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Wave-Unlocking Transition in Resonantly Coupled Complex Ginzburg-Landau Equations
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We study the effect of spatial frequency forcing on standing-wave solutions of coupled complex
Ginzburg-Landau equations. The model considered describes several situations of nonlinear counter-
propagating waves and also of the dynamics of polarized light waves. We show that forcing introduces
spatial modulations on standing waves which remain frequency locked with a forcing-independent
frequency. For forcing above a threshold the modulated standing waves unlock, bifurcating into a tem-
porally periodic state. Below the threshold the system presents a kind of excitability.

PACS numbers: 82.20.–w, 42.65.Sf, 47.20.Ky
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Different physicochemical systems driven out of eq
librium may undergo Hopf bifurcations leading to ric
spatiotemporal behavior. When these bifurcations oc
with broken spatial symmetries, they induce the form
tion of wave patterns described by order parameters of
form

C ­ Aeikcx1ivct 1 Be2ikcx1ivct 1 c.c., (1)

where the slow dynamics of the wave amplitudesA and
B obey complex Ginzburg-Landau equations. This
the case, for example, for Rayleigh-Bénard convection
binary fluids, Taylor-Couette instabilities between co
tating cylinders, electroconvection in nematic liquid cry
tals [1], or for the transverse field of high Fresnel numb
lasers [2]. Symmetry breaking transitions are usually v
sensitive to small perturbations or external fields. F
example, it has been shown that a spatial modulation
the static electrohydrodynamic instability of nematic li
uid crystals modifies the selection and stability of the
sulting roll patterns. In particular, the constraint impos
by a periodic modulation of the instability point may lea
to a commensurate-incommensurate phase transition
In the case of Hopf bifurcations, external fields induci
spatial or temporal modulations strongly affect the sel
tion and stability of the resulting spatiotemporal patter
For example, standing waves may be stabilized by pu
temporal modulations at twice the critical frequency [4,
or by purely spatial modulations at twice the critical wa
number [6], in regimes where they are otherwise unsta
including domains where the bifurcation parameter is
low the critical one.

External forcings that break space or time translatio
invariance, but not the space inversion symmetry
the wave amplitudes, induce linear resonant coupli
between the complex Ginzburg-Landau equations (CG
which describe the dynamics of the amplitudes of l
and right traveling waves. In the case of forcin
that break the space translation invariance, the coup
coefficiente is in general complex, and the correspondi
coupled CGLE may be written, in one-dimensional ge
metries, as
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ÙA 1 yg≠xA ­ mA 1 s1 1 iad≠2
xA

2 s1 1 ibdsjAj2 1 gjBj2dA 1 eB ,

ÙB 2 yg≠xB ­ mB 1 s1 1 iad≠2
xB

2 s1 1 ibdsjBj2 1 gjAj2dB 1 eA . (2)

Due to the resonant coupling with coefficiente, pure
traveling waves are not solutions of these equations
more, and generic arguments of bifurcation theory allo
a characterization of the possible uniform amplitude so
tions depending on the various dynamical parameters
the system [6]. Here also, standing waves may be sta
lized as the result of phase locking between the waveA
andB. Predictions based on (2) in thex-independent case
have been successfully tested for azimuthal waves in an
nulus laser with imperfectOs2d symmetry [7]. However,
the combined effect of the complex coupling coefficiente

and the spatial degrees of freedom has not been explo
In this Letter, we study Eqs. (2) with the following pa

rameter restrictions: imaginary linear coupling coefficie
se ­ igPd, negligible group velocityyg, and weak and real
nonlinear cross-coupling termsg , 1d. We will, however,
maintain the spatial derivative in the right-hand side of (2
and this will be crucial for the results below. We wi
show that the spatial forcing introduces spatial modu
tions of the standing wave solutions whileA andB remain
frequency locked with a forcing-independent frequenc
By increasing the forcing, these stable modulated wa
merge with unstable ones in saddle-node bifurcations w
nontrivial global structure. This wave-unlocking transitio
results in a mixed state with limit cycle temporal beha
ior. The threshold value of the forcing and the limit cyc
frequency are calculated analytically. Modulated stand
waves can also be induced by strong enough temporal f
ing [8].

