridges, perpendicularly to it, we

would see the fastest descent of the FSLE field. The method used to extract the ridges

from the scalar field λ(x0, t) is from [34]. It uses an earlier [35] definition of ridge in the
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context of image analysis, as a generalized local maxima of scalar fields. For a scalar

field f : Rn → R with gradient g = ∇f and Hessian H, a d -dimensional height ridge is

given by the conditions

∀d < i ≤ n ,gTei = 0 and αi < 0, (2)

where αi, i ∈ {1, 2, . . . , n}, are the eigenvalues of H, ordered such that α1 ≥ . . . ≥ αn,

and ei is the eigenvector of H associated with αi. For n = 3, Eq. (2) becomes

gTe3 = 0 and α3 < 0. (3)

In other words, in R3 the e1, e2 eigenvectors point locally along the ridge and the e3

eigenvector is orthogonal to it, so the the ridge maximizes the scalar field in the normal

direction to it and in this direction the field is more convex than in any other direction,

since the eigenvector associated with the most negative eigenvalue is oriented along the

direction of maximum negative curvature of the scalar field.

The extraction process progresses by calculating the points where the ridge

conditions are verified and the ridge strength |α3| is higher than predefined threshold s

so that ridge points whose value of α3 is lower (in absolute value) than s are discarded

from the extraction process. Since the ridges are constructed by triangulations of the set

of extracted ridge points, the strength threshold greatly determines the size and shape

of the extracted ridge, by filtering out regions of the ridge that have low strength. The

reader is referred to [34] for details about the ridge extraction method. The height ridge

definition has been used to extract LCS from FTLE fields in several works (see, among

others, [36]).

Since the λ value of a point on the ridge and the ridge strength α3 are only related

through the expressions (2) and (3), the relationship between the two quantities is not

direct, which makes difficult to choose the appropriate strength threshold s. A too

small value of s will result in the extraction of very small LCSs that appear to have

little influence on the dynamics, while a large value will result in only a partial rendering

of the larger and more significant LCS, limiting the possibility of observing their real

impact on the flow.

The ridges extracted from the backward FSLE map approximate the attracting

LCSs, and the ridges extracted from the forward FSLE map approximate the repelling

LCSs. The attracting ones are the more interesting from a physical point of view [6, 12],

since particles (or any passive scalar driven by the flow) typically approach them and

spread along them, so that they are good candidates to be identified with the typical

filamentary structures observed in tracer advection.

3. Turbulent channel flow

Turbulent channel flow is a flow between two stationary, parallel walls separated by a

distance 2δ. It has been studied extensively due to its geometrical simplicity and its

wall-bounded nature, which makes it a platform to study more complex turbulent shear

flows of greater technological interest.
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The coordinates of the flow are: x for the streamwise direction, y for the cross-

stream coordinate that separates the two plates, and z for the spanwise direction. The

flow is maintained by a downstream pressure gradient dP0

dx
acting against the wall shear

stress. The laminar flow solution U0 is a cross-stream parabolic profile given by

U0(y) =
y2 − δ2

2µ

dP0

dx
, (4)

where µ is the dynamic viscosity. Following the Reynolds averaging method [37], the

turbulent flow velocity u is decomposed in a mean U = (U(y), 0, 0) and a fluctuating

component u′ = (u′, v′, w′). The mean turbulent velocity profile U(y) differs from the

laminar one, U0(y), by a lower centerline velocity U(0) and increased near-wall velocity

giving it a flatter shape. Due to the increase in mean velocity near the wall, the shear

stress near the wall is higher for the turbulent case. The total shear stress τ appearing

in the averaged Reynolds equations gets contributions from both the viscous stress and

the Reynolds stress −u′v′ associated to the velocity fluctuations:

τ

ρ
= ν

dU

dy
− u′v′ (5)

ν = µ/ρ is the kinematic viscosity. The symmetries of the domain and the Reynolds

equations imply that τ depends only on the cross-stream coordinate y, and the

dependence is linear, so that it can be written as

τ(y)

