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Smooth-Filamental Transition of Active Tracer Fields Stirred by Chaotic Advection
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The stationary-state spatial structure of interacting chemical fields is investigated in the nondiffusive
limit. The evolution of fluid parcels is described by independent dynamical systems driven by
chaotic advection. The distribution can be filamental or smooth depending on the relative strength
of the dispersion due to chaotic advection and the stability of the chemical dynamics. We give
the condition for the smooth-filamental transition and relate the Hölder exponent of the filamental
structure to the Lyapunov exponents. Theoretical findings are illustrated by numerical experiments.
[S0031-9007(99)08758-X]
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The Lagrangian description of fluid flows, considere
in the framework of chaotic dynamical systems, has give
important insight into mixing and transport [1]. In many
situations of practical interest scalar fields describing som
property of the fluid are not just simply advected by th
flow but areactive in the sense that they have their own
dynamics, in general coupled to the transport and mixin
process. (In the following we will refer to this as the
“chemical” dynamics of the system.) Typical examples o
active fields in mixing flows are concentrations of reactin
chemicals [2,3] (in industrial processes or the atmosphe
and interacting biological populations of microorganism
in a fluid (e.g., plankton populations stirred by ocean
currents [4]). The spatial structure of such fields ofte
has complex filamental character [5]. Previous work h
investigated the temporal evolution of reactions likeA 1

B ! C or A 1 B ! 2B in closed flows [3,6,7] as an initial
value problem. The absence of chemical sources in the
cases necessarily implies a homogeneous final state of
system. The same reactions were also studied in op
chaotic flows [8] where a stationary fractal distribution
arises due to the properties of the underlying (chaoti
scattering-like) advection dynamics [9]. Here we sho
that in the case of stable chemical dynamics (in a sen
defined below) and in the presence of chemical sourc
persistent filamental fractal patterns can also arise in clos
flows.

The governing equations for a set ofN interacting
chemical fieldsCi mixed by a flowvsr, td, independent
of the chemical dynamics, can be written as

≠Ci

≠t
1 vsr, td ? =Ci ­ FifC1srd, . . . , CN srd, rg , (1)

wherei ­ 1, . . . , N. The operatorsFi in general contain
spatial derivatives of the fieldsCi , e.g., a Laplacian term
representing diffusion.

Let us assume that the advective transport domina
and diffusion is weak. If we neglect nonlocal processe
like diffusion on the right hand side of (1)Fi becomes a
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simple function of the local concentrations and coordi
nates. In this case the Lagrangian representation leads
a considerable simplification of the equations, leading to
low-dimensional dynamical system

dr
dt

­ vsr, td ,

dCi

dt
­ FisC1, C2, . . . , CN , rd, i ­ 1, . . . , N ,

(2)

where the second set of equations describes the chemi
dynamics inside a fluid parcel that is advected by the flow
according to the first equation. The coupling between th
flow and chemical evolution is nontrivial if some of the
functions Fi depend explicitly on the coordinater. In
applications this dependence ofFi can appear as a con-
sequence of spatially varying sources, spatially varyin
(e.g., temperature dependent) reaction rates, or reprodu
tion rates of biological species. It is, therefore, natura
to include this dependence in the model to be considere

Although we use a Lagrangian representation, our ai
is to follow not the chemical evolution along individual
trajectories but the spatiotemporal dynamics of the chem
cal fieldsCisr, td that is equivalent to the evolution of the
ensemble of fluid parcels under the dynamics (2). Thu
the original problem defined in an infinite dimensiona
phase space is reduced to an ensemble problem in a lo
dimensional dynamical system.

By neglecting diffusion, we may miss certain classes o
behavior such as propagating waves, typical for reactio
diffusion systems [10]. However, as we shall see later, w
capture a nontrivial behavior that we believe to be cha
acteristic of the full advection-reaction-diffusion problem
when diffusion is weak.

We assume that the flowvsr, td is two-dimensional,
incompressible, and periodic in time with periodT . These
conditions in general lead to chaotic advection even i
the case of simple spatially smooth (nonturbulent) velocit
fields. Since the advection is independent of the chemic
© 1999 The American Physical Society
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dynamics it can be characterized by its own Lyapuno
exponentslF

1 . l
F
2 . Incompressibility implies that the

advection is described by a conservative dynamical syst
and, thus,lF

1 ­ 2l
F
2 .

For numerical investigations we used a simple tim
periodic flow that consists of the alternation of two stead
sinusoidal shear flows in thex and y directions for the
first and the second half of the period, respectively. T
flow is defined on the unit square with periodic bounda
conditions by the velocity field

yxsx, y, td ­ 2
2U
T

Q

µ
T
2

2 t modT

∂
coss2pyd ,

yysx, y, td ­ 2
2U
T

Q

µ
t modT 2

T
2

∂
coss2pxd ,

(3)

whereQsxd is the Heaviside step function.U ! 0 cor-
responds to an integrable limit of the advection problem
We will consider the caseU ­ 1.0 producing a flow that
consists of one connected chaotic region. The parame
T controls the relative time scale of the flow and reaction
By changingT we can vary the Lyapunov exponents o
the flow without altering the shape of the trajectories an
the spatial structure of the flow.

