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Noise rectification in quasigeostrophic forced turbulence
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We study the appearance of large-scale mean motion sustained by stochastic forcing on a rotating fluid~in
the quasigeostrophic approximation! flowing over topography. We show that the effect is a kind of noise-
rectification phenomenon, occurring here in a spatially extended system, and requiring nonlinearity, absence of
detailed balance, and symmetry breaking to occur. By application of an analytical coarse-graining procedure,
we identify the physical mechanism producing such an effect: It is a forcing coming from the small scales that
manifests itself in a change in the effective viscosity operator and in the effective noise statistical properties.
Numerical simulations confirm our findings.@S1063-651X~98!14211-3#

PACS number~s!: 47.27.2i, 05.40.1j, 92.90.1x
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I. INTRODUCTION

Nonlinear interactions can organize random inputs of
ergy into coherent motion. This noise-rectification pheno
enon has been discussed in several contexts, including p
ics and biology@1#. Three ingredients are needed to obta
this kind of noise-sustained directed motion: nonlinear
random noise lacking the property of detailed balance,
some symmetry-breaking feature establishing a preferred
rection of motion.

It has recently been shown numerically@2# that directed
motion sustained by noise appears in quasigeostrophic
dimensional fluid flow over topography. The average flow
large scales approaches a state highly correlated with to
raphy that disappears if noise or nonlinearity are switch
off. The small scales of the flow follow a more irregul
behavior.

In this paper we establish that these topographic curr
arise from a form of noise rectification, occurring here in
spatially extended system. To this end we analytically cal
late a closed effective equation of motion for the large sca
of the flow, by coarse graining the small scales. From t
effective equation, the forcing of the small scales on
large ones~sustained by noise and mediated by topograp!
is identified as the mechanism responsible for the direc
currents. It appears as a renormalization of the viscosity
erator in such a way that it favors relaxation toward a st
correlated with topography, instead of toward rest. The ef
becomes more important for increasing nonlinearity. Mo
interestingly, this forcing vanishes when noise satisfies
detailed balance property revealing that the effect shares
same nonequilibrium origin of other noise-rectification ph
nomena. The presence of topography provides
symmetry-breaking ingredient needed to fix a preferred
rection.

II. QUASIGEOSTROPHIC DYNAMICS
AND NOISE RECTIFICATION

The particular model considered here is the equation
scribing quasigeostrophic forced turbulence. A large amo
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of rotating fluid problems concerning planetary atmosphe
and oceans involves situations in which vertical velocit
are small and enslaved to the horizontal motion@3,4#. Under
these circumstances flow patterns can be described in te
of two horizontal coordinates, the vertical depth of the flu
becoming a dependent variable. Although the fluid displa
many of the unique properties of two-dimensional turb
lence, some of the aspects of three-dimensional dynamics
still essential, leading to a quasi-two-dimensional dynam
In particular, bottom topography appears explicitly in t
equations. This kind of quasi-two-dimensional dynamics
not only of relevance to the case of rotating neutral flui
but there is also a direct correspondence with drift-wave
bulence in plasma physics@5,6#.

The stream functionc(x,t), with x[(x,y), in the quasi-
geostrophic approximation is governed by the dynamics@4#:

]¹2c

]t
1l@c,¹2c1h#5n¹4c1F, ~1!

where n is the viscosity parameter,F(x,t) is any kind of
relative-vorticity external forcing, andh5 f DH/H0 , with f
the Coriolis parameter,H0 the mean depth, andDH(x) the
local deviation from the mean depth.l is a bookkeeping
parameter introduced to allow perturbative expansions in
interaction term. The physical case corresponds tol51. The
Poisson bracket or Jacobian is defined as

@A,B#5
]A

]x

]B

]y
2

]B

]x

]A

]y
. ~2!

Equation~1! represents the time evolution of the relativ
vorticity subjected to forcing and dissipation. In the case
drift-wave turbulence for a plasma in a strong magnetic fi
applied in the direction perpendicular tox, c is related to the
electrostatic potential, andh5 ln(vc /n0), where vc and n0
are the cyclotron frequency and plasma density, respectiv
Equation ~1! is also the limiting case of the more gener
Charney-Hasegawa-Mima equation when the scales
small compared to the ion Larmor radius or the barotro
Rossby radius@6–8#.
7279 © 1998 The American Physical Society
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We now establish how the dynamics of long-wavelen
modes in Eq.~1!, whenF is a random forcing, is affected b
the small scales. Stochastic forcing has been used in
dynamics problems to model stirring forces@9#, wind forcing
@10#, short scale instabilities@3#, thermal noise@11,12#, or
processes below the resolution of computer models@13#,
among others@14#. A useful choice ofF, flexible enough to
model a variety of processes, is to assumeF to be a Gaussian
stochastic process with zero mean and correlations give

