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We present a three-dimensional simulation of Rayleigh&Be convection in a large aspect rafie- 60 with
stress-free boundaries for a fluid Prandtl number0.5. We find that a spatiotemporal chaotic stgibase
turbulence emerges immediately above onset, which we investigate as a function of the reduced control
parameterfe. In particular we find that the correlation length for the vertical velocity field, the time averaged
convective current, and the mean square vorticity have power law behaviors near onset, with exponents given
by —1/2, 1, and 5/2 respectively. We also find that the time averaged vertical velocity and vertical vorticity
fields have the sam@lisorderegl spatial characteristics as the corresponding instantaneous patterns for these
fields, and that there is no long-term phase correlation in the system. Finally, we present simple theoretical
explanations for the time averaged convective current as a function of the control parameter, and for the fact
that the time dependence of three global quantitbsiracterizing the dissipation of kinetic energy, the release
of internal energy by buoyancy, and entropy flow essentially the same.

PACS numbgs): 47.54:+r, 47.20.Lz, 47.20.Bp, 47.27.Te

I INTRODUCTION results is that, since no particular horizontal wave vektisr

chosen as an orientation for steady parallel rolls, all of them

lona and rich historv. with many important experimental (whose magnitudes a|IE|~kC, wherek, is the onset wave
along a ch history, any important €xperimenta '‘numbej have to compete near onset. Consequently, the con-
theoretical, and simulation results obtained only in the past

decade[1,2]. In Rayleigh-B@ard convection, a thin fluid vective stat_e is chaot_ic in time at z_irbitrarily small Reynold_s
layer of thicknessd, confined between two horizontal paral- numbers, with an arbitrary orientation of the wave vectors in
lel plates, is heated from below. When the temperature gifihe isotropic plane of the fluid. For this 'a“ef reason, the
ference reaches a critical value AfT, at which the buoy- pherjomenon is termed phase turbulence. _T_hls transition to
ancy force exceeds viscous and thermal dissipation, the fluigPatiotemporal chaoeSTC) occurs at the critical Rayleigh
undergoes a transition from a spatially and temporally uniumberR, where the b_|furcat|on from the conduction state
form conduction state to a two-dimensional convective pari® an ordered convection state usually takes place. Thus
allel roll state with a characteristic lengkh~ 2d. In general, ~Phase turbulence provides another example of a direct tran-
the dynamics of a convective system depends on three p&ition from a spatially uniform stationary state to STQ.
rameters: the Rayleigh numbBr which represents the rela- Other cases include the "Kpers-Lortz transition[8] in

tion between the buoyancy and dissipative effects; thdRayleigh-Baard convection, the Feelericksz transition in
Prandtl numbero of the fluid, which represents the ratio liquid crystals[9,10], and certain one-dimensional models of
between the kinematic viscosity and the thermal diffusivity; STC. Tribelsky[11] showed that such direct transitions to
and the geometrical parameter of the container size an8TC occur as a consequence of the existence of a Goldstone
shape. Busse extensively studied the stability domain of twomode (and an associated, slowly decaying “Goldstone
dimensional straight parallel rolls as a function of wave num-and”) in the system. The Goldstone mode results from an
berk, and Rayleigh numbeR for many Prandtl numbers  additional continuous symmetry in the system beyond the
in a laterally infinite system. He calculated the stability ysual translations of the space-time coordinates. The chaos
boundaries now known as the “Busse Balloop3]. It is  ghserved in such cases may be interpreted as a dynamical
well knO\_/vn that in a laterally infinite system with r_|g|d-r|g|d analog of second order phase transitions, with the order pa-
boundaries at the top and bottom plates, there exists a stablg,neter related to the amplitudes of turbulent modes. For this
tlme—lnd'ependent straight parallel roll state near the onset %ason it has been callebft mode turbulencfl0]. In the
convection for all Prandtl numbers. However, in the case .40 of hhase turbulence discussed here, the Goldstone band

of free-freeboundaries at sufficiently low Prandtl numbers ; :
(0<0.543), Zippelius and Siggied,5] and Busse and Bol- describes the slow relaxation of the longwavelength modes

ton [6] in the early 1980’s discovered that parallel rolls are©f the vertical component of the vorticity (where w=

unstable with respect to the skewed-varicose instakifity ~ V>Xu with u the local fluid velocity.

mediatelyabove onset. An interesting implication of their  In this paper, we report the results of a three-dimensional
numerical study of phase turbulence idaage aspect ratio
Rayleigh-Bmard cell with free-free boundary conditions.