ρ
= u2τ

(
1− y

δ

)
(6)

The shear velocity uτ gives the velocity scale of the turbulent velocity fluctuations. The

formula [37]:

ρu2τ = µ
dU(y)

dy

∣∣∣∣
y=0

(7)

allows to compute uτ from measurements of the mean velocity profile from the

simulations. A length scale can be formed by combining uτ with ν: the wall scale

δ+ = ν/uτ . The wall distance can now be expressed as y+ = y/δ+, and the same

normalization could be done for the rest of coordinates. The viscous Reynolds number

Reτ = δ/δ+ is simply the ratio between the two relevant length scales.

The existence of coherent structures in turbulent wall-bounded flows has been

known for several decades from investigations on intermittency in the interface between

turbulent and potential flow regions, on the large eddy motions in the outer regions of

the boundary layer, and on coherent features in the near-wall region ([38] and references

therein). Since then, through experimental and numerical investigations, a picture of the

organization of these coherent structures in the turbulent boundary layer has emerged,

which has become rather complete from the Eulerian point of view [38, 39]. Our

approach is a contribution to the Lagrangian exploration of these coherent structures,

as in [22].

The longitudinal velocity field in the inner region of the channel (the viscous

sublayer adjacent to the wall and the intermediate buffer region) is organized into
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alternating streamwise streaks of high and low speed fluid. Turbulence production

occurs mainly in the buffer region in association with intermittent and violent outward

ejections of low-speed fluid and inrushes of high-speed fluid towards the wall. The outer

region is characterized by the existence of three-dimensional δ-scale bulges that form on

the turbulent/potential flows interface. Irrotational valleys appear at the edges of the

bulges, entraining high-speed fluid into the turbulent inner region. A central element in

the structure of the turbulent boundary layer is the hairpin vortex, mainly because it

is a structure with the capability of transporting mass and momentum across the mean

velocity gradient and because it provides a paradigm with which to explain several

observations of wall turbulence [38, 40].

3.1. Data

The data used to extract the LCS come from a direct numerical simulation (DNS)

of turbulent channel flow at a viscous Reynolds number Reτ = 180. The setup of

the simulation follows that of [41] and is summarized in table 1. The simulations

were conducted using the CFD solver Channelflow. The Channelflow code solves

the incompressible Navier-Stokes equations in a rectangular box with dimensions

Lx × 2δ × Lz, with periodic boundary conditions in the x (so that fluid leaving the

computational domain in the direction of the mean flow at x = Lx reenters it at x = 0)

and in the spanwise z direction. No-slip conditions are imposed on y = ±δ. The

unsteady velocity field u is represented as a combination of Fourier modes in the x and

z directions and of Chebyshev polynomials in the wall-normal direction. The pressure

gradient necessary to balance the friction at the walls was chosen as to maintain a

constant bulk velocity of 2
3
U0. Time stepping is a 3rd-order Semi-implicit Backward

Differentiation. Note that in our computations δ+ = 1/Reτ = 0.0058 so that in wall

units 0 < y+ < 344.

The flow was integrated from an initial base-flow with parabolic profile and a

small disturbance that evolved into a fully developed turbulent flow. The total

integration time was ∆t = 600 time units that in dimensionless form t+ = t (u2τ/ν)

gives ∆t+ = 83.54. After an initial transient of about 200 time units the simulations

reached a statistically stationary state from which statistics was accumulated.

The mean quantities and first order statistics of our simulations where compared

to those of [41] and the agreement is quite good. The profile of the mean velocity in

wall units is shown in Fig. 2. The profile for the Reynolds stress −u′v′ shows that the

maximum (in absolute value) is located at approximately y+ = 30, in the outer limit of

the buffer layer (sse Fig. 3).