^F̂k(v)F̂k8(v8)&5Dk2yd(k1k8)d(v1v8). F̂k(v) de-
notes the Fourier transform ofF(x,t), k5(kx ,ky), and k
5uku. The process is then white in time but has power-l
correlations in space.y50 corresponds to white noise i
space and, in the absence of topography, it sustains the
mogorov spectrum@15,16#. In addition this value ofy has
been observed for wind forcing on the Pacific ocean@17#.
The thermal noise case corresponds toy524 @12,16#. In
this case there is a fluctuation-dissipation relation betw
noise and the viscosity term, so that the fluctuations sat
detailed balance.

To obtain the desired large-scale closed equation, we h
applied a coarse-graining procedure to the investigation
the dynamics. For our problem it is convenient to use
Fourier components of the stream functionĉkv or equiva-
lently the relative vorticityzkv52k2ĉkv . This variable sat-
isfies

zkv5Gkv
0 Fkv1lGkv

0 (
p,q,V,V8

Akpq~zpVzqV81zpVhq!,

~3!

where the interaction coefficient is

Akpq5~pxqy2pyqx!p
22dk,p1q , ~4!

the bare propagator is

Gkv
0 5~2 iv1nk2!21, ~5!

and the sum is restricted byk5p1q and v5V1V8. p
5(px ,py), p5upu, and similar expressions hold forq. 0
,k,k0 , with k0 an upper cutoff. Following the method i
Ref. @18#, one can eliminate the modeszk

. with k in the shell
k0e2d,k,k0 , and substitute their expressions into t
equations for the remaining low-wave-number modesz,,
with 0,k,k0e2d. To second order inl, the resulting equa-
tion of motion for the modesz, is

]¹2c,

]t
1l@c,,¹2c,1h,#5n8¹4~c,2gh,!1F8,

~6!

where

n85nS 12
l2S2D~21y!d

32~2p!2n3 D , ~7!

g~l,D,d,n,y!5
l2DS2~y14!d

16~2p!2n3 . ~8!
h
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F8(x,t) is an effective noise which turns out to be also
Gaussian process with mean value and correlations give

^F8~x,t !&52
l2DS2~41y!d

16~2p!2n2 ¹4h,, ~9!

Š„F̂k8~v!2^F̂k8~v!&…„F̂k8
8 ~v8!2^F̂k8

8 ~v8!&…‹

5Dk2yd~k1k8!d~v1v8!. ~10!

S2 is the length of the unit circle: 2p. Equations~6!–~10!
are the main analytic results in this paper. They give
dynamics of long wavelength modesc,. They are valid for
small l or, whenl'1, for small widthd of the elimination
band. The effects of the eliminated short wavelengths
these large scales are described in the structure of the vis
ity operator and the corrections to the noise termF8. The
action of the dressed viscosity term¹4(c,2gh,) is no
longer to drive large scale motion toward rest, but towar
motion state ('gh,) characterized by the existence of flo
following the isolevels of bottom perturbationsh,. This
ground state would characterize the structure of the m
pattern. The energy in this ground state is determined by
functiong(l,D,d,n,y), which measures the influence of th
different terms of the dynamics~nonlinearity, noise, and vis
cosity!. Relation~8! shows that while nonlinearities@19# and
noise increase the energy level of the ground state, high
ues of the viscosity parameter would imply a reduction of
strength of the ground state motion due to damping eff
that viscosity exerts over small scales. The other mechan
that reinforces the existence of average directed mo
comes from the fact that the dressed noise has a mean
ponent as a result of the small scale elimination.

A most interesting fact in Eqs.~8! and~9! is the presence
of the factory14. It implies that the tendency to form di
rected currents reverses sign asy crosses the value24, and
that it vanishes ify524, which is the value for therma
noise satisfying detailed balance. The vanishing of the
rected currents, obtained here to second order inl, is in fact
an exact result valid to all orders in the perturbation exp

FIG. 1. Depth contours of a randomly generated bottom top
raphy. Maximum depth is 381.8 m and minimum depth2381.8 m
over an average depth of 5000 m. Levels are plotted every 63.
Continuous contours are for positive deviations with respect to
mean, whereas dashed contours are for negative deviations.
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sion. This can be seen from the exact solution of the Fokk
Planck equation associated with Eq.~1! for this value ofy
@20#. This reflects the fact that noise rectification cannot
cur when detailed balance holds.