*Permanent address. This study is based on the Boussinesq approximation to the

The classical problem of Rayleigh-Bard convection has
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hydrodynamic equations, and is an extension of work pre- aﬁ/at+(ﬁ~ﬁ)ﬁ=—ﬁp+aaé +oV20 ()
sented in an earlier publicatidid]. There are two aspects of z ’
this study that are worth noting. First, phase turbulence only 9019t +0-¥ 0=%20+WR 3)

occurs for large values of the aspect rafiesL/d, whereL
is the horizontal dlmen§|o_n ardtlis the thickness of the fluid wherep is pressure anéz is a unit vector in the verticat

'ayeT- If the aspect rqqo is smalsuch as the case in eaf'y direction. In Egs.(1)—(3), length and time have been made
studies of the transition to temporal chaos in Rayleigh- ’

” , ) dimensionless in terms of the thickness of fluid lagieand
Benard convectio) the spatial degrees of freedom are SUP“the vertical thermal diffusion timery=d? k, respectively.

pressed, an_d phase turbulence does not occur. Second, ph%% velocity, pressure, and temperature have been rescaled
turbulence is an example @feak turbulencea term some- by dirg=rld, p(dirg)?=pr2/d2, and AT/R =xvlagd®

times used to describe spatiotemporal chaos in a weakl
driven system, i.e., one for which a control paraméirethis
case the reduced Rayleigh numb&T(—AT.)/AT.] is of
order 1 or smaller. This weak turbulence differs from the
fully developed, strong turbulence flow, in which the energy
is distributed over a large range of spatial and temporal

Vespectively. Herex is the coefficient of thermal expansion,

k is the thermal diffusivityv is the kinematic viscosityp is

the fluid density, ang is the acceleration due to gravity. The
dimensionless control parameters for the problem are the
ﬁayleigh numbenr,

scales. The pha_se turbulence flc_JW we discuss here has about R=aATgd vk, (4)
90% of its kinetic energy contained near the wave number
K|~k . and Prandtl number,

The paper is organized as follows: In Sec. Il we discuss —) ®)
the model, and give a brief discussion of our numerical tech- Tk,

niques. In Sec. lll, we present quantitative results charactefgnere AT is the imposed temperature difference. In the ide-
izing the spatiotemporal chaotic patterns, including theyjizeq |imit of a laterally infinite system with free-free
power spectrums for the vertical velocity and vertical Vort'c'boundary conditions, the critical Rayleigh numbé&;

l C

ity fields. We also show that the time averaged vertical ve-_ 274 _ ;
. ; AT ; =277*/4 and the onset wave numbler= 7/+/2. In this pa-
locity and vertical vorticity fields have the same disordered er, the Prandtl number is chosen to e 0.5, with Ray-

spatial characteristics as the corresponding instantaneous p igh numbers in the range <0e<0.5, where e=(R
terns for these fields. This implies that there is no Iong-term_R )IR, is the reduced Rayleigh nur.‘nt,)er We use mesh
C C "

phase correlation between patterns. . _ X .
In Sec. IV, we give a detailed analysis of various space—pomts NeX Ny X N;=256x 256X 18 and uniform grid size

. . . Px=Ay=60/256, andAz=1/18. The system sizes atg
time averaged global quantities as functions of the contro:N A=L.=N.A. =60 andL.=N.A.=1. Thus the aspect
parametele. In particular we find that the correlation length I A zo s P

for the vertical velocity field, the time averaged convective;?#lzlgéotge system I(=L,/Lz=Ly/L;) is I'=60 in our

current, and the mean square vorticity have power law be- The well-known marker-and-celMAC) [12,13 finite-

haviors near onset, with exponents given by/2, 1, and diff hni . loved i iulati Th
5/2, respectively. In Sec. V, we present results for the temerorence technique s employed in our simulation. The
’ : C .. _MAC method uses pressure and velocity as the primary de-

. . R s %endent variables, with the velocities, temperature, and pres-
which characterize the dissipation of kinetic energy, the re- ' - " .
lease of internal energy dus to buoyancy, and t% flow opure located at the staggered mesh points. The basic solution

entropy, respectively, and the vertical velocity at two differ- algonthm Is accurate to' first orde_r in time and to second

ent positions n Sec, VI, we provide a simple theory to eX_order in space for a unlf_o_rm spatial mesh. The stress free
. C S . free-freg boundary conditions at the upper and lower sur-

plain the behavior of the time averaged convective current hces(z=0.1) are

a function of the control parameter and the fact that the three '

global quantities have almost identical temporal behaviors. au v

In Sec. V we give a short discussion of our results. w= E:E:O' (6)

Il. FORMULATION AND NUMERICAL PROCEDURES The boundary condition for the velocities at the sidewalls is

