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We observe polarization-locked vector solitons in a mode-locked fiber laser. Temporal vector
solitons have components along both birefringent axes. Despite different phase velocities due to linear
birefringence, the relative phase of the components is locked at6py2. The value of6py2 and
component magnitudes agree with a simple analysis of the Kerr nonlinearity. These fragile phase-
locked vector solitons have been the subject of much theoretical conjecture, but have previously eluded
experimental observation. [S0031-9007(99)09109-7]
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The observation of temporal solitons in optical fiber [1
has resulted in a huge amount of research. This has b
motivated by both fundamental interest and the potent
for applications in telecommunications. Despite the fa
that “single” (radial) mode optical fiber supports two or
thogonal polarization modes, soliton propagation in o
tical fiber is often treated as a scalar problem, and t
vector nature of light is ignored [2]. Although this would
be valid if the fiber were truly isotropic, in reality it is al-
ways slightly birefringent due to strain, bends, etc. Th
presence of birefringence lifts the degeneracy between
two modes, resulting in coupling and differing phase an
group velocities. Because of differing phase velocitie
the soliton polarization will evolve as it propagates. A
differing group velocity causes the energy propagating
each mode to temporally separate, destroying the solito
Clearly, the very observation of solitons in fiber implie
that the group velocity of the modes lock together. Th
occurs via a slight shift in the frequencies of the two o
thogonal components, which shifts their group velocitie
and has been the subject of both theory and experim
[3,4]. Normally, the polarization state of solitons propa
gating through low birefringence fiber remains uniform
across the pulse but evolves with position [4,5].

For solitons to propagate with a uniform, nonevolvin
polarization state, the phase velocities must lock. Th
was also predicted, resulting in a soliton that preserv
its polarization state in the presence of birefringenc
However, phase velocity locking is more difficult to
obtain than group velocity locking because the pha
velocity difference is larger in standard fiber. Fur
thermore, since the birefringence of standard sing
mode fiber is generally randomly distributed and prop
gation over long distances is accompanied by loss
experimental study of polarization-locked solitons i
transmission systems is difficult. Here, we report th
observation of such polarization-locked vector soliton
8 0031-9007y99y82(20)y3988(4)$15.00
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(PLVS) in a mode-locked fiber laser. This mode-locke
fiber laser provides a unique system that is nearly co
servative, has well-controlled birefringence, and allow
monitoring of the pulse during propagation over a
essentially infinite distance. This makes it well suited f
observing vector solitons in a controlled environment.

The use of temporal vector solitons for communicatio
[4] and all-optical switching [6] has been explored. Re
cently, the nonlinear polarization evolution of solitons ha
been shown to differ significantly from linear propaga
tion in standard low-birefringence fiber [7]. These expe
ments in a relatively short, very low loss, fiber provide
evidence for instability of the fast axis and that some e
liptically polarized states are preferred.

A full vector description of the soliton requires the us
of coupled-nonlinear Schrödinger equations that descr
the evolution of the polarization components along t
two principal axes of the fiber [3,8,9]

iuz 1 idut 1 gu 1
1
2 utt 1

sjuj2 1 Ajyj2du 1 By2up ­ R1su, y, z, td ,

iyz 2 idyt 2 gy 1
1
2 ytt 1

sjyj2 1 Ajuj2dy 1 Bu2yp ­ R2su, y, z, td ,

where u and y are the envelope components along th
principal axes,z and t are normalized time and distance
2d is the group velocity difference,2g is the phase ve-
locity difference,A is cross-phase modulation coefficien
and B is the coefficient for coherent energy exchang
(also known as four-wave mixing). In lossless medi
B ­ 1 2 A. All nonconservative effects are lumped int
the right-hand side of the equations (R1 and R2). These
are primarily gain and absorption, both of which may d
pend on time and pulse energy due to saturation. T
aforementioned group velocity locking [3] means that,
the presence of weak, randomly varying birefringenc
© 1999 The American Physical Society
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the soliton polarization evolves as a unit [4]. Henc
the scalar approximation often provides an acceptable
scription of the envelope evolution.

We have studied the polarization evolution of soliton
circulating in a mode-locked fiber laser and observed th
PLVS form for low amounts of intracavity birefringence
For a PLVS, bothu and y are nonzero and their rela-
tive phase is fixed. A PLVS uses the nonlinear pha
shifts from self-phase modulation (SPM) and cross-pha
modulation (XPM) to compensate for the differing
phase velocities ofu andy, much as an ordinary soliton
uses SPM to cancel group-velocity dispersion. Howev
the PLVS is a much more fragile state than an ordina
soliton because it requires that the nonlinear phase s
for u or y dynamically adjust in response to externa
perturbations. Dynamic adjustment occurs via cohere
energy exchange. Since the direction and magnitude
the energy flow due to coherent energy exchange is ph
sensitive, perturbations cause adjustment in the relat
amplitudes and thus the nonlinear phase shifts, there
providing a negative feedback mechanism critical fo
stable phase locking.