The parameter regime explored here would be appro
ate in physical situations where a spatial forcing modula
the frequency of the Hopf instability and induces a pure
imaginary resonant forcing (a purely reale would appear
due to a spatial modulation of the distance to the insta
ity point). Possible systems should have negligible gro
© 1996 The American Physical Society
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velocities, as in some circumstances in binary fluid co
vection [9] or liquid crystals [10], and weak coupling suc
as in viscoelastic convection [11]. Up to now, the param
ter range considered here best applies to several situa
in laser physics. The first one corresponds to taking i
account transverse effects in inhomogeneously broade
sg , 1d bidirectional ring lasers [12]. The purely imag
inary resonant coupling is a consequence of conserva
(off-phase) backscattering [13], or, alternatively, a spa
modulation of the refraction index of the laser medium.
fact, a spatially periodic refractive index is the mechani
used for single frequency selection in index coupled d
tributed feedback lasers (DFB). A second situation is t
of the transverse vector field in a laser near threshold [1
The parametergP corresponds to a detuning splitting be
tween light linearly polarized in different orthogonal dire
tions, produced, for example, by small cavity anisotropi
In this case,A and B are not the amplitudes of left o
right traveling waves, but the amplitudes of the two ind
pendent circularly polarized components of light, that
A ­ sAx 1 iAydy

p
2 andB ­ sAx 2 iAydy

p
2, whereAx

and Ay are the linearly polarized complex amplitudes
the vector electric field with a spatially transverse depe
dence. Weak couplingsg , 1d favors linear polarization
sjAj ­ jBjd. We will often use the light-polarization ter
minology, because it gives a clear physical insight into
states found for the general set of Eqs. (2) of broad ap
cability within the parameter restrictions above.

Two families of solutions of the coupled CGLE (2) ca
be distinguished. The first family corresponds to traveli
waves forA and B with the same amplitude, frequency
and wave number

A ­ Q0e2ikx1ivt1isu01c0d,

B ­ Q0e2ikx1ivt1isu02c0d. (3)

Without forcingsgP ­ 0d, the constant global and relativ
phases,u0 and c0, are arbitrary, the amplitude isQ2

0 ­
sm 2 k2dys1 1 gd, and the frequencyv is v0 ­ 2ak2 2

bs1 1 gdQ2
0 . With forcing, the global phase and th

amplitude remain unchanged, but the relative phase
fixed by sin2c0 ­ 0; the two allowed values ofc0 give
two solutions with frequenciesv ­ v0 6 gP . The phase
instabilities of these solutions were discussed in [14].

The second family of solutions can be searched in
form of two waves

A ­ eiv0t
X
n

aneinkx , B ­ eiv0t
X
n

bneinkx , (4)

frequency locked to a frequencyv0 independent of
forcing. For gP ­ 0, the exact solutions of (2) in this
form only have two terms,ja1j ­ jb21j ­ Q0. The
effect of a small forcing in this solution is to genera
higher harmonics, while keepingv0 fixed and the relative
phase betweena1 andb21 arbitrary. Now, the remaining
coefficientsan andbn are not zero and can be calculate
perturbatively ingP . Close enough to the threshold fo
a modek sm 2 k2 ø 0d, the amplitude of higher orde
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harmonics is negligible and, to lowest order inm 2 k2,
an approximate solution takes the form

A ­ eisu01v0tdsQeiskx1ic0d 1 Re2iskx1c02fdd ,

B ­ eisu01v0tdsQe2iskx1c0d 1 Reiskx1c01fdd , (5)

with u0 andc0 arbitrary, andf fixed by the forcing. Q
and R are real numbers (positive or negative) and, f
small gP, jRj ø jQj (an equivalent solution is found
interchangingQ andR).

