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Abstract� We study the nature of the instability of the homogeneous steady states of the subcritical real

Ginzburg�Landau equation in the presence of group velocity
 The shift of the absolute instability threshold

of the trivial steady state� induced by the destabilizing cubic nonlinearities� is conrmed by the numerical

analysis of the evolution of its perturbations
 It is also shown that the dynamics of these perturbations

is such that nite size e�ects may suppress the transition from convective to absolute instability
 Finally�

we analyze the instability of the subcritical middle branch of steady states� and show� analytically and

numerically� that this branch may be convectively unstable for su�ciently high values of the group velocity
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� Introduction

Several physico�chemical systems driven out of equilib�

rium present stationary instabilities of the Turing type�

or oscillatory instabilities corresponding to Hopf bifurca�
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tions� Such instabilities lead to the formation of various

kinds of spatio�temporal patterns���� Well known examples

are	 Rayleigh�B
enard instabilities in Newtonian �uids� bi�

nary mixtures� or viscoelastic solutions����� electrohydro�

dynamic instabilities in nematic liquid crystals ���� Turing

instabilities in nonlinear chemical systems ���� convective

instabilities in Taylor�Couette devices ���� etc� Close to

such instabilities� the dynamics of the system may usu�
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ally be reduced to amplitude equations of the Ginzburg�

Landau type� which describe the evolution of the patterns

that may appear beyond the bifurcation point ����

According to the system under consideration� and to

the nature of the instability� these Ginzburg�Landau equa�

tions may contain mean �ow terms induced by group ve�

locities� In this case� pattern formation crucially depends

on the convective or absolute nature of the instability�

Let us recall that� when the reference state is convectively

unstable� localized perturbations are driven by the mean

�ow in such a way that they grow in the moving reference

frame� but decay at any �xed location� On the contrary�

in the absolute instability regime� localized perturbations

grow at any �xed location ���� The behavior of the sys�

tem is thus qualitatively very di�erent in both regimes� In

the convectively unstable regime� a deterministic system

cannot develop the expected patterns� except in particular

experimental set�ups� while in a stochastic system� noise is

spatially ampli�ed and gives rise to noise�sustained struc�

tures ������� On the contrary� in the absolutely unstable

regime� patterns are intrinsically sustained by the deter�

ministic dynamics� which provides the relevant selection

and stability criteria ������� Hence� the concepts of con�

vective and absolute instability are essential to understand

the behavior of nonlinear wave patterns and their stability

�������

The nature of the instability of the trivial steady state

has been studied� either numerically� analytically and ex�

perimentally	 In the case of supercritical bifurcations� lin�

ear criteria are appropriate to determine the absolute in�

stability threshold� and to analyze the transition from con�

vective to absolute instability ������������� However� in

the case of subcritical bifurcations� the nonlinearities are

destabilizing� which leads to the failure of linear insta�

bility criteria� In a qualitative analysis based on the po�

tential character of the real subcritical Ginzburg�Landau

equation� Chomaz ���� argued that the transition between

convective and absolute instability of the trivial steady

state should occur at the point where a front between the

rest state and the nontrivial steady state is stationary in

a frame moving with the group velocity� This de�nes the

nonlinear convective�absolute instability threshold� above

which nonlinear global modes are intrinsically sustained

by the dynamics� as discussed by Couairon and Chomaz

����� This argument relies on the existence of a unique

front between the basic and the bifurcating states� as it is

the case in the subcritical domain where both basic and

bifurcating states are linearly stable� In the supercritical

domain� where the basic state is linearly unstable� or in

the complex Ginzburg�Landau equation� this front is not

unique any more� and� as commented by van Hecke et al�

����� one has to know which nonlinear front solution is se�

lected� to determine the nonlinear stability properties of

the basic state�

Within this context� our aim in this paper is to con�

tribute to the study of this problem addressing some as�

pects of it that so far have not been considered� Addi�

tionally we study stochastic e�ects� A �rst aspect con�

cerns �nite size e�ects and their in�uence on the transi�

tion from convective to absolute instability for the trivial
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steady state� Indeed� our numerical analysis of the evo�

