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ABSTRACT 15 

Tree species can affect the decomposition process through the quality of their leaf fall and 16 

through the species-specific conditions that they generate in their environment. We compared the 17 

relative importance of these effects in a two-year experiment. Litterbags containing leaf litter of 18 

the winter-deciduous Quercus canariensis, the evergreen Q. suber and mixed litter were 19 

incubated beneath distinct plant covers. We measured litter carbon loss, 9 macro- and 20 

micronutrients and 18 soil chemical, physical and biological parameters of the incubation 21 

environment.  22 

Tree species affected decay dynamics through their litter quality and, to a lesser extent, 23 

through the induced environmental conditions. The deciduous litter showed a faster initial 24 

decomposition but left a larger fraction of slow decomposable biomass compared to the 25 

perennial litter; in contrast the deciduous environment impeded early decomposition while 26 

promoted further carbon loss in the latter decay stages. The interaction of these effects led to a 27 

negative litter-environment interaction contradicting the “home-field advantage” hypothesis. 28 

Leaf litter N, Ca and Mn as well as soil N, P and soil moisture were the best predictors for 29 

decomposition rates. Litter N and Ca exerted counteractive effects in early versus late decay 30 

stages; Mn was the best predictor for the decomposition limit value, i.e. the fraction of slowly 31 

decomposable biomass at the later stage of decomposition; P and soil moisture showed a 32 

constant and positive relation with carbon loss. The deciduous oak litter had a higher initial 33 

nutrient content and released its nutrients faster and in higher proportion than the perennial oak, 34 

significantly increasing soil fertility beneath its canopy.  35 
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Our findings provide further insights into the factors that control the early and late stages of 36 

the decomposition process and reveal potential mechanisms underlying tree species influence on 37 

litter decay rate, carbon accumulation and nutrient cycling.  38 

Keywords: decomposition limit value, lignin, litterbag, litter chemistry, Quercus, soil fertility, 39 

plant-soil interactions,  40 

41 
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INTRODUCTION 42 

Differences between tree species litter decomposition have commonly been related to distinct 43 

substrate quality with litter C:N and N:P ratios, lignin content, Ca and Mn concentration 44 

emerging as the main rate-controlling factors (Melillo et al., 1982; Cornelissen et al., 2006; 45 

Hobbie et al., 2006; Cornwell et al., 2008; Güsewell and Gessner, 2009; Berg et al., 2010). But 46 

tree species can also alter decomposition rates indirectly through their effects on environmental 47 

conditions. For example, tree species can induce changes in soil fertility, microclimate and 48 

faunal and microbial communities in the forest floor (Mitchell et al., 2007; Aponte et al., 2010a; 49 

Aponte et al., 2011), all of which influence the decomposition process (Hobbie, 1996; Sariyildiz 50 

and Anderson, 2003; Austin and Vivanco, 2006). The simultaneous effects of trees on 51 

decomposition both through their litter quality and by modifying the environmental conditions 52 

might cause positive litter-environment interactions and further increase decomposition. This 53 

interaction, termed “home-field advantage”, implies litter decomposes faster beneath the tree 54 

species from which it is derived than beneath other plant covers and could be explained as an 55 

adaptation of the local soil communities to the litter produced by the plant species above them 56 

(Negrete-Yankelevich et al., 2008; Ayres et al., 2009). Despite the implication for ecosystem 57 

functioning and carbon cycling, the environment effect of tree species on litter decomposition 58 

has barely been explored and the relative importance of the litter vs. environment tree species 59 

effect on decomposition process still remain unclear (but see (Hansen, 1999; Hobbie et al., 2006; 60 

Vivanco and Austin, 2008).  61 

The litter decomposition process is ultimately driven by specific controlling factors related to 62 

the requirement of the decomposer community and whose availability is partly determined by 63 

tree species. As litter decomposition progresses through time litter quality varies and the factors 64 
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controlling litter mass loss might change (Berg and McClaugherty, 2008). Early decomposition 65 

is often determined by the availability of limiting elements such as N and P whereas in late 66 

stages the carbon loss has been related to elements required to decompose recalcitrant 67 

components such as lignin that accumulate in remaining litter (Güsewell and Gessner, 2009; 68 

Berg et al., 2010). Thus variables controlling the early decomposition stage and nutrient release 69 

could differ from those influencing the proportion of slow decomposing litter and therefore the 70 

build up of soil organic matter and carbon sequestration. Occasionally, the same variable could 71 

have counteractive effects on the early and late stages of decomposition (Berg and 72 

McClaugherty, 2008; Hobbie et al., 2012). For instance litter N is positively related to initial 73 

decomposition rates  (Melillo et al., 1982), but negatively related to late stages decay (Berg and 74 

Ekbohm, 1991). Whereas the factors controlling decomposition have commonly been identified 75 

in studies addressing either the early or late decay stages, few studies have followed the changes 76 

in rate-regulating factors over the same long-term experiment.  77 

The decay patterns of chemical elements in decomposing litter dynamics are highly diverse, 78 

even for litters of a similar type and often reflect the requirements and availability of nutrients to 79 

the decomposer community (Swift et al., 1979; Staaf and Berg, 1982). Limiting nutrients 80 

occurring in suboptimal amounts would be accumulated by the decomposers whereas nutrients 81 

exceeding the needs of decomposers would be released (Laskowski et al., 1995). The analysis of 82 

the amounts and concentrations of nutrients along the decomposition process of different species 83 

litter can reveal changes in the limiting elements over time, reflecting changes in the 84 

decomposition stages and processes and showing the differences in species nutrient cycling. 85 

We aimed to compare the effects that tree species exert on litter decomposition via litter 86 

quality and via environmental conditions and to evaluate whether the factors mediating these 87 
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effects change over time by studying the leaf litter decomposition and nutrient release of two co-88 

occurring oak species: the evergreen Quercus suber and the winter deciduous Q. canariensis. We 89 

previously demonstrated that these species generate significantly different biotic and abiotic 90 

environments beneath their canopy though their distinct leaf litter nutrient return (Aponte et al., 91 

2010a; Aponte et al., 2010b; Aponte et al., 2011).  We studied litter decay using litterbags with 92 

single and mixed species litter since the effects of individual species may differ in mixed forest 93 

conditions as a result of positive, negative or neutral interactions between litter types (Gartner 94 

and Cardon, 2004; Hättenschwiler and Gasser, 2005). Litterbags were incubated in four 95 

microsites: beneath the two oak species, under shrubs and in open areas.   96 

Our specific objectives were four: 1) To investigate the tree species effect on decomposition 97 

via litter quality both in single and mixed species conditions. 2) To evaluate tree species effect 98 

on decomposition via the distinct environment they generate beneath their canopy. We also 99 

tested for a positive litter-environment interaction supporting the home-field advantage 100 

hypothesis. 3) To identify the litter and soil chemical properties that best predicted the decay 101 

parameters associated with different stages of the decomposition process. 4) To analyse the 102 

patterns of liberation and immobilization of chemical elements from the decomposing litter of 103 

the two oak species. 104 

METHODS 105 

Study area 106 

This study was conducted in the Aljibe Mountains, near the Strait of Gibraltar, southern Spain. 107 