A visualization of these solutions can be given with
the polarization interpretation of (2). DefiningC6eiz6 ;
Q 6 eifR, the change of variables to the amplitudes
thex andy linearly polarized components gives

Ax ­
p

2 C1 cosskx 1 c0deisv0t1u01z1d,

Ay ­
p

2 C2 sinskx 1 c0deisv0t1u01z2d. (6)

These equations describe at each pointx the superposition
of two dephased harmonic motions with different amp
tudes and a frequencyv0 independent of forcing. This
identifies the solution (5) with an elliptically polarized
standing wave pattern in which the orientation of the
lipse and its ellipticity vary periodically in the spatial co
ordinatex. In the limit of no forcing,R ­ 0, the ellipse
degenerates in a linearly polarized standing wave with
angle of polarizationc ­ kx 1 c0. In this interpretation,

FIG. 1. Modulus (left) and phase (right) ofA for gP ­
0.012 , gPc. The horizontal axis is space (256 units), and t
vertical is time (1000 units). Gray levels range from blac
(0) to white (the maximum of the modulus or2p for the
phase). This numerical solution has been obtained from
with b ­ 0.2, g ­ 0.5, m ­ 0.2, and a ­ 2.6. The initial
condition is a standing wave withv ­ v0 and k ­ 0.123.
Bottom: polarization representation of the solution at a giv
point x. For gP ­ 0 one has linear polarization (indicated b
the straight line) which becomes elliptical forgP fi 0. An
equivalent solution has the major axis of the ellipse along
second and fourth quadrants.
1957
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the first family of solutions (3) would correspond to li
early polarized traveling waves with frequencyv and an
angle of polarizationc0. In such a case, the forcing fixe
the direction of polarization so that onlyx or y linearly
polarized waves remain. On the contrary, forcing in
grows an ellipse from a linearly polarized standing wa
keeping the frequency unchanged.

Elliptically polarized standing wave patterns are o
tained from a direct numerical integration of the coup
CGLE as shown in Fig. 1. Increasing the forcing, the
solutions become unstable through a bifurcation in wh
Q and R become time dependent. As shown in Fig.
the solution beyond this instability oscillates between
two equivalent elliptically polarized standing wave p
terns found for smallgP. In addition, from the numerica
simulations, one finds that the periodT of these oscilla-
tions decreases beyond the critical valuegPc. One has
T 22 ~ gP 2 gPc (see Figs. 3 and 4).

A quantitative description of the instability, includin
the determination of the critical forcinggPc and the period
of the oscillations, can be performed by an amplitu
analysis. Close to the threshold for thek modes, the
equations for the slow time evolution ofQ and R can
be found by substitution of (5) into (2) and neglecti
contributions from higher order harmonics. Defini
XeiF ; Q 1 iR, we find

ÙX ­ sm 2 k2dX 2 s1 1 gdX3

2 s1 1 g cos2fd
X3

2
sin22F ,

ÙF ­ 2 s1 1 g cos2fd
X2

2
sin2F cos2F

1 bg sin2f
X2

2
sin2F 2 gP sinf ,

Ùf ­ bs1 1 g cos2fdX2 cos2F 1 gX2 sin2f

2 2gP cosf cot2F . (7)

The fixed points of (7) represent the polarized stand
waves solutions (5). These points can be determi
exactly in the limiting case ofb ­ 0. The interesting
solutions have two allowed values off: f0 ­ s2n 1

1dpy2, n ­ 0, 1; and for each value off, there are eigh
fixed points: Four are stables1d and the other four are
saddle pointss2d. The corresponding values ofX andF

are

X0s6d2 ­
m 2 k2

2s3 1 gds1 1 gd

3

∑
5 1 3g

6

s
s1 2 gd2 2

8s1 1 gds3 1 gdg2
P

sm 2 k2d2

#
,

(8)
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FIG. 2. Same as Fig. 1 but usinggP ­ 0.0145 . gPc.

