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Smooth-Filamental Transition of Active Tracer Fields Stirred by Chaotic Advection
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The stationary-state spatial structure of interacting chemical fields is investigated in the nondiffusive
limit. The evolution of fluid parcels is described by independent dynamical systems driven by
chaotic advection. The distribution can be filamental or smooth depending on the relative strength
of the dispersion due to chaotic advection and the stability of the chemical dynamics. We give
the condition for the smooth-flamental transition and relate the Holder exponent of the filamental
structure to the Lyapunov exponents. Theoretical findings are illustrated by numerical experiments.
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The Lagrangian description of fluid flows, consideredsimple function of the local concentrations and coordi-
in the framework of chaotic dynamical systems, has givemates. In this case the Lagrangian representation leads to
important insight into mixing and transport [1]. In many a considerable simplification of the equations, leading to a
situations of practical interest scalar fields describing som@®w-dimensional dynamical system
property of the fluid are not just simply advected by the Jr

flow but areactivein the sense that they have their own — =v(r,1),

dynamics, in general coupled to the transport and mixing dt )
process. (In the following we will refer to this as the dc; .

“chemical” dynamics of the system.) Typical examplesof ~ — = = Fi(C1,Cy, ..., Cy, ), i=1....N,

active fields in mixing flows are concentrations of reacting
chemicals [2,3] (in industrial processes or the atmospherayhere the second set of equations describes the chemical
and interacting biological populations of microorganismsdynamics inside a fluid parcel that is advected by the flow
in a fluid (e.g., plankton populations stirred by oceanicaccording to the first equation. The coupling between the
currents [4]). The spatial structure of such fields oftenflow and chemical evolution is nontrivial if some of the
has complex filamental character [5]. Previous work hasunctions F; depend explicitly on the coordinate In
investigated the temporal evolution of reactions like-  applications this dependence Bf can appear as a con-
B — CorA + B — 2Binclosed flows [3,6,7] as aninitial sequence of spatially varying sources, spatially varying
value problem. The absence of chemical sources in thege.g., temperature dependent) reaction rates, or reproduc-
cases necessarily implies a homogeneous final state of tiien rates of biological species. It is, therefore, natural
system. The same reactions were also studied in opeb include this dependence in the model to be considered.
chaotic flows [8] where a stationary fractal distribution Although we use a Lagrangian representation, our aim
arises due to the properties of the underlying (chaoticis to follow not the chemical evolution along individual
scattering-like) advection dynamics [9]. Here we showtrajectories but the spatiotemporal dynamics of the chemi-
that in the case of stable chemical dynamics (in a senseal fieldsC;(r, ¢) that is equivalent to the evolution of the
defined below) and in the presence of chemical sourcesnsemble of fluid parcels under the dynamics (2). Thus,
persistent filamental fractal patterns can also arise in closetie original problem defined in an infinite dimensional
flows. phase space is reduced to an ensemble problem in a low-
The governing equations for a set of interacting dimensional dynamical system.
chemical fieldsC; mixed by a flowv(r, ¢), independent By neglecting diffusion, we may miss certain classes of
of the chemical dynamics, can be written as behavior such as propagating waves, typical for reaction-
aC; diffusion systems [10]. However, as we shall see later, we
+ v(r,t) - VC; = F[Ci(r),...,Cn(r),r], (1) capture a nontrivial behavior that we believe to be char-
ot acteristic of the full advection-reaction-diffusion problem
wherei = 1,...,N. The operatorsf; in general contain when diffusion is weak.
spatial derivatives of the fieldS;, e.g., a Laplacian term We assume that the flow(r, ) is two-dimensional,
representing diffusion. incompressible, and periodic in time with period These
Let us assume that the advective transport dominatesonditions in general lead to chaotic advection even in
and diffusion is weak. If we neglect nonlocal processeshe case of simple spatially smooth (nonturbulent) velocity
like diffusion on the right hand side of (1§; becomes a fields. Since the advection is independent of the chemical
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dynamics it can be characterized by its own Lyapunowime and use the obtained trajectaiy’) (0 < ¢/ < ¢) and
exponentsAf > A5. Incompressibility implies that the the initial values of the chemical fields at the pai®) to
advection is described by a conservative dynamical systeifii) integrate the chemical dynamics forward in time from O
and, thusAf = — L. tos. The value of the field at the same point at time nT