The bedrock is dominated by Oligo-Miocene sandstone that produces acidic, nutrient-poor soils 108 

(Palexeralfs), which are frequently interspersed with layers of marl sediments that yield soils 109 
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richer in clay (Haploxererts; nomenclature follows Soil Survey Staff 2010). The climate is sub-110 

humid Mediterranean, with a dry and warm summer period of 3-4 months and most rainfall 111 

(95%) occurring from October to May (Anonymous, 2005). The dominant vegetation is a mixed 112 

forest of evergreen cork oak (Quercus suber L.) and winter-deciduous Algerian oak (Q. 113 

canariensis Willd.). These oak species differ in their leaf fall and litter quality. Leaf fall from Q. 114 

canariensis has a higher nutrient content (Ca, K, Mg and S) than Q. suber, and this difference 115 

induces distinct soil conditions via nutrient return (Aponte et al., 2011). The arborescent shrubs 116 

Erica arborea L., Phillyrea latifolia L. and Pistacia lentiscus L. are abundant in the understorey 117 

(Ojeda et al., 2000). The area has been protected since 1989 as "Los Alcornocales" (meaning 118 

"the cork oak forests") Natural Park.  119 

Two structurally different mixed forest sites, 40 km apart, were selected within the study 120 

area. The site at San Carlos del Tiradero (hereafter called Tiradero) (36º 9’ 46’’ N; 5º 35’ 39’’ 121 

W) is located in the southern area of the Park, near the coast, at 335–360 m a.s.l. on a NE-facing 122 

slope. The mean annual rainfall is 964 mm, and the mean annual air temperature is 16.6 ºC, with 123 

a minimum of 4.1 ºC. This stand has a high density of trees (769 stems ha-1), with a basal area of 124 

47 m2 ha-1. The other site, at Sauceda (36º31’54’’N; 5º34’29’’W), is located inland, in the 125 

northern area of the Park, at 530–560 m a.s.l. on a NW-facing slope. It has a mean annual 126 

temperature of 15.5 ºC, with a minimum of 1.8 ºC, and a mean annual rainfall of 1470 mm. The 127 

tree density at Sauceda is relatively low, with 219 stems ha-1 and a basal area of 22 m2 ha-1. The 128 

two oak species, Q. canariensis and Q. suber, co-occurred at both forest sites (Pérez-Ramos et 129 

al., 2008). 130 

Litter decomposition experiment 131 
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Freshly senesced leaves of the two oak species were collected from a large forest tract near one 132 

of the sites (Sauceda) to minimize within species litter chemistry heterogeneity. The leaves were 133 

obtained by gently shaking the tree branches. The collections were made at the end of March (for 134 

Q. canariensis) and June (for Q. suber) 2007, during the respective leaf-fall periods of the two 135 

tree species. Litter was air-dried and stored at room temperature. We prepared 11 x 11 cm 136 

litterbags (2 mm fibreglass mesh) with approximately 2.00 g of air-dried leaf litter of a given 137 

species or an equivalent mixture of the two species. The exact litter weight of each bag was 138 

recorded in grams with an accuracy of two-decimal places. Six litter bags of each species were 139 

dried at 65°C for 48h and weighed to determine the dry mass conversion that was used to 140 

calculate the initial dry mass of each sample. The bag size was consistent with the average size 141 

of Q. canariensis (7.4 x 3.7 cm) and Q. suber (4.1 x 2.4 cm) leaf litter. The mesh size was 142 

chosen to optimise access by organisms to the litter while minimising particle loss (Karberg et 143 

al., 2008). We placed the litterbags beneath the canopy of six adult individuals of Q. suber and 144 

six of Q. canariensis at the two forest sites (i.e. 4 types of microsite). The footprint of a tree 145 

species on the soil is expected to be more intense within the vertical projection of the canopy 146 

(Finzi et al., 1998a; Bennett et al., 2009), particularly if canopies are segregated, as is the case in 147 

Sauceda. The trees selected had their closest heterospecific neighbour at a distance of 8 m in 148 

Sauceda and at 3 m in Tiradero. In addition, at Sauceda, we located litterbags in two other types 149 

of microsites (with 6 replicates each): under shrubby cover and in forest gaps with herbaceous 150 

vegetation. Litterbags were placed on the surface of the standing litter layer and fastened to the 151 

soil with 15cm long wooden sticks. In all, 432 litterbags (3 litter types x 6 types of microsites x 6 152 

replicates x 4 harvests) were placed in the field in November 2007 and harvested every 6 months 153 
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for 2 years. On each occasion, six replicate litterbags of each litter and microsite type were 154 

collected.  155 

Upon harvest, the litter was removed from the bags, separated from roots and large soil 156 

aggregates, dried (65 º C, 48 h) and weighed. The weight of the remaining biomass was corrected 157 

for the water content of the initial air-dried samples. The leaves from the two species in the 158 

mixed litterbags were carefully separated and were treated independently thereafter. Subsamples 159 

of the initial leaf litter from each species and the harvested litter samples were ground and 160 

analysed for C and N content (using a Leco TruSpec analyser) and for the total concentration of 161 

several nutrients (Ca, K, Mg, P, S, Mn, Cu and Zn) by acid digestion followed by ICP-OES 162 

(Varian 720-ES) determination to asses changes in nutrient content over time. The proportion of 163 

remaining carbon (RC) was calculated by dividing the amount of carbon at any harvest date (C 164 

concentration per g of remaining litter at that time) by the initial amount of carbon (initial 165 

concentration per g of initial litter). 166 

Microsite soil characterisation 167 

Several inorganic and biological properties of the soils beneath the selected trees (Table 1) had 168 

been previously determined in our parallel studies of element cycling (Aponte et al., 2011) and 169 

soil microbial biomass (Aponte et al., 2010b). Briefly, the methods used were as follows. In 170 

November 2006, soil cores 25 cm deep were extracted with a cylindrical auger at each microsite 171 

(6 replicates per type of microsite). We determined soil pH in a 1:2.5 soil:H2O solution. The 172 

available soil P was estimated using the Bray-Kurtz method. The soil NH4
+ was extracted with 173 

KCl (2 M) and determined by steam distillation. The total concentrations of several nutrients 174 

(Ca, K, Mg, P, S, Mn, Cu and Zn) were determined by acid digestion followed by ICP-OES 175 
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analysis (Sparks, 1996). In addition, in May, September and December 2007 we sampled 8-cm-176 

deep soil cores at the same microsites to estimate gravimetrical water content and to determine 177 

microbial C, N and P using a chloroform fumigation-extraction procedure (Brookes et al., 1985; 178 

Vance et al., 1987). For simplicity we use here the values of May 2007, which showed the 179 

largest variability between microsites. These measurements were used to characterize the 180 

incubation sites and determine the best predictors of litter decomposition.  181 

Data analysis 182 

We fitted litter change over time with two alternative decay models proposed by Wieder and 183 