. . . : chosen to be no slifrigid), i.e., the normal velocity and the
In our three-dimensional simulation, we assume that th?angential velocity at the sidewalls are zero

fluid satisfies the Boussinesq approximation. In this approxi-
mation, the temperature dependence of the fluid parameters G|B:0 @
(such as kinematic viscosity and thermal diffusiyitg ne- '

glected, except for the thermal expansion effect responsiblghereB denotes the boundary of the sidewall. The boundary
for buoyancy. In the energy balance equation the viscougonditions for the temperaturé on the upper and lower
dissipation term is also neglected in comparison with theyalls (z=0,1) and at the sidewalls are given by

conductive term. The dimensionless Boussinesq equations,
which describe the evolution of the velocity field
=(u,v,w) and the deviation of the temperature figldrom

the conductive solution, can be written as

a6
z=0,1_07_n

=0, ®

B

L wheren is normal to the boundary of the sidewall. Thus the
V.u=0, (1) temperature is fixed on the upper and lower walls, while the
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sidewalls are insulating. The time step required for numerical
stability is determined by a standard linear stability analysis.
For given Rayleigh numbeR and Prandtl number<1, we
obtain
1 1 )
o 141/ A2+ J0.5Re I+ 2(0 1-1)2A7 %)’
€)

where A "?2=Ax"2+Ay 2+ Az 2. For Ax=Ay=60/256, -

Az=1/18, 0=0.5, and R~R.=277%4, we have At= @ (b)

3.1x10° 4 o , , ,
To check our code, we have performed various tests. He% FIG. 1. (a) A typical instantaneous image of the vertical velocity

At<

we present two examples. In the first case, we reproduced tHg'd 2t the middle plane of the cel(x,y,z=1/2{) with ¢=0.1.
steady parallel roll state near onset, by numerically solving ark regions correspond to hot rising fluid and white regions to
the time-dependent three-dimensional hydrodynamic equ old de_scending fluic(b_) The corresponding structure facts(k,t)
tions. The system was chosen to have an aspect ratio ¢ff (N€ instantaneous image, where the axeskare, andk, /..
(60:60:1) and a Prandtl number of 5.0, with free-free bound- he structure factor is the power spectrum in Fourier space.

ary conditions. We compared our numerical results for thet . imuthally. Fi 5 <h th ding i
maximum vertical velocityw,, ., for several different values ropic az(;mu da y: '?#rﬁ S OWSd € corresponding time
of the control parametes, with the theoretical values given averaged and azimuthally averaged power spect8(k).

by Ref.[14]. Our results are in very good agreement, i.e.,We see that the power spectrum is skewed and peaked at a
within 1.5% for 0<e<0.15, with the differences increasing wave numbelkma?(< Ke . . Lo

with increasing epsilon, as one would expect, since the In order to estimate the degree of spatial correlation in an
theory begins to break down for larger In the seéond e Instantaneous pattern, we also calculate the spatial autocor-
ample, we checked our code by comparing results with théel"?‘ﬁor_1 fun(_:tion for the vertical velocity(x,y,z=1/21),
numerical work of Kirchartz and Oertgl5]. These authors which is defined as

numerically studied steady cellular convection using rigid- - -, S, - -, -,

rigid boundary conditions with a Rayleigh number of 4000 Clr o =(w(r" Hw(r’+r.H){w(r’.Hw(r’,1), (10

and a Prandtl number of 0.71, for an aspect ratio of @ 1D R

system. We used exactly the same system with rigid-rigidvherer =(x,y) and the bracket) denotesf/dx’dy’. [This
boundary conditions, with similar grid pointéwve used spatial autocorrelation function is of course related to the
84X 36x 18; they used 8% 33x17). The agreement of our structure factor in Fourier space by the relati@qr,t)

results with thei.rs for .the vertical 'velocityv(x,ylz 2z ZEQS(IZ,t)eprIZ- f). These two methods are equivalent
=0.5) as a function ok is excellent[Fig. 8(b) in their pa-  5vs to analyze the spatial patteirighe time averaged and
per]. azimuthally averaged spatial autocorrelation functix{mn) is
shown in Fig. 3. This reveals a sharp central peak and a
. CHARACTERIZATION OF SPATIOTEMPORAL decaying oscillatory tail, and the peak-to-peak amplitude of
CHAOS the oscillatory tail can be approximated by a decaying expo-
ential exp(-r/&). The correlation lengtli~2.36d obtained

We first discuss the structure factors, spatial correlatio SOEL TS . X
P rom this fit is in reasonable agreement with estimates ob-

functions, and correlation lengths for the vertical V(—jlocnytained from defining a correlation length from the variance of
and vertical vorticity fields, respectively, for one value of the 9 9

control parametee=0.1. The detailed description of several the power spectrun&(k) in Fourier space, which is
space-time averaged global quantities as a function of the
control parametee is presented in Sec. IV.