Three solutions to the coupled nonlinear Schrödinge
equation result in solitons with a fixed polarization i
low birefringence fiber. The first occurs when one ax
becomes unstable. For a positive Kerr coefficient (
in optical fiber), the fast axis becomes unstable wh
the nonlinear contribution to its index of refraction
causes its index to become larger than the slow ax
This has been described for both continuous-wave (c
[10] and soliton propagation [11]; in the latter case
linearly polarized solitons along the slow axis resu
Experimental evidence for soliton axis instability wa
recently observed [7]. A second solution to the couple
nonlinear Schrödinger’s equation with fixed polarizatio
occurs if the XPM coefficient,A, is equal to 1; then
SPM and XPM are equal. This is known as the Manak
case. In isotropic materialA ­ 2

3 , therefore this solution
has only been observed in an anisotropic waveguide [1
where the relative strengths of SPM and XPM can b
engineered to be approximately equal (i.e.,A , 1). The
third possibility is the PLVS. The general concept o
a vector soliton was introduced by Christodoulides an
Joseph [13]. However, their solution was later foun
to be unstable during propagation and decomposed i
two solitons. A stable solution consisting of a singl
elliptically polarized soliton was analytically discovere
later [14,15]. Recent numerical results [16] have foun
results corresponding to the analytical solutions, whi
assume a conservative system. We also note that
nonisotropic fiber, which has a high intrinsic birefringenc
(polarization preserving fiber), solitons typically occu
only along one axis due to the strong group-veloci
difference. In such fiber, the nonlinear index can nev
be comparable to the birefringence and, hence, the ab
discussion does not apply. Here, we restrict ourselves
the limit of low birefringence where it does apply.
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Analytical approaches to solving the coupled nonline
Schrödinger’s equation usually assume a conservative
tem, i.e., one without gain or loss. Consequently, t
solutions that they provide have limited applicability t
typical fiber-optic transmission systems, where lump
optical amplification results in strong nonconservati
perturbations as the pulse amplitude decays significa
before reamplification. To avoid this difficulty, we stud
ied soliton propagation in a fiber laser, where the p
turbations per round-trip are small. Although the fib
laser cavity is short (4 m round-trip), it is a very goo
experimental realization of an infinite, lossless transm
sion line. In addition, by using a fiber laser, we are ab
to observe the evolution of the soliton as it propaga
because a small amount is coupled out of the cavity
ter each round trip. This is a significant advantage ov
experiments that simply propagate pulses through a fi
length of fiber and, hence, cannot observe the evolut
with propagation distance. Furthermore, we need only
characterize a short length of fiber.

The experimental setup is shown in Fig. 1. The fib
laser consists of three pieces of single (spatial) mode fi
fusion spliced together. The 10 cm long center piece
erbium/ytterbium codoped to provide gain. This fiber h
normal dispersion due to the small waveguide diame
The other two pieces are standard fiber with anomalo
dispersion. The net cavity dispersion is anomalous. O
end of the cavity is butt coupled to a saturable-Bragg refl
tor [17], a monolithic semiconductor device that provid
saturable absorption and serves as a high reflector.
saturable absorption starts and stabilizes the formation
ultrashort pulses. The other end of the cavity is a dielec
mirror coated directly onto the fiber. This mirror acts a
an output coupler (,99% reflectivity at the lasing wave-
length,l ­ 1550 nm). The pulses formed in the cavit
are fundamental solitons of the average cavity dispers
and nonlinearity. The erbium/ytterbium fiber is pumpe
with 980 nm light that is injected through the output co
pler. A portion of single mode fiber making up the las
cavity is wrapped around two 5.5 cm diameter paddles
a fiber polarization controller [18]. With three wraps, ea
paddle provides just underly4 linear retardance. The re
maining fiber in the cavity contributes a small amount
residual retardance (typically less thanly8). By chang-
ing the angles of the two paddles,Q1 andQ2, we can ad-
just the total cavity retardance from zero to approximate
a full wavelength. Although the birefringence magnitud

FIG. 1. Experimental setup; FPC is a fiber polarizatio
controller.
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FIG. 2(color). Measured polarization evolution frequency,D,
as a function of the angles of the intracavity polarizatio
controllers,Q1 and Q2, for (a) high pulse energy and (b) low
pulse energy. Colors representD, which can be mapped into
round-trip retardance (both are shown on the scale). Gray
black regions are where the polarization is locked.

and orientation of the axes varies within the cavity, th
variation occurs on a length scale much shorter than
soliton period [2]; hence, the soliton responds only to t
average birefringence. This is in contrast to transmiss
experiments where random changes occur on length sc
long enough for the soliton to adjust adiabatically.

To measure the round trip retardance in the las
cavity, we pass the output through a linear polarizer a
detect it with a fast photodiode [19]. The radio-frequenc
(rf) spectrum of the resulting electrical signal display
a harmonic comb spaced by the1ytc, where tc is the
cavity round-trip times,20 nsd. Each peak in the comb
also has sidebands, with an amplitude that depends
the linear polarizer orientation, but a spacing that do
not (typical data are shown in Ref. [19]). We call th
frequency spacing,D, between the harmonic comb an
the sidebands, the polarization evolution frequency (PE
The round-trip birefringence,b, is related toD by b ­
2pDtC and g by g ­ pDtCyl, where l is the cavity
length. In Fig. 2,D is plotted as a function ofQ1 andQ2
for two different pulse energies (controlled by the pum
power). The basic structure of this plot is determined
linear birefringence [19].