As a consistency check we point out that if the term re
resenting the ambient vorticityh is zero, classical results o
two-dimensional forced turbulence are recovered@15#. To
show that the result implied by the perturbative expressi
~6!–~10! is really present for arbitraryl, we check the in-
creasing tendency toward average flow following the top
raphy for increasingl: Numerical simulations of Eq.~1!
have been conducted in a parameter regime of geophy
interest: we takef 51024 s21 as appropriate for the Corioli
effect at mean latitudes on Earth, andn5200 m2 s21 for the
viscosity, a value usual for the eddy viscosity in ocean m
els. We use the numerical scheme developed in Ref.@21# on
a grid of 1283128 points, with a proper inclusion of th

FIG. 2. Comparison, as a function of the radial wave-num
indexLk2/2p, between the power spectra of the bottom topograp
~solid line! and the power spectra of the mean stream function
tained forl50.1 ~dotted line!, 0.3 ~dashed line!, 0.6 ~dash-dotted
line!, and 1~dash-dot-dot-dotted line!. y50 andD51029 m2 s23.
In order to carry out the comparison, the fields are normalized
have the same maximum value.

FIG. 3. Mean stream function computed by time averag
when a statistically stationary state has been achieved. Contin
contours denote positive values of the stream function, whe
dashed contours denote negative ones:l50.1, y50, and D
51029 m2 s23. Maximum and minimum values are 1637.7 a
21637.7 m2/s, and levels are plotted every 272.95 m2/s.
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stochastic term@2#. The distance between grid points corr
sponds to 10 km, so that the total system size isL
51280 km. The amplitude of the forcing,D51
31029 m2 s23, has been chosen in order to obtain final v
locities of several centimeters per second. The topograp
field ~shown in Fig. 1! is randomly generated from a specifi
isotropic power spectrum~Fig. 2! with random phases. The
model was run for 63105 time steps~corresponding to 247
years! once a statistically stationary state was reached,
some of the results for the mean stream function are
played in Figs. 3 and 4. Currents with a well defined avera
sense appear. Consistently with our analytical results,
contour levels of the mean stream function follow the top
graphic contours more closely the higher the value ofl is.
This is more quantitatively shown in Fig. 5, where the line
correlation coefficientr between the mean field̂c& and the
underlying topography is plotted as a function ofl. A spec-
tral analysis of the different resulting fields shows that t
large scales are better adjusted to topography, as well a
very small scales where no significant motion is present~Fig.
2!. Discrepancies are clear for the small but excited sca
This can be understood considering that the effect of visc
ity on these small scales is still to drive the system tow
rest.

For negative values ofy, noise acts more strongly on th
small scales, where viscosity damping is more important
that a larger noise intensity is needed to obtain signific
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FIG. 4. The same as Fig. 3 but forl51. Maximum and mini-
mum values are 991.864 and2991.864 m2/s, and levels are plotted
every 165.31 m2/s.

FIG. 5. Linear correlation coefficientr between the mean
stream function and topographic fields as a function of the inte
tion parameterl. y50 andD51029 m2 s23.
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large-scale directed currents. More important is the reve
in the sense of the currents wheny,24. This can be char-
acterized by the change in sign ofr. For example, fory
526 andD5231027 m8 s23, r520.6. More detailed re-
sults will be presented elsewhere@20#.

III. CONCLUSIONS

The outcome of this work can be formulated as follow
quasigeostrophic flows develop mean patterns in the p
ence of noisy perturbations. As relations~6!–~10! show, the
origin of these patterns is related with nonlinearity and la
of detailed balance. Bottom topography provides
symmetry-breaking ingredient needed for noise rectificat
to occur. Nonlinear terms couple the dynamics of sm
scales with the large ones, and provide a mechanism to tr
fer energy from the fluctuating component of the spectrum
the mean one. This mean spectral component, that is ine
tent in purely two-dimensional turbulence@22#, is controlled
by the shape of the bottom boundary, and characterizes
structure of the pattern.
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The existence of these noise-sustained structures h
wide range of implications in the above-mentioned fields
fluid and plasma physics. First, it highlights the importa
and organizing role that noise can play in these syste
Second, it establishes the need to modify not only the va
of the parameters~as usually done in eddy-viscosity ap
proaches! when performing large eddy simulations with in
sufficient small-scale resolution, but also the structure of
equations in a way determined by topography. This l
statement has been previously suggested from a heur
point of view in the context of large-scale ocean mod
@23,24#. Our results represent a step forward toward the j
tification of such approaches.
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