Lang (1982): a single-exponential decomposition model, Mt=e-ket, where Mt is the proportion of 184 

remaining biomass at time t and ke is the decay rate, and an asymptotic model, Mt=m + (1 – m)e-185 

kt where Mt is the proportion of remaining mass at time t, m is the fraction of the initial mass with 186 

a decomposition rate of zero (i.e., the asymptote) and k is the decomposition rate of the 187 

remaining fraction (1–m). The asymptotic model implies that there is a limit value (m) for mass 188 

loss. This value corresponds to a very stable fraction of the litter that decomposes extremely 189 

slowly over the time span of the experiment (Berg et al., 2003). In this study we have used 190 

carbon instead of biomass data to analyse decay rates, and thus avoid the confounding effects of 191 

the interactions between litter and mineral soil. All models were fitted using nls (nonlinear least 192 

squares) function in R freeware (http://www.r-project.org/) and they all constrained the 193 

proportion of initial mass (carbon) remaining at time zero to be 1. Model selection was 194 

performed using Akaike´s Information Criterion (AIC). Models whose AIC values differed by 195 

less than 2 were considered to have an equivalent ability to describe the data.  196 

http://www.r-project.org/
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The dynamics of the element concentrations during decay were analysed using a polynomial 197 

regression model (Y=Bo + Blkt + B2(kt)2) that allowed both the linear and the curvilinear 198 

relationships between the chemical elements to be tested (Laskowski et al., 1995). Y represents 199 

the concentration of the element at time t. The parameters B1 and B2 would be interpreted in 200 

terms of linear or nonlinear (unimodal or U-shaped) relationships, respectively. We used 201 

Standardised Time Units (1 STU=k years) by multiplying time by the decomposition constant k 202 

for every litter type (Laskowski et al., 1995). This approach allowed us to relate the 203 

concentrations of chemical elements to the stage of decomposition rather than to absolute time 204 

and thus to compare the dynamics of chemical elements in litters having different decomposition 205 

rates. The change in the relative amount of chemical elements during litter decomposition was 206 

calculated by dividing the amount of the element in the litterbags at any harvest date (mg of 207 

element multiplied by the g of remaining litter at that time) by the initial amount of the element 208 

(initial concentration multiplied by the g of initial litter). 209 

We used a t-test to evaluate the differences between the forest sites in the decomposition 210 

variables (RC, chemical element concentration) and parameters (k, m, Bo, Bl and B2). Because 211 

the forest site had a significant effect, we used the analysis of covariance (ANCOVA) to 212 

investigate the effects of microsite and litter type on the decomposition parameters and included 213 

forest site as a covariate. Due to the unbalanced design, we first ran the analysis including only 214 

the common microsite types (understorey of Q. canariensis and Q. suber) of the two forest sites, 215 

and we then analysed the differences between the microhabitats within each site. Post hoc 216 

comparisons were made using the Fisher LSD test. Type I error inflation resulting from repeated 217 

tests was controlled using a false discovery rate procedure (FDR), as recommended by García 218 

(2003). 219 
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To test for interactions between litter types i.e. non-additive effects of the species litter 220 

mixture on decomposition, we evaluated whether the categorical factor of individual vs. mixed 221 

species (mixed) explained a significant fraction of the variability of the parameter dataset, 222 

assuming that the decay parameters from the mixed-species litterbag could be predicted from the 223 

individual species. Additionally, we compared the decomposition parameters for the individual 224 

and mixed-species litters using ANOVA. To evaluate the home-field advantage hypothesis, the 225 

litter-environment interactions were tested using the individual litter species and locations (home 226 

and away) as factors.  227 

The best explanatory variables for the parameters associated to both the early and the late 228 

stages of the decomposition were assessed using a model-selection approach. We fitted uni-, bi- 229 

and trivariate mixed models using the measured soil properties and litter chemical composition 230 

(determined on litter samples harvested after 6 months of incubation) as predicting variables and 231 

the forest site as random variable. The alternative models were compared using the Akaike’s 232 

information criterion (AIC). The model having the lowest AIC value was selected. This model 233 

retained the predictors that were significantly related to the response variable. The R2 value was 234 

used as a measurement of the goodness of fit of each alternative model. The conditional R2 235 

associated with each predictor term was calculated to evaluate the variability explained solely by 236 

each predictor. Additional models were fitted by adding the categorical variables litter type and 237 

microsite to the selected models to test for significant unmeasured effects. 238 

 RESULTS  239 

General trends in carbon loss  240 
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The loss of leaf litter carbon showed a general exponential trend. This trend varied with the leaf 241 

litter species, the type of microsite where the litter was incubated and the general conditions of 242 

the forest experimental site (Fig. 1). According to the AIC, the asymptotic model generally 243 

provided a better fit than the single-exponential model, both for models fitted to each replicate 244 

separately (74% of 144 models fitted) and for models fitted to the pooled microsite replicates 245 

(six replicates combined; 92% of 24 models fitted). In no case did the single-exponential model 246 

furnish the single best fit. The exponential decay rate was significantly correlated with the 247 

asymptote (m) (r =-0.4; p<0.001) but not with the asymptotic decay rate (r =0.08; p<0.30). The 248 

asymptotic model will be used hereon and, for simplicity, we will refer to the asymptotic decay 249 

rate as decay rate (k).  250 

Litter-type effects on carbon loss 251 

Leaf litter species determined significant differences in the remaining carbon (RC) during the 252 

first year (p<0.001), when the RC in Q. suber litter was higher (62.9% vs. 55.6%) than in Q. 253 

canariensis (Fig. 1, Supplementary Fig. S1). However, both oak species converged to similar 254 

carbon values during the second year. We observed no interaction between species litter, i.e. 255 

each species showed similar RC values in single and mixed conditions throughout the two years 256 

(p>0.05).  The decomposition rate (k) was higher for Q. canariensis litter than for Q. suber litter 257 

both in single (2.01±0.08 vs. 1.14±0.07; p<0.0001) and mixed litter conditions (1.99±0.11 vs. 258 

1.28±0.09; p<0.0001), indicating a faster initial decomposition for litter of the deciduous Q. 259 

canariensis. However, the limit value (m), representing the fraction of slowly decomposable 260 

biomass at the later stage of decomposition, was also higher for Q. canariensis than for Q. suber 261 

litter (0.40 ± 0.01 vs. 0.31 ± 0.02, p<0.0001) when incubated in single species conditions. No 262 
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differences were found in the limit value in the mixed species litter (0.37 ± 0.02 vs. 0.33 ±0.02, 263 

p<0.474) (Fig. 2).  264 

Environment effect on carbon loss  265 

The microsite environment where litter was incubated had significant effects on the litter 266 

remaining carbon, particularly at the Sauceda forest site (Supplementary Fig. S2) and for the 267 

litter of the deciduous species, Q. canariensis. The decomposition rate of Q. canariensis litter 268 

beneath Q. canariensis trees (k=1.69) was significantly lower than beneath Q. suber (k=2.45); 269 

thus after the first 6 months, the RC beneath Q. canariensis (64.2%) was higher than beneath the 270 