lution of perturbations of this state show that it consists

of two stages� The �rst one is devoted to the building of

a front between this state and the bifurcating one� It is

during the second stage that this front moves outwards

or inwards according to the convective or absolute nature

of the instability� We will show that� although the abso�

lute instability threshold may e�ectively be shifted� due

to nonlinear e�ects� in agreement with ����� the �rst step

of the evolution is sensitive to the size of the system� and

this may a�ect the practical determination of the absolute

instability threshold� and even suppress it�

A second aspect is the e�ect of the group velocity on

the unstable subcritical branch� In the subcritical domain�

there is a middle branch of steady states� between the

trivial and the bifurcating ones� In fact� the nature of the

instability of this branch in the presence of a group ve�

locity has not been considered so far� In the absence of

group velocity� this branch is absolutely unstable� How�

ever� the nature of the instability may be modi�ed in sys�

tems with group velocity or mean �ow e�ects� We will

e�ectively show� analytically and numerically� that this

unstable subcritical branch may be convectively unstable�

totally or partly� according to the mean �ow intensity� Ef�

fectively� in deterministic systems� unstable states on this

branch do not necessarily decay in the presence of group

velocity� while they may remain long lived in stochastic

systems� This fact may be of practical importance� since

it provides an alternative way to stabilize the subcritical

middle branch� which is qualitatively di�erent from the

one proposed by Thual and Fauve ���� It could� further�

more� provide the last building block needed for the under�

standing of pattern formation in binary �uid convection�

as suggested in ����

In section �� we review the dynamical system� In sec�

tion � we discuss the nature of the instability of the triv�

ial steady state� and present the results of a numerical

analysis of the problem� In section �� we show� analyti�

cally and numerically� that the subcritical middle branch

of steady states may be convectively unstable� and may

thus be stabilized by mean �ow e�ects in deterministic

systems� Finally� conclusions are drawn in section ��

� The Subcritical Scalar Ginzburg�Landau

Equation

For the sake of simplicity� we will consider systems de�

scribed by a scalar order parameterlike variable� and where

the dynamics is given by the real �fth�order Ginzburg�

Landau equation� which may be written� in one�dimensional

geometries� as ������	

�tA� c�xA � �A� ��xA� vA� �A� �
p
���x� t� � ���

For future reference we have added a stochastic term ��x� t�

to the equation� This models a Gaussian white noise of

zero mean and variance given by h��x� t���x�� t��i � ���x�

x����t � t��� In the remainder of this section we consider

the deterministic situation with � � ��

Bifurcating uniform steady states A�x� t� � R of this

equation are well known	

R�
� �

�

�
�v �

p
v� � ��� � ���



� Pere Colet et al
� Convective and Absolute Instabilities in the Subcritical Ginzburg�Landau Equation