A. Vertical velocity field 20 F}j

Figure Xa) shows a typical instantaneous image of the
vertical velocity field at the middle plane of the cell 151 { i
w(x,y,z=1/2t) from the numerical simulation a¢=0.1. }
Dark regions correspond to hot rising fluid and white regions  1g{ ; i
to cold descending fluid. The apparently random pattern is i i
comprised of patches of different locally orientation rolls and i 3
many defects. The number of defects and orientations of the 5T ¢ 5
rolls fluctuates both in time and space. Figu(k) 5hows the # \’\\
corresponding two-dimensional structure fac&(k,t) for O G s B o ppeeesesgiiensessssepiissrcinng
the instantaneous imagé€lhe structure factor is the power kke
spectrum in Fourier spagedne of thﬂe interesting features is  FiG, 2. The time averaged and azimuthally averaged power
that the intensity of the spectru(k,t) appears to be iso- spectrumS(k) at e=0.1. The dashed line is a guide to the eye.
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-0.6 3 3 FIG. 4. (a) A disordered, instantaneous image of the vertical

( if units of eritical wavelengthy vorticity field at the middle plane of the call,(x.y,z=1/21), cor-
responding to Fig. (g). Dark and white regions indicate clockwise
and counterclockwise rotations, respectivéb). The corresponding
two-dimensional structure factﬂw(lz,t), where the axes ailg, /K.
andk, /K.

FIG. 3. The azimuthally averaged autocorrelation func@gn)
for the vertical velocityw(x,y,z=1/2t) at e=0.1. The diamonds
are the time averaged autocorrelation functidfr) of the instan-
taneous patterns; the pluses are the autocorrelation fur€tionof

the time averaged pattern. The dashed line is a guide to the eye. . . .
However, the maximum value of the time averaged velocity

~2.48 [see Sec. IV C for detailsWe also note that in our is much smaller than the value of each individual image.

earlier work we found that near onset the time averaged
structure factor satisfies a scaling behavior with respect to B. Vertical vorticity field
ch'i‘Z (t:r?er:ri?;l?nngl?unr?(:,[[;(,)r:egnsc(ik\?v/egi;\/[ékn:):(r;]qqgﬁzggd Tr?ereinte Next, we analyze the patterns for the vertical vorticity
gral of S(k) overk space to be unity. Further details of theseTIGId @z, Wherew,=d, — gyu. Figure 42 shows a disor-

; ; , o - ®>%dered, instantaneous image of the vertical vorticity field at
results forS(k) and¢ were given in our previous publication 1o middie plane of the celb,(x,y,z=1/21), corresponding

71 . N . to Fig. 1(a). Dark and white regions indicate clockwise and
Another interesting issue is whether the structure of g erclockwise rotations, respectively. One observes that

timg-averaged pattern is a featureless disorde“?d state or hgs, vorticity field is interspersed with many defects, and that
an inherent ordered symmetry. Although each instantaneoyg. gefects fluctuate both in time and space. Figuis 4

g?gleer?i:ﬁehiag\?é¥adizgrd§:t(ae?ﬁ?§ sgf&nggvﬁ(i)%a)sltg: nearzgirre\ Oshow the corresponding two-dimensional structure factor
geap - oep 9 (IZ,t), which reveals a broad azimuthally isotropic central

whether or not there is a phase correlation between eac ) i ;
pattern, the time-averaged pattern can either display a sp eak and a decaying ‘6!"- Figure 5 shows the corresponding
tially periodic or spatially disordered pattern. For example, ime averaged and azimuthally averaged power spectrum
in the Faraday wave experiment, where a layer of fluid withsw(k)' We see that the power spec.trum has a broad peak at
small wave number& and a decaying tail for large wave

a free surface is periodically driven in the direction normal to berk The ti d and azimuthall d
the surface, the time-averaged spatiotemporal chaotic image mbers. 1he ime averaged and azimuthally averaged spa-
tial correlationC,,(r) is shown in Fig. 6. This shows a

show strikingly regular structurefl6]. In order to see . .
whether the time averaged patterns show any spatial order fi1a'P_localized central peak, and yields a decay leggth

our system, we investigated the time averaged pattern for thg 0-8% obtained from fitting to exptr/¢,). This value is
vertical velocity field(w(x,y,z= 1/2)) again in good agreement with the val§ie=0.8481 obtained
7 n from the variance o8, (k).

1 (T
<W(x,y,2=1/2)>T=$ J w(x,y,z=1/21)dt, (11 8
0
7
where the bracket¢); denotes the time average. Qualita- 6 }
tively we observe that there is no significant difference be-

tween the time averaged pattern and a typical instantaneou 5
pattern. Both patterns are highly disordered in real space ang) A
are approximately isotropic azimuthally in Fourier space. In
order to study quantitatively the time averaged pattern, we 3}
calculated the spatial autocorrelation function for the time
averaged pattern, and compared this with the time average
autocorrelation function of the instantaneous patterns. Figure 1]
3 shows the two azimuthally averaged autocorrelation func-
tions. We observe that the two functions are almost identical. 0 05 1 15 2
This suggests that the time averaged pattern has the same

spatial characteristics as a typical instantaneous pattern, and FIG. 5. The time averaged and azimuthally averaged power
that there is no long-term phase correlation in the systemspectrumS,(k) at e=0.1. The dashed line is a guide to the eye.