Since the trajectoriesrstd are chaotic the chemical dy-
namics (2) corresponds to a chaotically driven dynamic
system. This subsystem can be characterized by the
of chemical Lyapunov exponentslC

1 . l
C
2 . · · · . l

C
N ,

which depend on the driving by the chaotic advectio
Here we will consider only the simplest situation, whe
the largest chemical Lyapunov exponent is negative a
for a fixed trajectoryrstd, the chemical evolutions con-
verge to the same globally attracting chaotic orbit for an
initial condition in the chemical subspace. In this cas
the chemical fields at large times are independent of t
initial conditions. This clearly does not hold for a multi
stable, marginally stable (l

C
1 ­ 0), or unstable (lC

1 . 0)
chemical dynamics. The assumption of stable chemis
is restrictive but is expected to be a good approxim
tion for many cases of practical interest (e.g., atmosphe
chemistry).

A simple example of such a system (relevant for atm
spheric photochemistry) is the decay of a chemical spec
(N ­ 1) produced by a nonhomogeneous source, w
chemical dynamics

ÙC ­ asrd 2 bC , (4)

for which lC ­ 2b.
First we investigate the temporal evolution of the chem

cal fields. Although the Lagrangian variablesCistd have a
chaotic time dependence according to the positivity of t
largest Lyapunov exponent for the full dynamical syste
(2), it can be shown that the Eulerian chemical fieldCisr, td
is asymptotically periodic in time with the period of the
flow. In order to obtain the values of the fields at pointr
at time t one can (i) integrate the advection backward
v
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time and use the obtained trajectoryrst0d (0 , t0 , t) and
the initial values of the chemical fields at the pointrs0d to
(ii) integrate the chemical dynamics forward in time from
to t. The value of the field at the same point at timet 1 nT
can be obtained similarly. The resulting backward traje
tory will be the same (due to the periodicity of the flow
but longer. By integrating the chemical evolution forwa
in time fornT we obtain a problem equivalent to the prev
ous one with a different set of initial concentrations, whic
according to the assumptions made above (l

C
1 , 0) con-

verge to the same orbit. Consequently, the chemical fie
are asymptotically periodic in time

lim
m!`

Cifr, sm 1 ndT 1 tg ­ lim
m!`

Cisr, mT 1 td , (5)

wheret ­ t modT , defining an asymptotic chemical field
C`sr, td.

In the following we investigate the spatial structure
the chemical fields. For this we calculate the differenc

dCi ­ Cisr 1 dr, td 2 Cisr, td, jdrj ø 1 , (6)

which can be obtained by integrating (2) along two tr
jectories ending at the preselected pointsr andr 1 dr at
time t. The time evolution of the distancejdrst0dj (for
t 2 t0 ¿ 1) can be estimated from the time reversed a
vection dynamics as

jdrst0dj , jdrstdjelF st2t0d, (7)

where lF ­ l
F
1 . 0 for almost all final orientations

nstd ; drstdyjdrstdj. The only exception is the unstabl
contracting direction of the time reversed flow corr
sponding tolF ­ l

F
2 , 0.

By expanding (2) around the chaotic orbitCisssrstdddd we
obtain a set of linear equations

ÙdCi ­
NX

j­1

≠Fi

≠Cj
dCj 1 =rFi ? dr , (8)

with initial condition

dCis0d ­ C0
i sssrs0d 1 drs0dddd 2 C0

i sssrs0dddd , (9)

whereC0
i srd are the initial chemical fields.

In the simplest caseN ­ 1 the solution of (8) can be
written explicitly as

dCstd ­ =rC0 ? drs0delt 1
Z t

0
=rF ? drst0delst2t0d dt0,

(10)

where

l ­
1
t

Z t

0

≠F
≠C

fCsssrst0dddd, rst0dg dt0, (11)
2607
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that becomes equal to the chemical Lyapunov expone
lC in the t ! ` limit. The first term in (10) represents
a deviation due to nonhomogeneous initial conditions a
the second one describes the effect of different histori
of the two trajectories appearing via the space depende
of F.

Using (7) we obtain from (10) for the projection of the
gradient ofC to a directionn,

dCstd
jdrstdj

­ =C0ns0deslF 1lCdt

1
Z t

0
=Fsssrst0ddddnst0deslF 1lCd st2t0d dt0. (12)

The convergence of the right hand side of the abo
equation fort ! ` depends on the sign of the exponen
lF 1 lC. If lF , jlCj the convergence of the chemica
dynamics is stronger than the dispersion of the trajector
in the physical space and results in a smooth fieldC`sr, td.
On the contrary, iflF . jlCj the memory of the chemi-
cal dynamics decays too slowly to forget the different sp
tial histories (or initial conditions). In this case the limi
does not exist and the fieldC`sr, td has an irregular struc-
ture that is almost nowhere differentiable. There exist
however, at each point one special direction in which th
derivative is finite. This direction is the contracting direc
tion in the time-reversed advection dynamics correspon
ing to the negative Lyapunov exponent of the flowl

F
2 .