The linear evolution of the perturbations �� � A�R�

around these states is then given by	

�t�� � c�x�� � ��R�
�
p
v� � �� �� � ��x�� � ��

Hence� in the absence of group velocity� the upper branch

R� exists and is stable for � v�

�
	 �� while the middle

branch R� exists and is unstable for � v�

�
	 � 	 � �cf� �g�

���

This picture is� of course� known to change in the pres�

ence of a �nite group velocity c� Let us �rst recall the

linear and nonlinear criteria for convective and absolute

instability for the trivial steady state A � ��

� Linear and Nonlinear Instability of the

Trivial Steady State

��� Analytical Results

The linear evolution around the trivial steady state A � �

is given by

�t�� � c�x�� � � �� � ��x�� ���

and the corresponding dispersion relation is


 � �� c�� �� ���

with � � k�� ik��� The usual linear instability criterion ���

�d

d�

� �d

d�

� � ���

and ��
���� � � gives that the trivial steady state is

convectively unstable for � 	 � 	 c���� and absolutely

unstable for �  c����

However� since the nonlinearities of the dynamics are

destabilizing� the linear terms may possibly not govern the

growth of perturbations of the steady state� Hence� a reli�

able stability analysis has to include nonlinear terms� As

discussed by Chomaz and Couairon �������� the nonlinear

stability analysis of the trivial steady state relies on its

response to perturbations of �nite extent and amplitude�

Hence� in the case eq� ���� without group velocity �c � ���

it is su�cient to consider a front solution joining the �

state at x� �� to the R� state at x� ���

In the case of the dynamics given by Eq� ���� the front

velocity� cf may be calculated exactly ����� and is found

to be �cf� �g� ��

cf � cy �
�p

��v � �

p
v� � ��� �for � v�

�
	 � 	

v�

�
�

cf � c� � �
p
� �for

v�

�
	 �� ���

Note that c� is the linear marginal velocity�

If the front velocity is negative� which is the case for

� 	 �v����� an isolated droplet of the R� state embed�

ded into the � state shrinks� and the � state is stable�

On the contrary� if cf is positive� which is the case for

�  �v����� R� droplets grow� and the � state is non�

linearly unstable� The value � � �v���� corresponds to

the Maxwell construction of phase transitions in which the

trivial and upper branch have equal stability�

When c �� � and v � �� Chomaz ���� showed that� in

the unstable domain ��  �v������ the instability is non�

linearly convective �NLC� when cf 	 c� since� in this case�

although expanding� a R� droplet is �nally advected out

of the system� On the contrary� when cf  c� the insta�

bility is absolute �NLA�� since� in this case� R� droplets

expand in such a way that they �nally invade the system�
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Hence� on generalizing this argument to arbitrary val�

ued of v� one obtains imposing cf � c in Eq� ��� that the

transition from convective to absolute instability occurs

at	

�a �


��
�c� �

�p

vc� v�� �for c 	

p
v�

�
�

�
c� �for c 

p
v� ���

From this result� it appears clearly that� when group ve�

locity e�ects dominate over nonlinear ones �c 
p
v�� the

absolute instability threshold remains the linear one� How�

ever� when nonlinearities dominate �v  cp
�
�� the absolute

instability threshold decreases� but remains in the �  �

domain� when v 	 c
p
� It only becomes negative when

v  c
p
� This last case is the one originally considered in

�����

��� Numerical Analysis

The above results have been checked through the numer�

ical integration of the equation ���� We will present here

some of the data obtained for systems being initially in

the trivial steady state� and compare them to the predic�

tions obtained from the analytical analysis outlined in the

preceding section� To observe a convective instability we

consider a semi�in�nite system with one of the boundaries

anchored to the unstable state A�x � �� � �� Experi�

mentally� this boundary condition can be achieved using

a negative value for the control parameter � for x 	 ��

The numerical integrations have been performed using

a �nite di�erence method ���� with a spatial step of �x �

���� and time step �t � ������ except where otherwise

noted� As explained before� the boundary conditions for a

system of size L were taken as follows	 A � � at x � � for

all times and �xA � � at x � L�

We only discuss here situations where the nonlinear�

ities dominate over mean �ow e�ects� thus where linear

instability criterion fails�

��� A �rst case corresponds to c � v � �� In this

case� the transition from convective to absolute instability

should occur at �a �
p
�

�
	 ����� This is illustrated by the

numerical results presented in �g� � In �g�  �a� and �b��

we show the deterministic evolution of the �eld A from

random initial conditions around A � � and for � � �����

The data con�rm the convective nature of the instability�

E�ectively� we see� in a �rst stage� the building of a front

between the trivial state and the bifurcating one� and� in

a second stage� this front is advected out of the system�

On the contrary� for � � ���� the instability is absolute�

as shown in �g�  �c� and �d�� where the front moves in

the opposite direction� and the bifurcating state invades

the system�

The di�erence between subcritical and supercritical

behavior is enlightened in �g�  �e� and �f�� where the

�eld evolution has been computed with the same parame�

ters as in �g�  �c� and �d�� except that v has been changed

from �� to �� to gain supercriticality� In this case� the

instability should be convective� since the absolute thresh�

old is � � ����� and the results are in agreement with this

prediction�

The e�ect of noise in the regime of convective insta�

bility is presented in �g� �� The �eld dynamics has been
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computed for the same values of the parameters as in �g�

 �a�� but in the presence of noise of di�erent intensities�

The noise intensity has been �xed at � � ���	 in �g�

� �a� and at � � ���
� in �g� � �b�� In both cases we

observe noise sustained structures	 Noise is able to sus�

tain �nite �eld amplitudes �positive or negative� accord�

ing to the ��� symmetry of the system�� Weaker noise

induces larger healing length for the pattern� Hence� in

the stochastic case� pattern formation is sensitive to sys�

tem size� since the latter has to be larger than the healing

length� for the pattern to be able to develop�

��� In a second case� we chose c � ���� v � ���� and

this corresponds to the situation presented by Chomaz

����� where nonlinear e�ects dominate �v  c
p
�� and

where the transition from convective to absolute instabil�

ity occurs in the subcritical domain since �a 	 ������ For

�a 	 �� the instability is absolute� but the dynamics is

qualitatively di�erent if � is positive or negative� When

�  �� both linear and cubic terms are destabilizing� and

the building and propagation of fronts between trivial and

bifurcating states is much faster than for � 	 �� when the

linear term is stabilizing� and the cubic one is destabiliz�

ing� When the dynamics becomes very slow the time and

system size needed to see the formation of a front from

an initial perturbation become very large� so that even in

the absolutely unstable regime one might not observe the

decay of the state A � � in �nite times for a �nite system�

This e�ect is illustrated in �g� � which corresponds to the

absolutely unstable regime� Note the signi�cant increase

of the times scales in comparison with �gs�  and �� de�

spite the fact that the perturbation of the zero state at the

initial time is much large �see the �gure caption�� We note

that for � 	 � the evolution would still be slower� We �rst

observe the formation of the front � initially moving to the

right� and much later� when it reaches the upper branch�

invading the whole system� Hence� when the characteristic

length needed for the building of the front is larger than

the system size� the instability is e�ectively convective�

although the system should be in the absolute instabil�

ity regime �in the sense of semi�in�nite geometries�� For

the parameters chosen in this example and for a length

L 	 ���� one does not observe the decay of the state

A � ��

It is noteworthy that the observed �nite size e�ects

con�rm and complement the analysis made by Chomaz

and Couairon ���� of fully nonlinear solutions of Ginzburg�

Landau equations in �nite domains� In case ���� for � �

���� nonlinear global �NLG� modes exist� even in �nite

domains� However� since the basic state� A � � is linearly

absolutely stable� NLG modes only develop if the initial

condition is su�ciently large for the transients to reach an

order one amplitude in the �nite domain� Since the am�

pli�cation factor increases exponentially with L� the mini�

mum amplitude of initial perturbations able to trigger the

NLG mode decreases exponentially with L ����� As a re�

sult� the development of NLG modes is almost insensitive�

in most practical situations� to system size�

On the contrary� in case ���� the basic state is linearly

stable� absolutely and convectively� and the minimum am�

plitude of initial perturbations able to trigger NLG modes
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in �nite boxes decreases linearly with L� It is why� in the