3.2. Results

The LCS were extracted from the turbulent velocity field data described in the previous

section. A calculation of FSLE field in the entire turbulent channel was conducted in

order to understand the statistical properties of the FSLE field in this class of turbulent
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Figure 2. Mean velocity profile U(y)/uτ . Solid line: our simulations; squares: [41];

dashed line: logarithmic profile U(y)/uτ = 2.5 log(y+) + 5.5.
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Table 1. Simulation parameters. Quantities with + refer to wall units. Lx, 2δ and Lz
are the domain sizes in the x, y and z directions. ∆x+, ∆y+ and ∆z+ are the respective

spatial resolutions (given at the first point above the wall for the y case), and nx, ny
and nz the corresponding number of grid points. Re = Uδ/ν is the Reynolds number

based on the channel center mean speed, whereas Reτ = uτδ/ν is the viscous Reynolds

number. The nominal value is an input to the computer code, and the actual value

comes by using Eq. (7) for the computed mean profile U(y).

Re channel center 4000 Reτ nominal 180 Reτ actual 172

Lx 4π δ 1 Lz
4
3π

L+
x 2166.61 δ+ 0.0058 L+

z 722.20

nx 128 ny 129 nz 128

∆x+ 17.06 ∆y+ 0.005 ∆z+ 5.6867

Table 2. FSLE calculation parameters. dt is the integration time step and ∆t the

maximum integration time.

Calculation d0 df/d0 ∆t dt

Complete channel 0.024 20 172 0.05

LCS subdomain 0.003 67 10 0.05

flows. A subsequent calculation in a subdomain of the channel was used to extract the

LCS in that subdomain for a sequence of time instants. The setup of both calculations

is shown in table 2.

3.2.1. The 3d FSLE field. The 3d backward FSLE field for the entire channel was

calculated at a single time instant in the statistically steady state. The initial and final

distances d0 and df were chosen as a balance between encompassing the widest possible

range of scales of motion (measured by the ratio df/d0), and adequate resolution and

computational cost. The initial distance is of the order of 4δ+ and the final distance of

the order of 0.5δ so that the ratio of scales, df/d0, is approximately Reτ/8.

Figure 4 shows an instantaneous configuration of the FSLE values in a

streamwise/wall-normal plane. Maxima of the FSLE field appear to be organized

into sloping structures located in the region 20 < y+ < 100. This organization bears

resemblance to the widely accepted picture of organized structures in wall turbulence

where the outer region is dominated by packets of sloping hairpin vortices [40, 38]. The

channel center is devoid of high FSLE values but coherent patches of low FSLE values

can still be observed.

A cross-stream FSLE profile is obtained by averaging the 3d field over the periodic

directions x and z. It is shown in Fig. 5. The profile is symmetric about the channel

centerline and shows a maximum at approximately y+ = 30, at the same location

of the maximum in the Reynolds stress −u′v′. Because of the periodic boundary

conditions in the x and z directions the average profiles along these directions are
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Figure 4. FSLE values shown on a streamwise/wall-normal plane in the turbulent

channel. Walls are at the top and bottom of the figure. Mean velocity is towards the

right.

rather unstructured, and we resort to two-point correlation functions to quantify the

statistical structure properties. For each plane parallel to the walls, i.e. for each value

of y+, we compute the fluctuations of the FSLE values around the average in that plane:

Λ(x+, y+, z+) ≡ λ(x+, y+, z+) − 〈λ(x+, y+, z+)〉x+,z+ . From this quantity we define the

streamwise Rxx(y
+; x̄+) correlation function as:

Rxx(y
+; x̄+) =

〈Λ(x+, y+, z+)Λ(x+ + x̄+, y+, z+)〉x+,z+
〈Λ(x+, y+, z+)2〉x+,z+

(8)

and the spanwise Rzz(y
+; z̄+) correlation function

Rzz(y
+; z̄+) =

〈Λ(x+, y+, z+)Λ(x+, y+, z+ + z̄+)〉x+,z+
〈Λ(x+, y+, z+)2〉x+,z+

. (9)