There are several regions in Fig. 2 where the pola
ization is locked (i.e., the sidebands vanish) for all or
entations of the polarizer and settings of a second fib
polarization controller (FPC-2 in Fig. 2). These region
are indicated by gray or black. This behavior does not o
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cur if the laser is operated cw. Comparing Figs. 2(a) a
2(b), it is clear that the size and positions of the locke
regions depend on pulse energy. These two facts pr
the locking arises from nonlinearity.

To determine which of the mechanisms describ
above causes the locking, we used a polarization analy
to measure the output polarization in these regions. T
first fiber polarization controller (FPC-1) compensates f
the birefringence in the fiber between the output coup
and the polarization analyzer.

Measurement of the polarization shows that some
the locking regions are linearly polarized (denoted b
black in Fig. 2) while others are elliptically polarized
(gray in Fig. 2). A linearly polarized output state sugges
the axis instabilities described above. To verify thi
we must determine the orientation of the principal ax
in the laser cavity. We do this by examining th
rf spectrum for cw operation and adjusting the line
polarizer before the photodiode to null the PEF sideban
which occurs when the polarizer is aligned along
cavity principal axis. (FPC-2 is used to compensate f
all birefringence between the laser and the polarize
This can be understood by decomposing the pulse i
components along the principal axes of the cavity, whi
have slightly different indices and, hence, round-tr
times. The polarization evolution, and, hence, the
sidebands, arises from beating between the orthogo
components when both are sampled by the polariz
Thus, when the polarizer is aligned along a cavity ax
the beating and sidebands vanish. This reveals that
the black regions, the output is linearly polarized along
cavity axis, as shown in Fig. 3. However, no informatio
is obtained about which axis is the fast axis. Furthermo
arguments about which axis is stable and modified
the periodicity of the laser cavity. Nevertheless, w
confidently assign the black regions with a fixed, linear
polarized output to an axis instability.

FIG. 3. Angles of the cavity axis and linearly polarized outp
versus paddle angle,Q2, for a fixedQ1 of 34±.
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FIG. 4. Measured relative amplitude and phase of the co
ponents along the cavity principal axes versus total cav
retardance,b.

The elliptically polarized output observed in the gra
regions in Fig. 2 has nonzero components along bo
principal axes, a requirement for a PLVS. To verif
that the pulse is a PLVS, we completely characteri
the polarization state by measuring both the amplitu
of the components along the principal axes and relati
phase. These parameters are obtained by transforming
polarization state measured by the polarization analyz
into the coordinate system of the cavity principal axe
which are measured as described above. The resu
shown in Fig. 4, prove that the relative phase between
components is fixed atpy2, while the relative amplitudes
vary with cavity retardance. The relative phase is bistab
in that a phase of2py2 is also observed [15].

To understand this, we examine how the combin
effects of the nonlinear index of refraction (SPM an
XPM) and coherent energy exchange compensate for
birefringence and stabilize the relative phase of the tw
components. The compensation of the birefringence
straightforward. If the power distribution between the tw
components is correct, the difference in their nonlinear i
dices renders the fiber effectively isotropic (the comp
nent along the fast axis must have higher relative pow
which increases with increasing retardance). The calc
lated differential nonlinear phase shift based on the da
in Fig. 4 agrees with the linear retardance, confirming th
compensation occurs.

In addition to having the correct power distribution
there must be a mechanism for maintaining the precise d
tribution. Coherent energy exchange combined with t
differential nonlinear phase shift provides such a mech
nism. Coherent energy exchange is phase sensitive,
zero for a6py2 relative phase. Close to6py2, it causes
energy to be transferred to the component with advanc
phase. This energy transfer causes the nonlinear inde
that component to increase, thereby reducing its phase
locity. The reduction in phase velocity corrects the in
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tial advanced phase. This combination of effects provide
a negative feedback mechanism that stabilizes the relat
phase at6py2 and the relative intensities such that the dif
ferential nonlinear index for each component compensat
the linear birefringence. Therefore a steady state situati
will occur for a relative phase of6py2, exactly what our
measurements show. The results in Fig. 4 therefore co
stitute proof that a PLVS exists in the laser cavity.

Since the smaller component of the PLVS is along th
slow axis, we can identify the fast axis within the PLVS
region. By carefully tracking the axes as we adjustQ1 and
Q2 away from the PLVS regions and into a linearly locked
region, we confirm that the linearly locked output is aligne
along the slow axis. This confirms that these regions resu
from the fast axis instability. This measurement provides
more convincing demonstration of the fast axis instabilit
than the earlier measurements [7].

In summary, we have experimentally observed phas
locked temporal vector solitons in optical fiber. Thes
solitons have been the subject of substantial theoretic
work. We are able make these observations by usin
a low perturbation fiber laser, which provides a goo
approximation to a conservative system.
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