Q. suber (57.2%; p<0.0102). A similar but not significant difference occurred for the Q. suber 271 

litter, which tended to decompose slower (higher RC) beneath Q. canariensis canopy 272 

(70.79±0.01% vs. 68.12±0.01%). Opposite patterns were observed after 24 months of incubation, 273 

when the RC of Q. canariensis litter was higher beneath Q. suber (41.49±0.02% vs. 274 

34.68±0.03%) as it was the fraction of slowly decomposable carbon, i.e. the limit value (0.34 ± 275 

0.01 vs. 0.31±0.02), although the differences at this time were not significant. Among all the 276 

microsites studied, the litter incubated beneath the shrubs showed the highest decomposition rate 277 

(k=1.82, p<0.05) and the highest limit value (m=0.42; p<0.009). The lowest limit value was 278 

found in the open areas (m=0.29, p<0.036). 279 

There were no positive interactions between the litter species and the environment where litter 280 

was incubated (microsite type) either for the remaining carbon or for the decay rate. On the 281 

contrary, at Sauceda the decay rate of Q. canariensis litter was significantly lower under the trees 282 

of the same species than in other incubating environments (p<0.022, Fig. 2). Similar but not 283 
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significant interaction was observed in Tiradero. Therefore the field-home advantage hypothesis 284 

was not supported by these data.  285 

Differences between forest sites in decay rates  286 

The average proportion of remaining carbon after the two-year decomposition period differed 287 

significantly between the two forest sites (F: 112.829; p<0.000), with 39% (range 13-60%) of the 288 

carbon remaining in Sauceda and 46% (range 34-66%) in Tiradero (Supplementary Fig. S2). The 289 

two sites also exhibited different limit values (Sauceda: m=0.34±0.01; Tiradero: m=0.39±0.01; 290 

p<0.008), but similar decay rates (Sauceda: k=1.63±0.07; Tiradero: k=1.55±0.09; p<0.5).  291 

Leaf litter decay and nutrient dynamics  292 

The initial concentrations of Ca, Mg, N, P and S were higher in Q. canariensis than in Q. suber 293 

leaf litter, whereas those of C and Mn were higher for Q. suber (Table 2). In particular, Ca and 294 

Mg had approximately 1.5-fold higher values in the litter of Q. canariensis. The patterns of 295 

nutrient immobilisation and release over time differed among elements as revealed by the 296 

changes in their concentrations (Fig. 3, Supplementary Table S1) and amounts (Fig. 4). The 297 

polynomial model fitted to the N and Ca concentrations showed a unimodal time course, with an 298 

initial period of increasing concentration followed by a period of element loss. The curves for Ca 299 

concentration were approximately parallel for both oak species. Those for N converged at the 300 

latter stages of decomposition, owing to an increased N concentration in the Q. suber litter.  The 301 

concentration of Mg remained relatively constant with time for both species. The litter P content 302 

decreased linearly for Q. canariensis but remained constant for Q. suber. Approximately 80% of 303 

the K was lost in the first six months (Fig. 4) matched by a strong decrease in its concentration 304 

(Fig. 3, Supplementary Table S1). The concentrations of Zn and Mn showed monotonic 305 
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increases. The B0 values for the two litter types differed significantly for all the chemical 306 

elements studied, whereas differences in the parameters B1 and B2 were found for Ca, P, Mn and 307 

Zn (Supplementary Table S1). The differences in element net loss between the litter types 308 

indicated a higher and faster nutrient release (for Ca, Mg, P and S) from Q. canariensis litter 309 

(Fig. 4). Nitrogen showed a distinctively different release pattern for the two oaks, being 310 

relatively immobilised in Q. suber litter but released from Q. canariensis litter.  Calcium was 311 

immobilized during the first 6 months in Q. canariensis litter, but longer (12 months) in Q. suber 312 

litter.  313 

 The microsite type had no effect on any regression parameters. However, it affected 314 

chemical element concentration and element abundance. These values were generally higher 315 

beneath Q. canariensis and shrubs than beneath Q. suber and herbs (See Supplementary Fig. S3). 316 

We found no interactions between species in the mixed litterbags, i.e. the parameters B0, B1 or B2 317 

did not differ between the individual and mixed-species litter for any chemical element.     318 

Predictors of litter decomposition  319 

Both litter type and microsite environment affected decomposition parameters although the 320 

relative magnitude of their effect (measured as the conditional R2) differed and changed over 321 

time. On average, microsite (as a categorical predictor) significantly explained a 4.4% of the 322 

variance of the parameters related to early (3.4% of k and 5.3% of RC at 6 months) and a 4.5% 323 

of the variance of the parameters related to late decomposition (3.7% of m and 5.2% of RC at 24 324 

months). The variance explained by litter type decreased from early (35.2% of k and 28.4% of 325 

RC at 6 months) to late (15.9% of m and not significant for RC at 24 months) decomposition 326 

parameters.  327 
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Different litter and soil variables emerged as the best predictors for decomposition 328 

parameters (Supplementary Table S2). Five elements, namely N, Ca, S, P and Mn, and the soil 329 

moisture content came out as the best predictors for decomposition. Most of these predictors 330 

influenced both early and late decomposition, of which soil P (as total P or microbial P) and soil 331 

moisture positively influenced both early and late decomposition while litter N (and the related 332 

stoichiometric ratio C:N ), litter Ca and soil N had counteractive effects on early and late stages. 333 

Litter with higher N and Ca content had a faster early decomposition but a higher fraction of 334 

slowly decomposable carbon. Incubation in soils with high N content were related to lower 335 

decay rates but lower limit values (Fig. 5). Litter Mn and soil S best predicted the remaining 336 

carbon at 24 months and the decomposition limit value (m). They were positively related with 337 

carbon loss at latter stages but showed no effect on early decay parameters.  338 

DISCUSSION 339 

Our results revealed that tree species can affect decay dynamics both by their different litter 340 

quality and by the different environmental conditions underneath. The effect of litter type on the 341 

decomposition process decreased over time, but it was invariably more important than the effect 342 

associated with the environmental conditions. We found no positive litter-environment 343 

interaction that would support the “home-field advantage” hypothesis. Among the main decay 344 

controlling factors we can distinguish three types: variables that positively influenced litter decay 345 

through the early and late decomposition stages, variables that exerted a counteractive effect 346 

during early and late decomposition, and variables that only affected the late decomposition 347 

stage. Our analysis on the dynamics of nutrient loss revealed that the initial nutrient content of 348 

leaf litter differed between tree species and had a cascade effect on the rate, proportion and 349 

amount of nutrient loss, thus underpinning the tree species effect on nutrient cycling.  350 
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Decomposition as a two-stage process  351 