In the above equations the averages are over the periodic directions x+ and z+. The

correlations are shown in Figs. 6 and 7 at different distances from the walls: one

smaller, one larger, and one approximately coincident with the location of the maximum

Reynolds stress. These functions reveal sizes and organization of the different structures

in the Lagrangian FSLE field, to be contrasted with Eulerian correlation functions in

the same system [42].
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Figure 5. FSLE profile averaged over (x, z), as a function of the cross-stream

normalized coordinate y+. Only half of the channel is shown since the profile is quasi-

symmetric about the channel centerline.

Close to the wall (y+ = 12.2), viscous effects make the structures smooth and

extended along the streamwise direction (see the long correlation length for this case

in Fig. 6), forming streaks. In the transverse direction z+ the oscillations seen in Rzz

for y+ = 12.2 indicate an approximately periodic arrangement of the streaks [22], with

a spacing in the range 100 − 150 wall units. This pattern of organization is similar to

what is seen in Eulerian descriptions [42, 38]. At planes further away from the wall

(y+ = 28.4 and y+ = 122.1 in Figs. 6 and 7), correlation functions in both directions

become shorter ranged, and periodic features are progressively lost. This corresponds

to a rather disordered distribution of structures, each with a typical size related to the

width of the correlation functions, i.e. of the order of 50 wall units, as also seen in Fig.

4.

3.2.2. The 3d LCS. The previous description summarized the statistical properties

of the different structures appearing in an instantaneous FSLE field. To make further

progress we now extract three-dimensional attracting LCSs in a region of the channel

at a series of time instants. The extraction domain had dimensions L+
x × L+

y × L+
z =

103× 129× 124. The initial separation d0 and distance ratio df/d0 were increased from

the previous calculation to improve the resolution and extract smoother structures, but

sacrificing a complete view of 3d LCS in the turbulent channel. The extraction threshold

was set to s = 50000, a compromise value between speed and cost of extraction and

continuity of the extracted surfaces. The FSLE fields were calculated for an interval of

1.5 time units with a time step of 0.1 units.
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Figure 6. Streamwise correlation function Rxx(y+; x̄+) as a function of the

streamwise separation x̄+, at three distances from the lower wall: Continuous black

line: y+ = 12.2; blue dashed line y+ = 28.4; red dot-dashed line: y+ = 122.1.
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Figure 7. Spanwise correlation function Rzz(y
+; z̄+) as a function of the spanwise

separation z̄+, at three distances from the lower wall: Continuous black line: y+ = 12.2;

blue dashed line y+ = 28.4; red dot-dashed line: y+ = 122.1.
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Figure 8. 3d attracting LCS in the channel flow together with a FSLE map at the

fixed plane x = 6.0. Time goes from top to bottom, at intervals of 0.1 time units. The

flow direction is in the positive x direction in each panel, and a wall is at the bottom.

The sequence shows how one of the flow structures is advected and passes through the

x = 6.0 plane.
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3d LCSs are rendered in Fig. 8, in a sequence of time instants, as they pass through

the calculation domain. They have a clearly 3d shape and move with the flow. The LCS

seem to create a boundary between the inner turbulent region and the outer region that

is practically devoid of FSLE. The highest LCS have δ-scale heights above the wall, and

have a distinct mushroom shape enclosing the regions of the channel closer to the wall,

where high FSLE values can be found. Near the wall, the LCS adopt the shape of sheets

parallel to it, which reflects the high rates of shear that occur in that region. These

sheets form the base of the mushroom-shaped excursions up to the channel center.