F0s1d ­ js1d 1 m
p

2
,

F0s2d ­
p

4
2 js2d 1 m

p

2
, (9)

wherem ­ 0, 1, 2, 3, and

js6d ­
s21dn11

4
arcsin

4gP

s1 2 gdX0s6d2 . (10)

Heteroclinic orbits connect the saddles and the sta
nodes with the samef. When gP grows, saddles and
nodes approach by pairs and at the critical value,

gPc ­
sm 2 k2ds1 2 gdp
8s1 1 gds3 1 gd

, (11)

they merge and disappear via inverse saddle-node bifu
tions. The interesting point is the global structure of t
bifurcation: The presence of the heteroclinic connectio
gives rise to the birth of limit cycles (one for each valu
of f). This is similar to the Andronov–van der Pol b
furcation [15] that appears in several types of excitab
systems [16]. The difference is that, due to symm
tries, here we have several pairs of fixed points mergi
instead of just one pair. The periodic behavior is illu
trated in Fig. 2 by the periodic alternation of the traje
tory between the “ghosts” of the disappeared elliptica
polarized states corresponding to the fixed points. B
low the bifurcation, small perturbations around the stab
solutions decay, whereas perturbations above a thres
push the system along the heteroclinic trajectory towa
another stable fixed point. Since the size of the pert
bation required for such switches decreases by increa
gP , and vanishes atgPc, the multistability of this system
can be seen as a kind of excitability [17]. A differen
consequence of the multiplicity of stable states is th
possible coexistence in space, leading to the formation
domains with different polarizations along thex axis.
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FIG. 3. Period of the oscillationssT d of Q and R, obtained
from the numerical solution of the coupled CGLE using t
parameters given in Fig. 1. The dashed line is a least squ
fitting from which gPc ­ 0.0138.

Close to the instability atgPc, the time dependen
behavior of the solution can be obtained reducing
problem to a phase dynamics by elimination of t
variableX. We have (in the limitb ­ 0)

ÙF ­ 2
sm 2 k2ds1 2 gd sin4F

5 1 3g 2 s1 2 gd cos4F
1 gP , (12)

which for gP $ gPc yields the following time behavior:

tans2Fd ­ tans2Fcd

"
1 1

q
2sgP 2 gPcdygPc

3 tan

√
s5 1 3gd

p
gPc

r
gP 2 gPc

s1 1 gds3 1 gd
t

!#
, (13)

whereFc ­ F0, Eq. (9), forgP ­ gPc.
An approximative analysis of Eqs. (7) forb fi 0 indi-

cates that this parameter appears squared in the ex

FIG. 4. The amplitudes ofQ and R of the solution shown
in Fig. 2 exhibit the periodic oscillations given by Eq. (13
The time has been scaled using the value ofgPc obtained from
Fig. 3. The dotted line corresponds togp ­ 0.0155, the dashed
line to gp ­ 0.0140, and the lines in between to the oth
points of Fig. 3.
res

e
e

es-

sions for gPc, X, and Fc. Therefore, for smallb, the
previous analysis is still meaningful as explicitly seen
the numerical results of Figs. 3 and 4.

In summary, in the absence of forcing, and for the p
rameter regime considered here, there are solutions
the amplitudesA andB of the coupled CGLE which cor-
respond to linearly polarized standing waves. We ha
shown that an imaginary coupling between them tran
forms these solutions into standing waves with spatia
periodic elliptic polarization. Increasing the forcing, a
instability of these solutions appears, via the unlocking
the underlying wave amplitudes, and the solutions acqu
a time-periodic behavior. Locally, this bifurcation is of th
saddle-node type, but the presence of heteroclinic conn
tions between the fixed points gives rise to the appeara
of a limit cycle when stable and unstable points merge.
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