55 - e
k/ke
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FIG. 6. The azimuthally averaged autocorrelation function FIG. 7. The mean square vorticiti€d2s vs e (diamond and

C,(r) for the vertical vorticityw(x,y,z=1/2f) ate=0.1. The dia- (325 vs € (plug). The dash-dotted line is the fitting form 612°
monds are the time averaged autocorrelation fundig(r) of the =5.47e.
instantaneous patterns; the pluses are the autocorrelation function

C,(r) of the time averaged pattern. The dashed line is a guide to L
the eye. +0.03, which is much larger than that of a parallel roll state.

A theoretical explanation for this behavior is given in Sec.
OEE/I. Near the onset of convection the Nusselt number is also
the vertical vorticity fieldw,(X,y,z=1/2}). As in the case of xl(f)sfe[l\)l/v(rf I;tsi i(/)ztgizgirél;il\ v$|ﬁggy;§|%aig<ﬁ(§§mg

the vertical velocity pattern, we find that there is no signifi- _ 2
cant difference between the time averaged pattern and a typi- 1/21)%) e, (where() denotes (IT) d{(1/A) fdxdy).

cal instantaneous pattern. Both the time averaged vertical
vorticity image and each instantaneous image have the same
random appearance in real space. We also calculated the spa-We now investigate another global quantity, related to the
tial autocorrelation function for the time averaged patternyertical vorticity field, as a function ot. We define this
and compared it with the time averaged autocorrelation funceuantity Q,p and(;p in two and and three dimensions as
tion we obtained above. Both the azimuthally averaged cor- L

relation function for the time averaged image and the corre- 2

sponding time averaged and azimuthally averaged Qap(O)=2 f f wz(X.y,z=1/21)dxdy,
correlation function for the instantaneous images are shown
in Fig. 6. We find that the two functions are almost identical,
as we found for the vertical velocity.

We have also investigated the time averaged pattern f

B. Mean square vorticity

(12

1
=y [ [ [ ottxy.znaxaydz a3
IV. SPACE AND TIME AVERAGED QUANTITIES
AS FUNCTIONS OF THE CONTROL PARAMETER

In this section, we investigate various space and time avrespectively, wherey,= (ﬁx G)zz dxv — dyu. HereA andV
eraged global quantities as a function of the control paramare the horizontal area and the volume of then&d cell,
eter. In particular, we examine the Nusselt number Nu, theespectively. Clearly{),,=Q,,=0 in a parallel roll state,
spatial correlation lengths for the vertical velocity and verti-since u(x,y,z,t)=u(x,z,t), v(X,y,z,t)=0, andw(Xx,y,z,t)
cal vorticity fields, and the mean square vorticify, as a =w(X,z,t). Qop(X,y,z=1/2}) is reminiscent of a Kolmog-
function of e. orov energy formulation in two-dimensional flow systems
[17], in which Q acts as a ‘“vorticity energy.” This mean
square vorticity may also serve as an order parameter which
characterizes the transition from an ordered two-dimensional

The Nusselt number Nal+(w6)/R is the ratio of heat parallel roll state to a spatiotemporal chaotic state. These
transport with and without convection, and is closely relatedunctions can both be fit by a power law behavior, given by
to the conversion of potential energy into kinetic energy as<>2 The resulting straight lines of the best power-law fit
sociated with the transfer of heafw#). Here bracketg) Q35 vse andQ3p vs e are shown in Fig. 7. From Fig. 7, we
= [dxdydzV denote a volume averaging over the entirenote that the results fdi,, andQ sy are virtually the same.
system. The convective curreditof the system is given by This suggests that the vertical vorticity,(x,y,z,t) is inde-
(Nu—1). Itis well known that for a steady parallel roll state, pendent of the vertical variable This is exactly what one
the convective current increases linearly witty, near the  would expect, since Zippelius and Sigdié5] showed that
onset of convection, wherg,=0.5 for free-free boundary the leading contribution to the vertical vorticity is indepen-
conditions. We find that the time averaged convective curdent of z. However, a theoretical explanation of the power
rent in phase turbulence is consistent with a linear relationlaw behavior €2 is much more complicated and will be
i.e., ((Nu—1))r=el/gpy. However, we havegpr=1.27 presented elsewhefé8].

A. Nusselt number
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1 . . . . . . . to obey a simple power law behavior, &gloes. More data
095l | close toe=0 are needed to reveal its asymptotic behavior.
09} i\g y V. TEMPORAL BEHAVIOR
085 % A. Global variables
*os I\‘}\ 1 Before presenting the results of our simulation of the tem-
075k LN | poral behavior, we first consider some general hydrodynamic
§\§‘\i‘ and thermodynamic relations which prove useful for a de-
07t TR ] scription of Rayleigh-Beard convection . We take the scalar
0.65} TEee o product ofu, and both sides of the momentum equatiEq.
B (2)], and multiply both sides of the energy equatj&m. (3)]
0.6

0 01 02 03 04 05 06 07 08 by 6. We then add the resulting equations term by term and

€ integrate over the whole system. Taking into account the

FIG. 8. The correlation lengtlj,, of the vertical vorticity field ~boundary conditions as well as the incompressibility condi-
w,(X,y,z=1/2}) vs . The dashed line is a guide to the eye. tion, we obtain the evolution equation