The studied oak litter decomposition best fitted an asymptotic model. This model assumes that 352 

there is a fraction of plant litter that decomposes at a very slow rate, the reason being the 353 

increased concentration of recalcitrant substances as soluble and non-lignified carbohydrates that 354 

are degraded during the early stages of decomposition (Berg and McClaugherty, 2008). Although 355 

the asymptotic model has provided a better fit than the single-exponential model, in 356 

decomposition studies the latter is more widely used (and criticised; see (Wieder and Lang, 357 

1982; and Ostrofsky, 2007). The explicit differentiation between early and late decomposition 358 

stages has allowed us to reveal that the factors controlling leaf litter decomposition and carbon 359 

cycling in the studied forests change through time.  360 

Litter quality effect on decomposition change over time 361 

One of the most important findings of this study is that as decomposition progressed over the 362 

two-year experiment, the relative importance of the effect of the litter type decreased and the 363 

direction of its effect reversed. In particular, the deciduous oak´s litter decayed faster in early 364 

stages but the perennial oak´s litter decayed further in late stages (Fig 1).  Litter N and Ca were 365 

positively related to litter decay during the initial period of decomposition but they were 366 

negatively related to carbon loss during the late decomposition stage, thus revealing a shift in 367 

their effect on the decay process over time. During the decomposition of leaf litter, a vast array 368 

of chemical, physical and biological agents act upon litter constituents changing their 369 

compositions and concentrations (Berg and McClaugherty, 2008). As litter quality changes, so 370 

does the influence of rate-determining litter chemical components. Berg et al. (2000) proposed a 371 

three-phase decay model with an early decomposition stage, when the rapid decay of soluble and 372 
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non-lignified carbohydrates is regulated by N, P and S contents, a late decomposition stage, 373 

when decay is regulated by the degradation of lignin, and  a final or “humus-near” stage. The 374 

turning point between early and late stages of decomposition is often encompassed by a peak in 375 

Ca immobilization followed by a loss indicating the onset of net lignin degradation (Berg and 376 

McClaugherty, 2008). Litter N has often being identified as a rate-enhancer factor for early 377 

decomposition (Gallardo and Merino, 1993; Berg, 2000; Hobbie et al., 2012). The litter C:N 378 

ratio, as an index of the nutritional balance, has also been found to affect microbial activity and 379 

regulate the nutrient dynamics of the litter (Enríquez et al., 1993; Güsewell and Gessner, 2009). 380 

However high initial litter N concentration also suppress lignin-degradation rates by hindering 381 

the formation of lignolityc enzymes in the population of lignin degrading organism (white rot 382 

fungi) thus impeding litter decomposition in the late stage (Eriksson et al., 1990; Hatakka, 2005). 383 

Our study reveals that litter N can reverse its effect from rate-enhancer to rate-retarding in a two-384 

year period. 385 

Previous studies have shown a strong and positive relationship between litter Ca and 386 

decomposition rates in temperate forests (Chadwick et al., 1998; Hobbie et al., 2006). Calcium 387 

supports the growth of white rot fungal species and is an essential cofactor of the lignin-388 

degrading enzymes of the decomposer microflora (Eriksson et al., 1990). The emergence of litter 389 

Ca as a predictor of early decomposition together with the concentration and immobilization 390 

patterns observed in this study suggests that degradation of lignin is already important in this 391 

early stage of decomposition. Davey et al. (2007) reported an early onset of lignin degradation 392 

on Quercus robur litter indicated by a significant correlation of decay rate and essential lignin 393 

degrading co-factors such as Ca and Mn. Litter Ca has been related to increased microbial 394 

activity, fungal and earthworm abundance and diversity and forest floor removal rates (Berg et 395 
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al., 2003; Reich et al., 2005; Hobbie et al., 2006; Aponte et al., 2010a). Due to the role of Ca in 396 

lignin decomposition, we expected a positive relation between litter Ca and mass loss throughout 397 

the decomposition process, as it was previously described for litter of temperate and boreal trees 398 

(Berg et al., 1996; Berg, 2000). However our results showed a counteractive effect of Ca during 399 

early and late decomposition stages, which had been also observed by Davey et al. (2007) on 400 

Quercus robur litter. They suggested that Ca contributed to a percentage of the recalcitrant 401 

fraction of the litter, thus leaves with a higher Ca concentration (i.e. Q. canarienis in this study, 402 

Fig. 3) would have a higher decay rate because of the lignolytic effect, but also higher fraction of 403 

non-decomposable mass.  404 

The role of leaf litter Mn  405 

Litter manganese, which was 25% higher in the perennial leaf litter, was the most important rate-406 

controlling factor during late decomposition, thus leading to an unexpected higher carbon loss 407 

from the perennial than the deciduous litter. There are contradicting evidences on the role of Mn 408 

during late decay stages. Berg et al. (2007) showed that the Mn concentration in the litter of five 409 

conifer  species (range of 0.04 – 7.69 mg g-1) affected positively the loss of litter mass at very 410 

late decomposition stages (up to 5 years), provided that the Mn concentration of the litter was 411 

sufficient (> 2 mg g-1). On the contrary, Davey et al. (2007) found that litter Mn was not related 412 

to the limit value of decomposition of oak litter, but it was positively correlated to early decay 413 

rate. Manganese is essential for the activity of Mn peroxidase, a lignin-degrading enzyme (Perez 414 

and Jeffries, 1992). Interestingly, our results differ from the above in that Mn showed no 415 

significant effect on early decomposition but it was the most important rate-controlling factor 416 

after only two years, despite having a low initial concentration (average of 1 mg g-1) and a 417 
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relatively restricted concentration range (0.66 – 1.27 mg g-1). We have shown that certain litter 418 

nutrients, i.e. N, Ca and Mn, exert different effects on determining litter decomposition over 419 

time, highlighting the importance of addressing all stages of decomposition when studying the 420 

factors controlling carbon cycling and revealing that litter that initially decomposed faster might 421 

as well generate the largest pool of accumulated carbon.  422 

 423 

Tree species’ environment effect on decomposition changes over time  424 

Differential tree species environment significantly influenced decomposition although the 425 

magnitude of this effect was smaller than the litter type effect and it mostly affected the 426 

deciduous litter decay. The effect exerted by the tree species environment also reversed during 427 

the decomposition process (like the litter type effect), but in this case the pattern was the 428 

contrary. Decay beneath the deciduous oak, where soil was richer in nutrients, tended to be 429 

slower during the early stage but to proceed further during the late stage. Soil N and P, and soil 430 

moisture were the variables best related to litter decay. The role of soil nutrient availability on 431 

litter decomposition processes is still poorly understood, while most studies focus on litter 432 

nutrients (Davey et al., 2007; Strickland et al., 2009; Berg et al., 2010). Soil N was negatively 433 

related to initial decay rate while it promoted an extended decomposition in the late stage. The 434 

effect of exogenous N on litter decay has been studied in natural occurring gradients and 435 

experimental conditions (e.g. McClaugherty et al., 1985; Hobbie, 2008; Hobbie et al., 2012) but 436 

the observed effects have been inconsistent. Higher N availability sometimes increased initial 437 

decay rates while most often had a  negligible or even negative effect on decomposition 438 