For numerical investigations we used a simple time-can be obtained similarly. The resulting backward trajec-
periodic flow that consists of the alternation of two steadytory will be the same (due to the periodicity of the flow)
sinusoidal shear flows in the andy directions for the butlonger. By integrating the chemical evolution forward
first and the second half of the period, respectively. Then time fornT we obtain a problem equivalent to the previ-
flow is defined on the unit square with periodic boundaryous one with a different set of initial concentrations, which

conditions by the velocity field according to the assumptions made abaVe € 0) con-
U T verge to the same orbit. Consequently, the chemical fields
ve(x,y,1) = T @(7 - tmodT) coq2wy), are asymptotically periodic in time
3

2 T im C; - + 7] = lim C; -
vy(x,y,t)=—TU@)(tmodT—?)cos(ch), ;LILn»ocC’[r’(m T+ 7] r!l@ooc’(r’mT 7). ()

where ®(x) is the Heaviside step functiony — 0 cor- ~ Wherer =1 modT, defining an asymptotic chemical field
responds to an integrable limit of the advection problemC”(r, 7). _ _ _ _
We will consider the cas& = 1.0 producing a flow that In the following we investigate the spatial structure of

T controls the relative time scale of the flow and reactions.

By changingT we can vary the Lyapunov exponents of 9Ci = Ci(r + or,1) — Ci(r,1),  |or| <1, (6)
the flow without altering the shape of the trajectories and ) ) .
the spatial structure of the flow. which can be obtained by integrating (2) along two tra-

Since the trajectories(t) are chaotic the chemical dy- Jectories ending at the preselected pointndr + or at
namics (2) corresponds to a chaotically driven dynamicalime ¢. The time evolution of the distandér(+')| (for
system. This subsystem can be characterized by the set~ ' > 1) can be estimated from the time reversed ad-
of chemical Lyapunov exponent§ > AS > ... > A§,  Vection dynamics as
which depend on the driving by the chaotic advection. o
Here we will consider only the simplest situation, when 8 (e)| ~ 18 (r)]e® 71, (7
the largest chemical Lyapunov exponent is negative and, F _ _ _
for a fixed trajectoryr(z), the chemical evolutions con- Where A = A} >0 for almost all final orientations
verge to the same globally attracting chaotic orbit for anya(t) = dr(z)/|r(z)|. The only exception is the unstable
initial condition in the chemical subspace. In this casecontracting direction of the time reversed flow corre-
the chemical fields at large times are independent of theponding toA” = A; < 0.
initial conditions. This clearly does not hold for a multi- By expanding (2) around the chaotic orkit(r(z)) we
stable, marginally stablexf = 0), or unstable {{ > 0)  obtain a set of linear equations

chemical dynamics. The assumption of stable chemistry N

is restrictive but is expected to be a good approxima- SC: = IF;

; 20 IC : Ci=)> 8C; + V,F; - or, (8)
tion for many cases of practical interest (e.g., atmospheric =i 9C;

chemistry).

A simple example of such a system (relevant for atmoWith initial condition
spheric photochemistry) is the decay of a chemical species
(N = 1) produced by a nonhomogeneous source, with 8C;(0) = C(r(0) + 6r(0)) — CY(r(0),  (9)
chemical dynamics
. whereC?(r) are the initial chemical fields.
C =a(r) - bC, 4) In the simplest cas& = 1 the solution of (8) can be

for which A€ = —b. written explicitly as

First we investigate the temporal evolution of the chemi- 0 v ! NoAG—1) g
cal fields. Although the Lagrangian variablegs) havea 9C(1) = V.C" - dr(0)e™ + [0 Vo E - 8r(r)e dr,
chaotic time dependence according to the positivity of the (10)
largest Lyapunov exponent for the full dynamical system
(2), it can be shown that the Eulerian chemical fi€j¢r,r)  where
is asymptotically periodic in time with the period of the : t oF
flow. In order to obtain the values of the fields at paint A= — [ —[C@x("),r ()] dt, (11)
at timer one can (i) integrate the advection backward in t Jo 9C
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that becomes equal to the chemical Lyapunov exponerdus generation of small scale structures by the chaotic
A€ in the t — o limit. The first term in (10) represents advection.

a deviation due to nonhomogeneous initial conditions and As an example we consider the system (4), which is
the second one describes the effect of different historiethe simplest possible system that exhibits the smooth-
of the two trajectories appearing via the space dependenégamental transition, using a source term of the form

of F. a(x,y) = 1 + ay sin(27x) sin(27ry). Numerically calcu-
Using (7) we obtain from (10) for the projection of the lated chemical fields (obtained by a backward integra-

gradient ofC to a directionn, tion of the advection problem and forward integration of
5C(t) L the chemical dynamics [11]) of both types are shown in
Brol v n(0)e A" Figs. 1a and 1b. Figure 2 shows a section of the smooth

and filamental fields of Fig. 1 along the line= 0.25. We
also measured the box counting fractal dimension of the
function C(r) along a cut in thec direction, which is re-
lated to the Holder exponent by = 2 — « [12]. Nu-
erically computed values agree well with the theoretical
prediction as shown in Fig. 3. If the flow does not consist

of only one connected chaotic region but is composed by

Qynamics i.s stronger than the dis_persion of the trajectorieghaotic regions separated by Kolomogorov-Arnold-Moser
in the physical space and resuits in a smooth it&fdr. 7). tori, the Lyapunov exponents of the flow are different in