C. Correlation lengths d

| ) GKO=IF1(O=Fo()]~[Fs)=Fut)], (17
Spatiotemporal chaos generally results from a breakdown

of global spatial coherence. However, a macroscaopiver- . . 1,0 2 o
ence length-a length scale below which the pattern appeardVhereK(t) is defined a((t)=z(u-u+ 6%), and the brack-
coherent—may still exist. Here we study two such lengths€tS{)=(1/V)dxdydzdenote a spatial average over the en-
namely, the spatial correlation lengths of the vertical velocity!i¢ volume. We note next that the dynamics of the global
w(x,y,z=1/21) and vertical vorticityw,(x,y,z=1/21), as duantity K(t) involves both dissipative and convective ef-
functions of the control parameter We define a correlation fects. Each of these contributions contains an irreversible

length £ via the variance of the structure factor as part: (8) Fy= 5 0((du;/ax;+9u;/9x;)?) corresponds to the
kinetic energy dissipated by viscosity. Hereand j are
E=((K?)—(k)?) 12 (14  dummy indices over which a summation is performed and

ui=(u,v,w),x;=(x,y,2z) (b) F,=o(w®) is the internal en-
ergy released by the buoyancy for¢e). F3=(V §-V 6) cor-
responds to the dissipative thermal energy, i.e., generation of

where(k) and(k?) are defined as

f S(k,t)|k|d?k entropy due to temperature fluctuations) F,=R{w6)
(Ky= (15) =RF,/o represents the entropy flow due to the vertical ve-
' locity.
2
J Stkdk In the special case of a stationary state, one recovers the

conditionsF,=F, andF ,= F3, which are expressions of the

N balance between two competing mechanisms. It is worth not-

f S(k,t)[k|“d*k ing that the Nusselt number Nu defined earlier can be ex-
(k?)= : (16)  pressed in terms dof, as Nu=1+F,/(oR). Also, F, and
fS(IZ,t)dZIZ F, are not independent quantities, sinég=RF,/c. Our

main purpose in introducing these global quantities is that

We first investigate the correlation length for the verticalthey Pr'owde us W'tb a simple de§cr|pt|on of “energy bal-
velocity field. Assuming a power law behavior & &o( e ance” in _Rayle|gh-Beard convection, and can be used to
—€:) ", we find that the best fits are=0.472+0.016, &, charaptenze the_ temporal dynamics. -
—0.82+0.04, ande,=0.005[7]. The nonzero value, can It |s/conven|ent ,to rescale tbese guantities, ,Wﬁfﬂ
probably be attributed to the finite size of the system. The_ 7ReF1: F2=oRcFs, Fs=RRF;, andF,=RRF,, so
behavior of the correlation length is also consistent with ghat we haves;=F;=F3;=F, in a steady state. We showed
mean field power law exponent of=0.5 and ¢,=0.78.  'epresentative time series of the quantitieg(t), F5(t), and
Note that the value of, is a factor of 3/2 larger than the F3(t) for €é=0.2 in our previous publicatiofi7]. The most
value &, = /8/372=0.52, as calculated from the curvature of iImportant implication of that figure is the apparently chaotic
the marginal stability curve. behavior of these quantities over the time interval that is
While the correlation length of the vertical velocity field accessible to us. Indeed, in our earlier work we used the
w(x,y,z=1/2¢) diverges near onset @s- e~ 2, suggesting Grassberger-Procaccia methfith] to calculate the fractal
a supercritical transition from the conduction state to thedimensionsDy for these quantities, and founB¢=1.42
convective state, the behavior of the correlation length of thet 0.02[7]. We also noted that the time dependence of these
vertical vorticity field w,(x,y,z=1/21) turns out to be quite three quantities is almosexactly the same, i.e.Fi(t)
difficult to obtain. Using the same definition via the variance= F,(t) =F;(t). In fact, this is the case for all the values
of the structure factor of the vorticity field as above, westudied in the range €=<0.5. This is a surprising result
calculate and plot the correlation lengif) as a function ok considering the irregular spatiotemporal state we observed.
in Fig. 8. We find that this correlation length does not appeaiThis result also implies that the quantift=oF3/(2F,
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FIG. 9. The power spectrum of the global quanfity(t) as a FIG. 11. The power spectra of the local vertical velocity
function_gf frequencyf. The dashed line is the fitting form of (2512 11ty as a function of frequency The dashed lines are
P(f)~f"< the fitting form of P(f)~f 2 for largef, and the dash-dotted lines