(Prescott, 1995; Hobbie and Vitousek, 2000). These studies suggest that soil N effect on decay 439 
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rates depends on the quality of the decomposing litter (McClaugherty et al., 1985; Hobbie and 440 

Vitousek, 2000; Hobbie et al., 2012). We can hypothesise that during early decomposition, 441 

higher N availability could hinder the decay of the already N-rich deciduous litter by negatively 442 

affecting the N-sensitive fungi that participate in lignin degradation. This effect would be 443 

subdued for the N-poor perennial litter. As decay progresses to later stages and litter N 444 

concentration decreases, the external N concentration may have a positive influence on the 445 

general activity of the microbial community and thus promote a higher cumulative mass loss. 446 

This hypothesis would also underpin the observed negative interaction between litter and 447 

environment, i.e. the deciduous leaf litter decomposed faster in environments other than its own. 448 

This interaction was contrary to the expected under the home-field advantage hypothesis 449 

(Vivanco and Austin, 2008; Ayres et al., 2009).   450 

 Both soil P (either as C:P, total or microbial P) and soil moisture exerted a relatively 451 

small but constant positive influence on litter decomposition, suggesting a limiting role of these 452 

variables for decomposers activity. In a chonosequence study soil P was negatively correlated 453 

with the amount of accumulated carbon in forest soils (Vesterdal and Raulund-Rasmussen, 454 

1998). In the same studied forest soil P and soil moisture were found as  key factors controlling 455 

soil microbial biomass (Aponte et al., 2010b). To this date few studies have investigated the 456 

influence of tree species on decomposition via the environmental conditions they generate 457 

(Hobbie et al., 2006). Our results suggest that the magnitude of tree species effect varies 458 

depending on the litter quality and soil conditions, thus inviting to further explore the 459 

circumstances that would magnify this effect.   460 

Nutrient loss rates differed between litter types  461 
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Chemical elements differed in their litter decomposition dynamics although all the chemical 462 

elements (except Mn and Cu) exhibited similar relative mobility in the two litter types. On 463 

average, the elements were released in the order K>Mg>C>P>Mn>S>N>Ca>Cu>Zn (Figure 4). 464 

Some patterns of litter nutrient release described here are similar to those from other temperate 465 

forests:  the rapid release of K is typically reported from a broad range of forest ecosystems 466 

(Attiwill, 1968; Berg, 1986; Blair, 1988), and the increasing concentration and immobilization of 467 

Zn has been related to throughfall input (Laskowski et al., 1995). In contrast, other elements 468 

have shown a particular dynamics in this studied forest. For example, in other studies P is 469 

immobilized at the initial stages of decomposition and subsequently released (Staaf and Berg, 470 

1982; Maheswaran and Attiwill, 1987). However, this immobilization phase did not occur in this 471 

experiment. Other studies showed continue loss of Ca, Mg and Mn, but the patterns reported here 472 

were different. In general, distinct patterns in the dynamics of particular chemical elements in 473 

various forest ecosystems reflect the different availabilities of nutrients to decomposers. Thus 474 

those elements with concentrations below the limiting threshold for decomposers would be 475 

immobilized in litter (Swift et al., 1979; Staaf and Berg, 1982). We have observed that N and Ca, 476 

early rate-enhancer factors, were immobilised in the litter during the early decomposition stages 477 

whereas Mn was immobilised during the late stages of decomposition. These temporal patterns 478 

reflect the changes in the factors controlling decay as decomposition progresses, litter quality 479 

changes and decomposer requirements vary. 480 

An important contribution of this study into understanding tree species effect on 481 

decomposition and ecosystem properties was to reveal that, despite the patterns of nutrient 482 

concentration during the decomposition process were similar for both oak species, the patterns of 483 

net nutrient release differed. The litter produced by the deciduous oak had a higher initial 484 
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nutrient content and released its nutrients at a higher rate and in higher proportion that the litter 485 

of the perennial oak species thus inducing an elevated fertility beneath its canopy and a faster 486 

nutrient cycling compared to the perennial species. The contrasting effect of deciduous and 487 

perennial species on soil fertility and nutrient cycling has been addressed in many correlational 488 

and descriptive studies (Hobbie, 1992; Finzi et al., 1998b; Augusto et al., 2002; Aponte et al., 489 

2011). Our results explicitly revealed one of the potential mechanisms underlying that effect.  490 

CONCLUSIONS 491 

This study has provided new insights into the factors controlling the decomposition process 492 

demonstrating the importance of the effect that tree species have on the litter decay rate, the 493 

carbon accumulation and the nutrient cycling.  Our results showed that tree species affected 494 

decomposition mostly through their litter quality and to a lesser extent through the differential 495 

environmental conditions they generated beneath their canopy. More importantly by using an 496 

asymptotic model that explicitly distinguishes between the early and late decomposition stages 497 

we have been able to demonstrate that the rate-controlling factors  vary and reverse their effect 498 

over time. Such changes suggest that the limiting elements vary as decomposition proceeds and 499 

litter quality decreases. The deciduous oak species (Q. canariensis) initially decomposed faster 500 

but had higher fraction of slowly decomposable mass than the coexisting perennial oak (Q. 501 

suber), therefore producing a larger pool of accumulated stabilised carbon. This implies that 502 

initial litter decay rate and decomposition limit value might be uncoupled and thus litter that 503 

decompose slower could also decompose further and have a lower capacity for carbon 504 

sequestration. The differences observed in the nutrient release between the two oak species 505 

reveal a potential mechanism underlying their distinct effects on nutrient cycling. For most 506 

macronutrients (N, Ca, Mg, P and S), the net nutrient release was higher for the deciduous oak, 507 
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which showed a highest initial nutrient concentrations and a highest proportion of nutrient 508 

released. These conditions fostered soil fertility and generated an environment that further 509 

influenced the decay process. We have presented here a comprehensive study on the tree species 510 

effect on litter decomposition and provided a better understanding of the complexity of the 511 

factors controlling decay rates and carbon accumulation from a temporal perspective. Our results 512 

contribute to a better understanding of the effect of tree species on ecosystem functioning and 513 

will guide future work on the decomposition process in other ecosystems.  514 
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FIGURE LEGENDS 676 