4. Oceanic flow

Contrarily to the turbulent flow of the previous section, large scale oceanic flows,

naturally turbulent, can be considered as almost 2d due to rotation and stratification

effects. This fact makes the theory of 2d turbulence a very important tool to understand

the ocean processes that occur at large scales. The main characteristic of 2d turbulence

is the existence of an inverse energy cascade, from the small to the large scales and a

direct enstrophy cascade. This cascade manifests itself by the creation of large coherent

vortices, and by the process of filamentation by which strain regions in the boundaries

of the vortices produce lines of vorticity that are continuously stretched and deformed

by the flow, concentrating the vorticity gradient in the small scales. This behavior is

often observed in oceanic flows thereby confirming the importance of the 2d turbulent

processes.

4.1. Data

The Benguela ocean region (Fig. 9) is situated off the west coast of southern Africa. It

is characterized by a substantial mesoscale activity in the form of eddies and filaments,

and also by the northward drift of Agulhas eddies.

The velocity data set comes from a regional ocean model (ROMS) simulation of

the Benguela Region [43]. ROMS [44, 45] is a split-explicit, free-surface, topography

following model. It solves the incompressible primitive equations using the Boussinesq

and hydrostatic approximations. Potential temperature and salinity transport are

included by coupling advection/diffusion schemes for these variables. The model was

forced with climatological data. The data set area extends from 12°S to 35°S and from

4°E to 19°E (see Fig. 9). The velocity field u = (u, v, w) consists of two years of daily

averaged zonal (u), meridional (v), and vertical velocity (w) components, stored in a

three-dimensional grid with an horizontal resolution of 1/12 degrees (∼ 8 km), and 32

vertical terrain-following levels. Additional details can be found in [31].
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Figure 9. Benguela ocean region. Grey region is Southwestern Africa. The velocity

field domain is limited by the continuous black line. The FSLE calculation area is

limited by the dash-dot black line. Bathymetric contour lines are from ETOPO1

global relief model [46] from 0 m depth up to 4000 m at intervals of 500 m.

4.2. Results

4.3. Three-dimensional FSLE field

The three-dimensional FSLE fields were calculated for a 30 day period starting

September 17 of year 9, with snapshots taken every 2 days. The fields were calculated

for an area of the Benguela ocean region between latitudes 20°S and 30°S and longitudes

8°E to 16°E (see Fig. 9). The calculation domain extended vertically from 20 up to 580

m of depth. Both backward and forward calculations were made in order to extract the

attracting and repelling LCS.

Figure 10 displays the vertical profile of the average FSLE for the 30 day period.

The small differences between the backward and the forward values are due to the

different intervals of time involved in their calculation. There is a general decrease with

depth, with a notable peak in the profiles at about 100 m. The reason for this local

maximum in the FSLE profiles is not clear but it could be due to increased vertical

shear enhancing the mixing rates at those depths [31].

In the left panel of Fig. 11 a snapshot of the attracting LCSs for day 1 of the

calculation period is shown. The structures appear as thin vertical curtains, most of

them extending throughout the whole depth of the calculation domain. The horizontal
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Figure 10. Vertical profile of a 30 day average of backward (squares) and forward

(circles) FSLE. The 30 day average 3d field was further spatially averaged over each

horizontal layer to produce the vertical profiles.

slices of the FSLE field in Fig. 11 (left panel) show that the attracting LCS fall on

the maximum FSLE field lines. The atracting and repelling LCS (Fig. 11, right panel)

populate the calculation region, testifying the enhanced mixing activity that is known to

occur in that particular ocean region. The quite entangled “web” in which attracting and

repelling LCSs intersect mutually provides the skeleton for the barriers and pathways

controlling transport [6, 11].

At this point, it may help to stress the differences between the Eulerian and

Lagrangian detection of coherent structures. This can be seen in Fig. 12 where the

boundaries of a mesoscale eddy are shown using the Q-criterion and the attracting and

repelling LCS. The Q-criterion [47] uses the second invariant of ∇u:

Q =
1

2
(‖Ω‖2 − ‖S‖2), (10)

where ‖Ω‖2 = tr(ΩΩT), ‖S‖2 = tr(SST), and Ω, S are the antisymmetric and

symmetric components of ∇u, to identify regions where rotation dominates strain

(Q > 0), commonly identified with coherent vortices, and strain dominated regions

(Q < 0). We refer the reader to [48] and [49] for reviews and criticism of several

Eulerian criteria.