areP(f)~exd —1.25] for smallf.
—F,)=RF;/(2F;—F), which is often used in a variational
formulation to determine the critical Rayleigh number for the VI. THEORY
onset of convection, behaves as if the system is in a station-
ary state andi=R. This suggests that there are two attrac-
tors for a givene (or R) near onset, one for the steady state,
parallel roll case, and the other for the spatiotemporal chaoti
s:taltztfe(.t;l?:e,((:t.)VI, we provide a theory to explain whi({) modes whose wave number is in the vicinity lof are ex-
2 3lh). . . L=
We conclude this section by noting that we have alsoc'teg- Near onset, it is well known that the velocity field
calculated the Fourier spectrum of these global variables=(u, ,w)=(u,v,w) and the temperature deviatiehcan be
Figure 9 shows this spectrum for the global variablét). It ~ approximated by order parametefér,t) and(r,t) in two-
is interesting to note that this Spectl’um behaVeSﬂiT(% (Cf dimensional spacé mu|t|p||ed by known,z_dependent pref-

the dashed linefor large frequencies, which is characteristic actors. More precisely, one may take as an approximation
of random Browian motion. that[20-22

Finally, we present a simple theory to explain the fact that
F1(t)=F4(t)=F3(t) and to evaluate the time averaged con-
yective current, which satisfie3=e/gpr, in phase turbu-
lence. Our theory is based on the assumption that only those

B. Local variables (U, ,W,0]=[UgV, y+V, L(r,t)xe, Woh, Opts], (18)

It is also useful to consider the temporal behavior of local . ) . . .
variables. In particular, we studied the local vertical velocityWNereV. is the gradient operator in two-dimensional space,

w(x,y,zt) as a function of time at two different spatial and the prefactors for free-free boundary conditidas z

points. Figure 10 shows the time series for the vertical ve=0:1) are
locity w(25,12,13). The power spectrum for this local vari- Ug(2)=2+Bcogmz), Wy(2)= 37 sin(m2)
able is very different from that for the global variable, as can
be seen in Fig. 11. At low frequencies it behaves like 00(2) = (9373/2)sin( 7). (19)
exp(—1.25f), and at large frequencies has the same form of
f~2 as for the global variable. With this approximation, it is straightforward to show that
8 — T L F1(t)=(2/9)00— (10/97%)0, + (8/97%)0,,  (20)
6l
. J F2(t)=0, (21)
2 h m ] F4(t)=(2/3)00— (2/37)0y, (22)
W(t) 0} - | 1 - o — . 4
' where we have applieB=R.=277"/4 and
-2
al On:A’lf dri(V3)"y. (23
6}
Now assume that only those modes which are in the vicinity

850260 450 500 550 600 650 700 750 800 850  of k.=m/+\/2 are excited near onset. One may thus replace
time in units of vertical diffusion time 2 2 .
Vi——kg. This leads to

FIG. 10. Time series of the local vertical velocity
W(25,12 1 1. F1()=F3(t)=F4(t)=0, (24)
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in agreement with our numerical result. Note, however, thatvhere o(t) and ¢(8;,t) are the amplitude and the phases
the power spectrungstructure factor of the excited modes of the selected modeg=k. and B;(t) are the amplitude,
has a finite width. Consequently, these three quantities arand the angles of their corresponding wave numbers, while
not exactly the same. M is the total number of the modes andis the angle be-
~Within the approximation of Eq.(19), the three- tween kK and some reference direction. Since -NU
dimensional hydrodynamical equatio®)—(3) can be ap- =3¢ f//(lz,t)|2=M¢//S(t) has a well-defined time averaged

Ergr)](gp]ggd(@bsywﬂrfo dt;,\ll([)é%iTZeg Si?]n,?r:e %agﬁlr?rl:z?jgl ?r\:\(/al ft'value with small fluctuationf7], we expect the same behav-
9 ' ' ior for iy(t). But we speculate that both the phagds; ,t)

order paramete(r,t) satisfies and the angular distributiod;(t)} are random in time,
I - hich leads to the spatiotemporal chaotic behavior in phase
0. e (£2/4K2) (%2 + K22 ey — _ w . A )
Tl 0l t+ UV, g1 =Le= (&o/ake) (ViHke) Ty N[:/(/%S) turbulence. Note that this form afi(k,t) is also consistent
with the corresponding one for steady states. For example,
Here U(r,t) is the mean flow velocity given byj(r,t)  Onehasv=2, gip=const,¢(B;,t)=const, angs; =i with
_v g(Ft)xé in which i=0 and 1 for a parallel roll state, and =6, ¢,=const,
L5 z ¢(B; ,t)=const, and3;=im/3 withi=0,1, ...,5 for ahex-
L ¥2182s_n 2 IF (62 v agonal stat¢21]. For phase turbulence, we také— + .
= . X . . .
[olot=oVIIVIE=0gme, [VL (VI XV.oy]. (26) We now use this model to calculate the time averaged