Fig. 1. Predicted variation in the remaining carbon (%) of leaf litter with time as a function of 677 

forest site and oak species, using the fitted asymptotic model.  678 

Fig. 2. Decomposition constants (mean+SE)  of the single (C-Q. canariensis, S-Q. suber) and 679 

mixed (MC- Q. canariensis, MS- Q. suber) litters (*** p<0.001, ** p<0.01, *p<0.05, ns not 680 

significant). 681 

Fig. 3. Dynamics of the concentration of chemical elements in the decomposing leaf litter of Q. 682 

canariensis (solid line and filled circles) and Q. suber (dashed line and hollow circles). Error 683 

bars indicate 95% CI. Time is expressed in standardised time units (STU=time (yr) x 684 

decomposition constant k). 685 

Fig. 4.  Dynamics of the net immobilisation of elements in the decomposing litter of Q. 686 

canariensis (solid lines and filled circles) and Q. suber (dashed lines and hollow circles) during 687 

the 2 year experiment. Values are relative to initial element abundance. 688 

Fig. 5. Variation of the asymptotic decay rate (k, filled circles) and the limit value of the 689 

decomposition (m, hollow circles) in relation to the N concentration in the soil and litter of the 690 

studied oak trees.  Increasing decay rate indicate a faster early decomposition while increasing 691 

limit value indicate a higher fraction of slowly decomposable litter.  692 

 693 

694 
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TABLE LEGENDS 695 

Table 1. Description of the soil beneath the oak trees where litterbags were incubated in the two 696 

studied forests (data taken from (Aponte et al., 2010b; Aponte et al., 2011) and unpublished 697 

results). Mean (St. dev.) 698 

Table 2. Initial concentration (mean ± st. dev.) of chemical elements in decomposing leaf litter. 699 

Differences between oak species were tested with one-way ANOVA. Significant differences are 700 

indicated by bold-face P values  701 

702 
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TABLES 703 

Table 1.  704 

  Sauceda  Tiradero 
  Q. canariensis Q. suber  Q. canariensis Q. suber 

pH  5.85 (0.17) 5.26 (0.38)  4.88 (0.24) 4.61 (0.14) 
N-NH4+ (mg kg-1) 22.3 (11.9) 30.3 (8.0)  4.6 (3.4) 2.8 (0.9) 
P-PO4- (mg kg-1) 3.31 (0.97) 4.89 (3.56)  3.02 (1.35) 1.76 (1.04) 
N (%) 0.28 (0.04) 0.22 (0.02)  0.26 (0.11) 0.22 (0.06) 
Ca (mg kg-1) 3354 (839) 2369 (756)  1348 (1161) 503 (287) 
K mg kg-1) 3531 (954) 3977 (1266)  1340 (903) 1501 (460) 
Mg (mg kg-1) 3608 (785) 3542 (698)  1176 (592) 1223 (337) 
P (mg kg-1) 294 (65) 279 (37)  219 (66) 229 (44) 
S (mg kg-1) 251 (56) 216 (13)  255 (40) 238 (43) 
Sand (%) 45.0 (5.1) 46.9 (10.4)  63.0 (6.6) 62.2 (5.9) 
Loam (%) 16.6 (3.2) 18.7 (5.4)  16.5 (3.6) 13.8 (3.0) 
Clay (%) 38.3 (4.8) 34.4 (5.9)  20.5 (4.9) 23.9 (4.9) 
Soil moisture (%) 26.6 (2.4) 25.5 (6.0)  16.3 (3.8) 15.3 (2.0) 
Organic matter (%) 16.6 (1.7) 14.8 (3.0)  11.7 (4.4) 10.5 (1.3) 
Cmic (mg kg-1) 1519 (382) 1035 (384)  945 (203) 929 (144) 
Nmic (mg kg-1) 266 (54) 161 (87)  120 (30) 116 (25) 
Pmic (mg kg-1) 51.0 (7.1) 50.4 (16.1)  17.4 (11.6) 14.7 (6.3) 
C/N  13.8 (1.3) 16.3 (1.5)  16.8 (2.0) 17.9 (1.7) 
C/P  156.5 (47.2) 227.7 (55.1)  118.7 (29.7) 197.2 (24.8) 
N/P  11.3 (3.0) 14.1 (3.7)  11.4 (2.9) 11.2 (2.3) 

               
 705 

 706 

 707 

 708 

 709 

 710 
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Table 2.  711 

Element  Q. canariensis Q. suber F P value 
C (%)  43.68 ± 0.14 46.03 ± 0.25 385.41 0.000 
N (%)  1.24 ± 0.11 0.88 ± 0.09 31.21 0.000 
Ca (g kg -1)  14.84 ± 0.76 9.25 ± 0.51 221.06 0.000 
K (g kg -1)  5.44 ± 0.69 4.47 ± 0.74 4.79 0.056 
Mg (g kg -1)  2.11 ± 0.07 1.43 ± 0.08 172.95 0.000 
P (g kg -1)  1.00 ± 0.11 0.62 ± 0.12 22.29 0.001 
S (g kg -1)  1.01 ± 0.04 0.78 ± 0.05 55.15 0.000 
Mn (mg kg-1)  864 ± 136 1075 ± 138 6.42 0.032 
Zn (mg kg -1)  22.28 ± 6.51 17.05 ± 6.41 2.67 0.137 
Cu (mg kg -1)  5.46 ± 0.63 4.72 ± 0.52 4.74 0.057 
C/N   35.4 ± 3.3 53.0 ± 6.3 35.42 0.000 
C/P   43.9 ± 4.5 80.8 ± 18.1 19.47 0.002 
N/P   1.23 ± 0.17 1.52 ± 0.26 4.30 0.071 

 712 

 713 

 714 

 715 
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Fig. 1. Predicted variation in the remaining carbon (%) of leaf litter with time as a function of forest site and 
oak species, using the fitted asymptotic model.  

118x91mm (300 x 300 DPI)  
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Fig. 2. Decomposition constants (mean+SE)  of the single (C-Q. canariensis, S-Q. suber) and mixed (MC- Q. 
canariensis, MS- Q. suber) litters (*** p<0.001, ** p<0.01, *p<0.05, ns not significant).  

188x272mm (300 x 300 DPI)  
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Fig. 3. Dynamics of the concentration of chemical elements in the decomposing leaf litter of Q. canariensis 
(solid line and filled circles) and Q. suber (dashed line and hollow circles). Error bars indicate 95% CI. Time 

is expressed in standardised time units (STU=time (yr) x decomposition constant k).  

260x390mm (300 x 300 DPI)  
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Fig. 4.  Dynamics of the net immobilisation of elements in the decomposing litter of Q. canariensis (solid 
lines and filled circles) and Q. suber (dashed lines and hollow circles) during the 2 year experiment. Values 

are relative to initial element abundance.  
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Fig. 5. Variation of the asymptotic decay rate (k, filled circles) and the limit value of the decomposition (m, 
hollow circles) in relation to the N concentration in the soil and litter of the studied oak trees.  Increasing 
decay rate indicate a faster early decomposition while increasing limit value indicate a higher fraction of 

slowly decomposable litter.  
195x77mm (150 x 150 DPI)  

 

 

Page 45 of 45 Ecosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 1 

Supplementary material  

Figure S1. Remaining carbon (%) observed for the single- (C-Q. canariensis, S- Q. suber) 
and mixed- (MC, MS) species litter at the two study sites. Differences between litter types are 
shown (* p<0.05, ** p<0.01, and *** p<0.001). 
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Figure S2. Remaining carbon (%) after 6 and 24 months for Q. canariensis and Q. suber leaf 
litter in the four microsites at Sauceda. One standard error of the mean is plotted. 
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Figure S3. Average concentrations of chemical elements after the 2-year experiment for each 
site and microsite (*** p<0.001, ** p<0.01, *p<0.05, ns not significant). 
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Table S1. Relation between element concentrations (Y) and standardised time by the 

decomposition constant (ST) for leaf litter of Q. canariensis (C) and Q. suber (S). Regression 

model: Y=Bo+B1*ST+B2*ST2; the significance of the parameters is indicated (*** p<0.001, 

** p<0.01, *p<0.5, ns=not significant). Superscript letters (a,b) indicate significant 

differences between litter types for each element and parameter (p<0.05). 