Eulerian and Lagrangian measures limit approximately the same region, but are

substantially different. The Q-criterion is related to the instantaneous configuration of

the second invariant of ∇u and therefore conveys only local information about fluid flow

processes. The Lagrangian perspective, on the other hand, provides an integration of

the temporal evolution of material properties of the flow, e.g. material transport, and
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Figure 11. 3d LCS in the Benguela region for day 1 of the calculation period. Left

panel: Attracting LCS together with horizontal slices of the backward FSLE field at

120 m and 300 m depth. Right panel: Attracting (blue) and repelling (green) LCS.

Colorbar refers to colormap of horizontal slices in the left panel. The units of the

colorbar are day−1.

thus should give more meaningful information about the processes that rely on ocean

material transport.

This issue can be further explored by looking at a filamentation event (described

more extensively in [31]). A set of particles were released inside the eddy at day 1 at

a depth of 50 m. At day 11 of the calculation period (see Fig. 13), they have formed

a filament that is expelled from the eddy, so that particles clearly cross the Q-criterion

isosurface. This shows that the Eulerian criteria is inadequate as an indicator of regions

of material transport in the flow. On the contrary, it can be observed that the Lagrangian

description of the eddy boundaries does bear relation with material transport into and

out of the eddy, since the particle filament leaves the enclosed region that we associate

with the mesoscale eddy by following one of the identified Lagrangian boundaries.

5. Conclusions

Lyapunov exponents are useful to identify Lagrangian Coherent Structures in turbulent

flows. These constitute the pattern determining the pathways of particle transport in
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Figure 12. Attracing (blue) and repelling (green) LCS on day 1 of the calculation

period together with Q-criterion isosurface at Q = 10−10 (red).

the flow. They strongly influence the transport and mixing properties in the fluid.

In this paper we have used a particular type of Lyapunov exponents, the so-called

Finite-Size Lyapunov exponents, to identify LCS in 3d flows. The finite size Lyapunov

exponent was used to measure the rate of streching of initially nearby fluid particles

in the flow domain and the Lagrangian coherent structures where identified as the the

ridges of the FSLE field. These ridges were filtered in order to retain only the strongest

attracting or repelling structures.

In a turbulent channel flow, the LCSs appear as mushroom-shaped excursions of

near-wall sheet-like structures of a scale comparable to the channel width. They separate

the channel into an interior region, where the FSLE attains high values, and an exterior

region, showing low FSLE values. The distribution of LCS in the turbulent channel

resembles the commonly accepted picture where upward excursions of near wall fluid

coexist with inward rushes of mid-channel irrotational flow. Further work is necessary

to elucidate the relations between LCS and fluid transport in these type of flows, not

least because the visualization of 3d structures and transport in turbulence is a complex

and time-consuming subject.

In a quasi-2d mesoscale oceanic flow, the LCSs appear as quasi-vertical surfaces

highlighting the fact that dispersion in this case is mainly horizontal. The high mixing

activity can be deduced from the proliferation of LCS in the flow domain and their
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Figure 13. Attracing (blue) and repelling (green) LCS on day 11 of the calculation

period together with Q-criterion isosurface at Q = 10−10 (red). The particles (black

dots) were released inside the eddy at day 1 at a depth of 50 m and are leaving now

the eddy as a filament along the upper part of the attracting LCS.

mutual intersection. These LCS were seen to provide barriers and pathways to transport

in the case of a mesoscale eddy, contrary to Eulerian measures that failed to provide

indicative locations or directions of major transport events.

The results shown in this paper highlight the usefulness of Lyapunov analysis and

dynamical systems theory as a tool to study transport and mixing in fluid flows, through

the concept of Lagrangian coherent structures.
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