Hiva C i-
On the contrary, A" > |A"| the memory of th_e chemi each chaotic region, and the structure of the chemical field
cal dynamics decays too slowly to forget the different spa-

tial histories (or inital conditions). In this case the limit (21 bfsmoom in certain regions but filamentary in others
does not exist and the field”(r, 7) has an irregular struc- 9- '

; . ) X In the more general cas®¥ > 1 the same smooth-
ture that is almost nowhere differentiable. There exists

however, at each point one special direction in which the1‘|Iamental transition can be obtained. Let us once again

derivative is finite. This direction is the contracting direc- consider at a particular timethe differences C;(7) in the
o i ' . . 9 Olchemical fields over a small preselected displacement
tion in the time-reversed advection dynamics correspond-

ing to the negative Lyapunov exponent of the flod.
Thus, we suggest a precise definition dilamentalstruc-
ture, being a nondifferentiable field, that is still smooth in
one direction at each point (with that direction itself vary-
ing smoothly).

The irregular chemical field can be characterized by its
Holder exponenta defined aséC(dr) ~ |dr|¢, where
0 <a <1anda =1 for a differentiable function. In
our case ifAf + A€ > 0,

t
+ f VE@()n()eN A0 g (12)
0

The convergence of the right hand side of the abowv
equation fort — « depends on the sign of the exponent
AP+ A€ If AF < |X€] the convergence of the chemical

8C(t) ~ |8r(t)|e? 11, (13)
Expressing time from (7) as
1 |ér(0)]
=3 " Jor(o] 4

and inserting it in (13) we obtain

8C(t) ~ 18r(0)| A/ sr(r)| A (15)

For very long times and in a closed floydr(0)| will

satu_rate a_lt_ha fmlttﬁ V?_:lfledln the back\t/vgrd_alsi\vcelci(;n dyi:IG. 1. Smooth (a) and filamental (b) distributions of the
namics. IuS, the Holaer exponent ¢ = /AT decaying substance [Eq. (4)] mixed by the flow [Eq. (3)] after
Certainly, diffusion would smooth out the small scale2o periods usinga; = 0.1, » = 1.0, U = 1.0, and initial

filamental structures below a certain diffusive scale (apeondition C(r,7 = 0) = 0.0. The integration has been done
proaching zero for smaller and smaller diffusivities), set-for 200 X 200 points with final positions on a rectangular grid.
ting a cutoff for the scaling relation (15). Nevertheless For U = 1.0 the numerically calculated Lyapunov exponent of

e ; . 'the flow is AF =~ 2.35/T. The period of the flow i = 5.0
above the diffusive scale filamental structures will persist,r ;)" (@) and T = 1.0 (\F > b) in (b), respectively.

for arbitrarily long time since, in the presence of chemical(c) coexistence of smooth and filamental structures ot
sources, the effect of diffusion is balanced by the continue.5 and7T = 1.0.
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exponent. There are, thus, two possibilitids= /\§v =
— AV (if AY > A§) or A = A{ (otherwise). We can now
divide both sides of (16) byr() using (7)

Losckn . 17 T& sc20 . 17w
[; s 1} ~ ; s T ¢ :
(17)

Thus, the chemical field€;(r) become nondifferentiable
inther — o limit if AT > |Af].

Numerically we have also observed the smooth-
filamental transition in some two-component systems
(Brusselator autocatalytic reaction model [13] and
phytoplankton-zooplankton population dynamics model
[14]) for parameters that satisfy the conditiof < 0
and have obtained distributions very similar to that shown

FIG. 2. Sections of the smooth (a) and filamental (b) fieldsin Fig. 1.

shown in Fig. 1 along the ling = 0.25.

The time dependence of a set of initial deviatidii;(0)
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form
N 1/2
[Z SCH1) + 5r2(t):|
i=1

N 1/2
~[Zac§(0)+8r2(0)} M, (16)
i=1

where A is one of the Lyapunov exponents of the system.

For a typical choice of the final deviatioAr(z), r
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