conditions of our numerical analysis� no global mode is

obtained for L 	 �����

� Stability Analysis of the Bifurcating States

��� Analytical Results

The linear evolution around the upper branch steady states

R� and middle branch steady states R� is given by eq�

��� The upper states R� are linearly stable for �  � v�

�
�

On the other hand� the usual linear instability criterion

shows that the R� steady states are convectively unsta�

ble for �R�
�
p
v� � �� 	 c�� and absolutely unstable for

�R�
�
p
v� � ��  c�� In other words� these states are abso�

lutely unstable in the range

��

�
�v��

c�

�
�v
p
v� � c�� 	 � 	 ��

�
�v��

c�

�
�v
p
v� � c��

���

and convectively unstable in the windows de�ned by

�v�

�
	 � 	 ��

�
�v� �

c�

�
� v
p
v� � c�� ����

and

��

�
�v� �

c�

�
� v
p
v� � c�� 	 � 	 � ����

Hence� when v� 	 c�� these steady states are always

linearly convectively unstable� Still� when v�  c�� there

is a range of linear absolute instability in the middle of

their domain of existence� and a range of linear convective

instability close to the points where these states disappear�

This is shown in �g� ��

Nevertheless the linear stability criteria may fail in the

presence of destabilizing nonlinearities� This is not only

the case for the evolution of the perturbations of the trivial

steady state since the bifurcation is subcritical� but it may

also be the case for the perturbations around the middle

steady state branch� whose evolution is given by

�t�� � c�x�� � ��R�
�
p
v� � �� �� � ��x��

� R���v � �
p
v� � ��� ��� � ��v � �

p
v� � ��� ���

� �R���� � ��� ����

The quadratic nonlinearity is destabilizing for � 	 �L �

����� v�� In such cases� one has to perform a nonlinear

analysis of the dynamics to determine the convective or

absolute nature of the instability�

In the regime where the nonlinearities of the evolution

equation ���� are stabilizing� i�e� for �L � ����� v� 	 � 	

�� the results of the linear analysis may be assumed to be

valid� Hence� we may safely rely on these results above

the metastability point� i�e� for �M � ����v� 	 � 	 ��

Below the metastability point� i�e� for �����v� 	 � 	

����v�� one has to perform a nonlinear analysis� which�

in this case� relies on the evolution of fronts between mid�

dle branch states and the trivial steady state� We do not

perform this analysis here since it would only a�ect quanti�

tatively but not qualitatively the results presented above�

��� Dynamics of the Subcritical Unstable Branch

We have numerically con�rmed the convective nature of

the instability of the subcritical middle branch� The nu�

merical integration has been performed as indicated in

subsection ��� Also� as indicated in that subsection� to

observe a convective instability we consider a semi�in�nite
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system with one of the boundaries anchored to the unsta�

ble state� Here we have to take A�x � �� � R� corre�

sponding to the �eld amplitude of the subcritical middle

branch� Experimentally� this boundary condition can not

be achieved as easily as before because there is no value

of the control parameter � for which A�x� � R� is an

homogeneous steady stable state� However depending on

the system it can be imposed in di�erent ways� In an opti�

cal system� for example� the left boundary condition could

be achieved injecting an external �eld at x � � with the

appropriate amplitude� Finally� as in subsection ��� the

right boundary condition is taken as �xA � � at x � L

We computed the evolution from an initial steady state

with R�
� � ��� on the middle branch� which corresponds to

v � � and � � ������ We then study the system dynamics

for di�erent values of the group velocity c� According to

the previous discussion� for

��� c 	 ���� the state R� should be absolutely unstable

��� c  ���� the state R� should be convectively un�

stable�

In �g� � �a�� we present� for c � �� the results obtained

for the deterministic evolution of an initial perturbation of

the state R�� They show that the instability is e�ectively

convective� On lowering the group velocity from c � �

to c � ����� the nature of the instability changes from

convective to absolute� as expected� and shown in �g� �

�b�� These results con�rm that the middle branch� which is

always unstable for c � �� may be stabilized by mean �ow

e�ects in deterministic systems� in the sense that there

is a range of parameters in which it is only convectively

unstable�

The e�ect of noise in the convectively unstable regime

of the trivial state was to sustain a structure continuously

excited by noise� In the case of the middle branch� R��

and when this is convectively unstable� noise forces the

system to relax randomly to either of the two coexisting

stable branches� as shown in �g� �� Still� if noise is weak

in comparison with the strength needed to see its e�ect in

a �nite system� one would observe the middle branch as

e�ectively stable�

� Conclusions

In this paper� we considered systems described by the

subcritical real Ginzburg�Landau equation� and analyzed

some problems related to the e�ect of group velocities on

the stability of its steady states� In the case of the trivial

steady state� it is known that the transition between con�

vective and absolute linear instability regimes is shifted

by the e�ect of destabilizing nonlinearities� and the cor�

responding nonlinear absolute instability threshold may

easily be computed for semi�in�nite systems �������� Our

numerical study of the evolution of perturbations from the

trivial steady state in �nite systems shows that� in a �rst

step� a front is built between this state and the bifurcat�

ing one� which corresponds to the upper branch of steady

states� Then� according to the intensity of the group ve�

locity� the front moves outwards or inwards� which corre�

sponds to convective or absolute instability� respectively�

When the characteristic length needed for the building of



Pere Colet et al
� Convective and Absolute Instabilities in the Subcritical Ginzburg�Landau Equation �

the front is shorter than the system size� the nature of the

instability is in agreement with the theoretical predictions

made for semi�in�nite systems� However� our numerical re�

sults show that� if the characteristic building length of the

front is larger than the system size� one will never see in�

ward motion of the front� and� in this case� even above the

absolute instability threshold� the instability is e�ectively

convective�

We also studied the instability of the subcritical mid�

dle branch of steady states� a problem that had not been

addressed up to now� It may be shown� already at the

level of linear analysis� that this branch� which is abso�

lutely unstable without group velocity� may entirely be�

come convectively unstable in the presence of group ve�

locities larger than some well�de�ned critical value� This

result has been con�rmed by the numerical analysis of the

evolution of perturbations of steady states on this branch�

The stabilization of such steady states has e�ectively been

obtained� in deterministic systems� for group velocities in

the predicted range� In stochastic systems� however� these

steady states relax to one of the stable branches� as ex�

pected� Nevertheless� for this relaxation to occur� either

noise strength or system size have to be large enough�

This e�ect may be of practical importance� for example�

in binary �uid convection� where� besides the fact that the

role of subcriticality is not clearly understood yet ����� the

presence of natural or forced mean �ows� or group veloci�

ties� could e�ectively stabilize otherwise unstable branches

of steady states�
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Fig� �� Bifurcation diagram for the real subcritical scalar

Ginzburg�Landau equation
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Fig� �� Representation of the linear and nonlinear front ve�

locities �c� and cy� in the �cf�v� ��v
�� plane
 The solid line

represents the selected front velocity
 The dashed lines repre�

sent c� for � � �v��� and cy for � � �v���
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a� b�

c�

d�

e� f�

Fig� �� Deterministic evolution of perturbations of the trivial steady state
 The column on the left shows the spatio�temporal

evolution of the eld A and the column on the right the value of the eld at di�erent times
 The initial condition for each grid

point is Ai�t � �� � f j�ij� where � is a Gaussian random number of zero mean and variance 	 and f � 	���
 In �a� and �b�

we consider the subcritical case in a convectively unstable regime� with � � ��	�� v � 	� c � 	
 In �c� and �d� we consider the

subcritical case in an absolutely unstable regime� with � � ����� v � 	� c � 	
 In �e� and �f� we consider the supercritical case�

with � � ����� v � �	� c � 	
 Dashed lines in �b� and �f� correspond to early times when the front is being formed and it

e�ectively moves to the left
 Continuous lines show the front moving to the right in �b� and �f� and moving to the left in �d�
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a�

b�

Fig� �� Spatio�temporal evolution of the eld A with noise

in a convectively unstable regime for � � ��	�� v � 	� c � 	


The initial condition is A�x� t � �� � �
 �a� noise intensity

	 � 	���� �b� noise intensity 	 � 	����


Fig� �� Spatio�temporal evolution of the eld A without noise

in an absolutely unstable regime with � � �� v � 	��� c � ���


The initial condition is as in Fig
 � but with f � 	���
 In this

case we have taken 
x � 	� 
t � ���


0

20- 0.25

(c/v)
2

1

convectively unstable

- 0.21 

absolutely unstable

- 3/16

ε /v

Fig� �� Domains of linear convective and absolute instability

of the middle branch uniform steady state in the ��c�v��� ��v��

plane
 The linear stability analysis is not valid in the hatched

domain where the nonlinearities are destabilizing
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a�

b�

Fig� �� Deterministic evolution of a perturbation around the

middle branch state R� in a convectively unstable regime for

� � ������ v � 	
 The initial condition for each grid point is

Ai�t � �� � R��f j�ij� where � is a Gaussian random number

of zero mean and variance 	 and R� �
p
��	
 �a� convectively

unstable regime with c � 	 and f � 	���
 �b� absolutely un�

stable regime with c � ���� and f � 	���


Fig� 
� Spatio�temporal evolution of the eld A with noise

in a convectively unstable regime for the middle branch for

� � ������ v � 	� c � 	 and 	 � 	���
 The initial condition is

A�x� �� �
p
��	



