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Summary 

Mutations and polymorphisms in the gene encoding factor H (CFH) have been associated 

with atypical haemolytic uraemic syndrome, dense deposit disease and age-related macular 

degeneration. The disease-predisposing CFH variants show a differential association with 

pathology that has been very useful to unravel critical events in the pathogenesis of one or 

other disease. In contrast, the fH-Ile62 polymorphism confers strong protection to all three 

diseases. Using ELISA-based methods and surface plasmon resonance analyses we show 

here that the protective fH-Ile62 variant binds more efficiently to C3b than fH-Val62 and 

competes better with factor B in proconvertase formation. Functional analyses demonstrate 

an increased cofactor activity for fH-Ile62 in the factor I-mediated cleavage of fluid phase 

and surface-bound C3b; however, the two fH variants show no differences in decay 

accelerating activity. From these data we conclude that the protective effect of the fH-Ile62 

variant is due to its better capacity to bind C3b, inhibit proconvertase formation and 

catalyse inactivation of fluid-phase and surface-bound C3b. This demonstration of the 

functional consequences of the fH-Ile62 polymorphism provides relevant insights into the 

complement regulatory activities of fH that will be useful in disease prediction and future 

development of effective therapeutics for disorders caused by complement dysregulation. 



 3

Introduction 

 

 Complement is a major component of innate immunity with crucial roles in microbial 

killing, apoptotic cell clearance and immune complex handling. Activation of complement 

by foreign surfaces (alternative pathway; AP), antibody (classical pathway; CP) or mannan 

(lectin pathway; LP), causes target opsonisation, leukocyte recruitment, and cell lysis. The 

critical steps in complement activation are the formation of unstable protease complexes, 

named C3-convertases (AP, C3bBb; CP/LP, C4b2a) and the cleavage of C3 to generate 

C3b. Convertase-generated C3b can form more AP C3-convertase, providing exponential 

amplification to the initial activation. Binding of C3b to the C3-convertases generates the 

C5-convertases with the capacity to bind and cleave C5, initiating formation of the lytic 

membrane attack complex (MAC). 

Nascent C3b binds indiscriminately to pathogens and adjacent host cells. To prevent 

damage to self and to avoid wasteful consumption of components, complement is under the 

control of multiple regulatory proteins that limit complement activation by inactivating C3b 

or C4b, dissociating the multimolecular C3/C5 convertases or inhibiting MAC formation. 

In health, activation of C3 in the blood is kept at a low level and deposition of C3b and 

further activation of complement is limited to the surface of pathogens (1). 

Factor H (fH) is a relatively abundant plasma protein that is essential to maintain 

complement homeostasis and to restrict the action of complement to activating surfaces. fH 

binds to C3b, accelerates the decay of the alternative pathway C3-convertase (C3bBb) and 

acts as a cofactor for the fI-mediated proteolytic inactivation of C3b (2-4). fH regulates 

complement both in fluid phase and on cellular surfaces (5-7). The factor H molecule is a 

single polypeptide chain glycoprotein of 155 kDa composed of 20 repetitive units of ~60 
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amino acids (8), named short consensus repeats (SCR), arranged end-to-end like ‘beads on 

a string’. fH presents different interaction sites for C3b and polyanions which delineate 

distinct functional domains at the N- and C-termini. The C3b binding site in SCR1-4 is the 

only site essential for the C3-convertase decay accelerating and fI cofactor activities of fH. 

Similarly, the C3b/polyanion-binding site located within SCR19-20 is the most important 

site for preventing alternative pathway activation through binding to host cell membranes 

(9).  

Several reports in the last few years have established that membranoproliferative 

glomerulonephritis type II or dense deposit disease (MPGN2/DDD) (10-13), atypical 

haemolytic uraemic syndrome (aHUS) (14-17) and age-related macular degeneration 

(AMD) (18-21), are each associated with mutations or polymorphisms in the CFH gene. 

The available data support the hypothesis that AP dysregulation is a unifying pathogenetic 

feature of these diverse conditions. They also illustrate a remarkable genotype-phenotype 

correlation in which distinct genetic variations at CFH specifically predispose to aHUS, 

AMD or MPGN2. In addition to these CFH variants conferring increased risk to disease, 

one common extended haplotype in the CFH gene has been described associated with 

lower risk to aHUS, AMD and MPGN2/DDD (18, 22). This CFH haplotype carries the 

Ile62 variant within the SCR1 domain in the N-terminal region that is essential for fH 

regulatory activities. It is, therefore, possible that the substitution of Val for Ile at position 

62 may increase the fH regulatory activity and thus confer lower risk to AMD, 

MPGN2/DDD and aHUS by reducing AP activation. 