Thus, we suggest a precise definition of afilamentalstruc-
ture, being a nondifferentiable field, that is still smooth i
one direction at each point (with that direction itself vary
ing smoothly).

The irregular chemical field can be characterized by i
Hölder exponenta defined asdCsdrd , jdrja, where
0 , a , 1 and a ­ 1 for a differentiable function. In
our case iflF 1 lC . 0,

dCstd , jdrstdjeslF1lCdt . (13)

Expressing time from (7) as

t ­
1

lF
ln

jdrs0dj
jdrstdj

(14)

and inserting it in (13) we obtain

dCstd , jdrs0djs11lCylF djdrstdj2lCylF

. (15)

For very long times and in a closed flowjdrs0dj will
saturate at a finite value in the backward advection d
namics. Thus, the Hölder exponent isa ­ jlCjylF .
Certainly, diffusion would smooth out the small scal
filamental structures below a certain diffusive scale (a
proaching zero for smaller and smaller diffusivities), se
ting a cutoff for the scaling relation (15). Nevertheless
above the diffusive scale filamental structures will persi
for arbitrarily long time since, in the presence of chemic
sources, the effect of diffusion is balanced by the contin
2608
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advection.

As an example we consider the system (4), which
the simplest possible system that exhibits the smoo
filamental transition, using a source term of the for
asx, yd ­ 1 1 a1 sins2pxd sins2pyd. Numerically calcu-
lated chemical fields (obtained by a backward integ
tion of the advection problem and forward integration
the chemical dynamics [11]) of both types are shown
Figs. 1a and 1b. Figure 2 shows a section of the smo
and filamental fields of Fig. 1 along the liney ­ 0.25. We
also measured the box counting fractal dimension of
function Csrd along a cut in thex direction, which is re-
lated to the Hölder exponent byD ­ 2 2 a [12]. Nu-
merically computed values agree well with the theoretic
prediction as shown in Fig. 3. If the flow does not cons
of only one connected chaotic region but is composed
chaotic regions separated by Kolomogorov-Arnold-Mos
tori, the Lyapunov exponents of the flow are different
each chaotic region, and the structure of the chemical fi
can be smooth in certain regions but filamentary in oth
(Fig. 1c).

In the more general caseN . 1 the same smooth-
filamental transition can be obtained. Let us once ag
consider at a particular timet the differencedCistd in the
chemical fields over a small preselected displacementdr.

FIG. 1. Smooth (a) and filamental (b) distributions of th
decaying substance [Eq. (4)] mixed by the flow [Eq. (3)] aft
20 periods usinga1 ­ 0.1, b ­ 1.0, U ­ 1.0, and initial
condition Csr, t ­ 0d ­ 0.0. The integration has been don
for 200 3 200 points with final positions on a rectangular grid
For U ­ 1.0 the numerically calculated Lyapunov exponent
the flow is lF ø 2.35yT . The period of the flow isT ­ 5.0
(lF , b) in (a) and T ­ 1.0 (lF . b) in (b), respectively.
(c) Coexistence of smooth and filamental structures forU ­
0.5 andT ­ 1.0.



VOLUME 82, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 22 MARCH 1999

h-
s
d
el

n

z-
N.
al
s

rt
g-

w

nd

-

.

-

he
d

,

FIG. 2. Sections of the smooth (a) and filamental (b) field
shown in Fig. 1 along the liney ­ 0.25.

The time dependence of a set of initial deviationsdCis0d
anddrs0d for the dynamical system (2) has the asymptot
form"

NX
i­1

dC2
i std 1 dr2std

#1y2

,

"
NX

i­1

dC2
i s0d 1 dr2s0d

#1y2

elt , (16)

wherel is one of the Lyapunov exponents of the system
For a typical choice of the final deviationdrstd, dr
will be divergent in the time reversed dynamics an
consequently, contracting in the forward direction. Thu
the contribution ofdr decays on the left hand side of (16
and l cannot be the positive Lyapunov exponentl

F
1 so

the typical value ofl will be the second largest Lyapunov

FIG. 3. Box counting fractal dimensions of the functionsCsxd
shown in Fig. 2. Number of boxes needed to cover the gra
of the function Csxd vs the box sizel (squares) and slopes
corresponding to the relationD ­ 2 2 bylF .
s
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exponent. There are, thus, two possibilities:l ­ l
F
2 ­

2l
F
1 (if l

F
2 . l

C
1 ) or l ­ l

C
1 (otherwise). We can now

divide both sides of (16) bydrstd using (7)"
NX

i­1

dC2
i std

dr2std
1 1

#1y2

,

"
NX

i­1

dC2
i s0d

dr2s0d
1 1

#1y2

eslF
1 1ldt .

(17)

Thus, the chemical fieldsCisrd become nondifferentiable
in the t ! ` limit if l

F
1 . jl

C
1 j.

Numerically we have also observed the smoot
filamental transition in some two-component system
(Brusselator autocatalytic reaction model [13] an
phytoplankton-zooplankton population dynamics mod
[14]) for parameters that satisfy the conditionl

C
1 , 0

and have obtained distributions very similar to that show
in Fig. 1.
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