The nonlinearN[ ] term has been evaluated in Fourier convective current from Eq29). The first term can be easily
space at onsé®1], evaluated asJ. Note that there are only three possibilities

for the constrainiz1+I22=I23+IZ4 in the second term to be
NLYI(K)= 3 (k- Ko (Kp ) f(Ka ) K+ Ky~ Ky 1), Satisfied on aring(@ If ki +k,=0, thenks +k,=0. (b) if
Ky K3 ki#k, andk,+k,#0, then eitheky=k; andk,=k, or kg
(27) :IZ2 and IZ4:|21; or, (C) |f IZ:L:Ez, then |23:|Z4:|21. It iS
more convenient to express these constraints in terms of

where y(k,t) is the Fourier component af(r,t) and the  heir angles, which can be summarized, correspondingly,

coupling constang(cosc) is given in Ref.[21] with « the

N o as (a) 5a L +7760z St (b) (1_5a Jaq
angle betweerk andk,. For free-free boundary conditions, 5 (5 s s s ) and ©
one hasry=2(1+0 )/372, ¢3=8/372, andg,=6. The “2’”‘15 “3'21 QMZN 392 ”“."“1;5 30) into th q
time averaged convective currei (Nu)r—1 is given by az.a9az,a;9a, 0, NOW inSerting Eq(30) into the secon

term of Eq.(29), and applyingp(8;+ 7) = — ¢(B; ,t) [since

1( - . f e #* (k,t)=¢(—k,t)] and these constraints, after some alge-
— 2 _ s y '
J= AJ dr (¢ (r't»T_zﬁ (P (kD )r, (28 bra one finds that the second term is simply

—MZ?gy(¥(t))r with
where ( )r=T1[dt denotes time average. To calculake

we multiply both sides of Eq(25) by w(F,t) and then take

- . . . . 2 1
the spatial and time averages. This leads to, in Fourier space, — Nl R
gm=0( 1>(1 M) VRS
> [e= &= KkD)ZAZN( P (KO (K, ) 2 M
k gz 2, (gleosBi( =B (3D
- _Z ) Q(Rl'Rz)
Ky Ko .Kg Ky .
R, Here we have decoupledy(t))r and (g[codp;(t)
X(W* (ke ) Y™ (Ko ) (ks ) (Ka )70k 4k, kv k, = B;(1)])r. Sinced=M(yg(1))r, if one neglects the fluc-
tuations ofiy(t), one has theM?(y*(t))r=J°. From Eq.
=0. (29 (29), this leads to the solution for the time averaged convec-

o . ) tive current
Note that the contribution from thd -V, ¢ term in Eq.(25)

can be converted into a surface term which vanishes under

boundary conditions. J=€lgy, (32
We now propose a simple model for phase turbulence.

We assume that a phase turbulent state is composed of many

parallel rolls, whose wave numbers lie on the ring|kf  in addition to the conduction solutiod=0. This solution

=k., and whose amplitudes are all equal, but whose phasg€produces the known resu[1] for both parallel rolls with

and whose orientations are random in time. More preciselyg,=g(—1)+ 39(1) and hexagons withgs=2[6g(—1)

we assume that +4g(—3)+49(3)+g(1)]. For phase turbulence, we ex-
M peC'F thatg; (t) — B;(t) distrib-utes ’\L/Imiformly betV\;ee[rO,qu].
R = (1) S, i6(Bi 1) 5 , 30 Taking M—oo and replacing=;Z;—(M/27)[§"da, one
Yk =o(1) k'kCZ'l © @b 30 finds from Eq.(31) that
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chaotic pattern as functions of the control parametefhe
spatial two-point correlation length for the vertical velocity
field is consistent witE~ e~ Y2, while the spatial correlation
length for the vertical vorticity requires further investigation.
We also found that the time averaged convective curdent

whereo is the Prandtl number, and the explicit formula for and the time averaged vorticity currefit have power law
g(cosa) is given in Ref.[21]. For o=0.5 as in our study, behaviors given by~ e€'? and 1~ €2 Finally, we pre-
this simple theory gives= e/gpr With gpr=1.2313, very Sented an argument which predicts that three global quanti-
close to our numerical resulfp7=1.27+0.03, as discussed ti€s Which can be used to characterize the energy balance in
in Sec. IVA. Considering all the approximations we havepPhase turbulence should have essen_tlally the same time de-
made, such a good agreement is very encouraging. pendence near onset. We also explained the behavior of the
However, this simple model apparently misses two impor_time averaged convective current as a functiore.0fAn im-
tant features of phase turbuler{d]. The first is the lack of ~Proved version of this calculation which also predicts the
the mean square vorticity. Since &lls lie on a single ring in behavior of the mean square vorticity as a functior ol
our model, the vorticity is identically zero. This, however, is be presented elsewhere. Flnally, we nqte that further study of
not born out by our numerical calculations. Second, thethe_ structure factor f_or the vertical vorticity for larger aspect
structure factor from our numerical calculations has a finitg 210S IS necessary in order to obtain a be_tter understanding
width near its peak position, which leads to a significantOf this function and its associated correlation length.
reduction on the value o8. An improved theory will be
presented elsewhefé8].

2 (m
gpr=9(— 1)+ ;J da g(cosa)=0.855922
0

+0.0458144 1+ 0.0709326 2, (33
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