Element Litter Bo B1 B2 R2 
C C 43.87 a ± 0.19 *** -6.82 a ± 0.90 *** 5.20 a ± 0.94 *** 0.19 *** 
 S 46.17 b ± 0.22 *** -3.31 b  ± 1.13 ** -0.34 b ± 1.21 ns 0.24 *** 
N C 1.28 a ± 0.02 *** 1.83 a ± 0.09 *** -1.28 a ± 0.10 *** 0.66 *** 
 S 0.88 b ± 0.02 *** 2.20 a ± 0.10 *** -1.22 a ± 0.11 *** 0.80 *** 
Ca C 16.66 a ± 0.93 *** 27.12a ± 3.52 *** -14.99a ± 2.84 *** 0.38 *** 
 S 9.33b ± 0.56 *** 19.50b ± 2.39 *** -9.09b ± 2.11 *** 0.53 *** 
K C 4.747 a ± 0.141 *** -9.537a ± 0.536 *** 5.736a ± 0.433 *** 0.73 *** 
 S 3.990b ± 0.122 *** -8.658a ± 0.518 *** 5.962a ± 0.457 *** 0.68 *** 
Mg C 2.106 a ± 0.077 *** -0.258a ± 0.293 ns -0.105a ± 0.236 ns 0.10 ns 
 S 1.391 b ± 0.055 *** -0.194a ± 0.233 ns 0.396a ± 0.206 ns 0.08 ns 
P C 0.986a ± 0.031 *** -0.425a ± 0.117 *** 0.166a ± 0.095 ns 0.20 ns 
 S 0.596b ± 0.027 *** 0.184a ± 0.113 ns -0.044a ± 0.100 ns 0.08 ns 
S C 1.058a ± 0.057 *** 1.288a ± 0.215 *** -1.059a ± 0.173 *** 0.18 ns 
 S 0.751 b ± 0.046 *** 1.428a ± 0.196 *** -0.998a ± 0.173 *** 0.28 ns 
Mn C 0.798a ± 0.071 *** 0.895a ± 0.269 ** -0.318a ± 0.217 ns 0.20 ns 
 S 1.038 b ± 0.061 *** 0.049a ± 0.258 ns 0.487a ± 0.228 * 0.25 ns 
Zn C 0.028a ± 0.008 *** 0.122a ± 0.031 *** -0.012a ± 0.025 ns 0.43 ns 
 S 0.015 b ± 0.006 * 0.117b ± 0.025 *** -0.033b ± 0.022 ns 0.40 ns 
Cu C 0.006a ± 0.000 *** 0.014a ± 0.002 *** -0.007a ± 0.001 *** 0.41 *** 
  S 0.005 b ± 0.000 *** 0.015 a ± 0.002 *** -0.01 a ± 0.00 *** 0.58 *** 
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Table S2. Results of model selection for remaining carbon after 6 (RC6) and 24 months (RC24) and values of decay parameters (k and 1 
m). Selection of the minimal adequate model was based on the lowest AIC value and resulted in retaining the prediction terms 2 
significantly related to the response variable and having a significant p (χ2). The p (χ2) values show a χ2 comparison of models 3 
excluding the predictor term. Models whose AIC values differed less than 2 were considered to have equivalent ability to describe the 4 
data. The sign of the relationship between selected variables and response variables (- or +) and the p (χ2) (*** <0.001, **<0.01, 5 
*<0.05, ns=not significant) are indicated. The table presents the conditional variance (Con. R2) explained by each variable, the total 6 
variance explained by the model (R2), the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and the AIC 7 
of the null model. Additional models were fitted by adding the categorical variables litter type and microsite to the selected models to 8 
test for unmeasured effects. Both the significance of the categorical variables (p (χ2)) and the conditional variance retained are shown.  9 
unmeasured effects. Both significance of the categorical variables (p (χ2)) and conditional variance retained are shown.  10 
 11 
 12 

 13 
 14 
 15 

Response 
 variable Variable 1 Con. R2 Variable 2 Con. R2 Variable 3 Con. R2 AIC BIC R2 AIC null 

Litter 
p (χ2) Con. R2 

Microsite 
 p (χ2) Con. R2 

RC6 Litter C:N (+) *** 26.22 Soil N (+) *** 11.32 Pmic (-) *** 4.05 -299.6 -284.3 53.83 -238.9 ** 4.7 ns - 
 Litter C:N (+) *** 25.14 Soil N (+) *** 11.92 Soil moisture (-)** 3.40 -298.3 -283.0 53.21  *** 5.19 ns - 
 Litter N (-) *** 23.35 Soil N (+) *** 12.52 Pmic (-) *** 3.31 -293.9 -278.6 50.97  *** 7.18 ns - 
 Litter Ca (-) *** 13.04 Litter N (-) *** 8.76 Litter S (+) *** 8.54 -293.3 -278.0 52.10  ns - ** 4.09 
               
RC24 Litter Mn (-) ** 7.15 Soil S (-)** 5.31 Pmic (-)** 3.24 -207.2 -192.1 36.05 -185.0 ns - ns - 
 Litter Mn (-) ** 6.94 Soil S (-)** 6.12 Soil moisture (-)** 2.30 -205.9 -190.7 35.11 -185.0 ns - ns - 
 Litter Mn (-) *** 8.41 Soil P (-)** 5.72 Soil moisture (-)* 2.58 -205.3 -190.2 34.71  ns - ns - 
               
Decay rate (k) Litter C:N (-) *** 31.32 Soil N (-) ** 5.13 Soil C:P (+) * 4.10 162.6 178.0 41.95 208.3 *** 6.66 ns - 
 Litter N (+) *** 25.36 Soil N (-) ** 6.11 Soil C:P (+) ** 4.60 171.9 187.2 35.99  *** 12.5 ns - 
               
Limit value (m) Litter Mn (-) *** 10.79 Litter C:N (-) *** 9.88 Soil P (-)*** 9.65 -149.5 -134.2 35.54 -117.3 * 2.7 ns - 
 Litter C:N (-) *** 13.42 Soil C:N (+) *** 8.55 Litter Mn (-) ** 5.55 -147.9 -132.6 34.44  ns - ns - 
  Litter Mn (-) *** 16.31 Soil P (-)*** 10.55 Litter Ca (+) *** 8.27 -147.2 -131.9 33.94   * 3.71 ns - 
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