To test this hypothesis we have purified the two fH variants from the plasma of fH-

Val62 and fH-Ile62 homozygote donors and performed a series of binding and functional 

analyses. Our data show that the fH-Ile62 variant exhibits increased binding to C3b 
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compared to fH-Val62, and is also a more efficient cofactor for fI in the proteolytic 

inactivation of C3b. Together these data provide an explanation for why fH-Ile62 protects 

from diseases associated with AP dysregulation. 
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Results 

Interaction of fH-Ile62 and fH-Val62 with surface-bound C3b  

Purified C3b was immobilized on microtiter plates and serial dilutions of fH-Ile62 or 

fH-Val62 variants, ‘polished’ free from potential aggregates by gel filtration, were allowed 

to interact with C3b for two hours at 37ºC. Factor H bound to C3b was detected using an 

antifH mAb (35H9) that recognises equally both variants as described in Materials and 

Methods. Binding of the protective fH-Ile62 variant to surface-bound C3b was significantly 

higher than that of the fH-Val62 variant (P<0.0001) (Figure 1a). These data suggest that the 

Val62Ile polymorphism influences the interaction between fH and C3b. To confirm these 

findings in a different assay, we performed SPR studies using chips coated with identical 

amounts of fH-Ile62 or fH-Val62 variants and flowed increasing concentrations of C3b. 

These SPR assays replicated and extended the findings from ELISA experiments, showing 

that fH-Ile62 binds C3b with a higher affinity than fH-Val62 (Figure 2a). Steady state 

analysis under defined buffer conditions gave a KD of 1.04μM for fH-Ile62 and 1.33μM for 

fH-Val62 (Figure 2b). 

 

Cofactor activity for fI-mediated proteolysis of fluid phase C3b 

In order to study the fI cofactor activity of the fH-Ile62 and fH-Val62 variants we first 

performed a fluid phase cofactor activity assay. Identical amounts of purified fH-Ile62 and 

fH-Val62 variants were added to purified C3b in the presence of fI and incubated for 2.5, 5, 

7.5 and 10 minutes at 37ºC. Under the conditions of these experiments 100% of C3b 

cleavage was reached after 20 minutes of incubation. Controls for 0% cleavage were 

obtained in the absence of fI. The ratio between α´chain / βchain of C3b, determined by 
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densitometry, was used to determine the percentage of C3b cleavage. Figure 3a illustrates 

one experiment representative of several, showing that the fH-Ile62 variant is more efficient 

as a cofactor for fI in the cleavage of C3b in the fluid phase. Figure 3b shows a significant 

difference (P=0.0012) in the % C3b cleavage catalysed by identical amounts of purified fH-

Ile62 and fH-Val62 variants at different incubation times. Double regression plotting and 

statistical analysis of the slopes for the linearized curves reveal significant differences 

between the cofactor activities of the fH-Ile62 and fH-Val62 variants. Figure 3c shows the 

densitometry analysis for the differences in cofactor activities between the fH-Ile62 and fH-

Val62 variants at 6 minutes incubation time in an independent set of assays. From these 

experiments it was calculated that fH-Ile62 is approximately 20% more active than fH-Val62 

as a cofactor for the fI-mediated cleavage of fluid phase C3b. 

 

Cofactor activity of fI-mediated inactivation of surface-bound C3b. 

To determine whether the fH-Ile62 variant is also more active than fH-Val62 as 

cofactor for the fI-mediated inactivation of surface-bound C3b we used a haemolytic assay. 

C3b deposited onto sheep erythrocytes was subjected to degradation by fI in the presence of 

increasing amounts of purified fH-Ile62 or fH-Val62. For each fH concentration, the residual 

surface-bound C3b was determined by measuring sheep erythrocyte lysis after lytic 

pathway reconstitution (see Materials and Methods). 

Three different experiments, each in triplicate, were performed with identical results 

(Figure 4). Calculated EC50 were 22.6nM and 14nM for fH-Ile62 and fH-Val62, 

respectively. These experiments consistently show that fH-Ile62 is significantly more active 

than fH-Val62 as a cofactor for the fI-mediated proteolysis of surface bound C3b 

(P=0.0025; two-tailed unpaired T test). From these experiments it was estimated that the 
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dose of fH-Val62 needed to achieve 50% fI-mediated inactivation of C3b is 1.6-1.8 fold that 

required when fH-Ile62 is used. 

 

Decay accelerating activity of the alternative pathway C3-convertase.  

To measure AP convertase decay accelerating activity of the fH-Ile62 and fH-Val62 

variants, sheep erythrocytes were coated with AP convertase (C3bBb) and incubated with 

increasing amounts of purified fH-Ile62 or fH-Val62 in the absence of fI. Residual AP 

convertase on the sheep erythrocytes was determined by measuring erythrocyte lysis after 

lytic pathway reconstitution (see Materials and Methods). In three independent 

experiments, these hemolytic assays showed that fH-Ile62 and fH-Val62 have equivalent 

decay accelerating activity (Figure 5a). Independent confirmation of this finding was 

sought using Biacore (Figure 5b). AP C3 convertase was assembled on a C3b-coated chip 

and allowed to decay naturally for 160 seconds; fH-Ile62 or fH-Val62 at a concentration of 

73nM were then flowed over the chip. Binding of fH and accelerated convertase decay 

occurred simultaneously. Following dissociation of fH from the surface, remaining 

convertase was measured, this was identical for each fH variant. Note the increased binding 

of fH-Ile62 to the surface in agreement with Figure 2a. 

 

Competition between fH and fB for binding to C3b 

From the experiments presented above it is clear that the differences in binding 

affinity for C3b of the fH-Ile62 and fH-Val62 variants affect their capacity to function as 

cofactor for fI in the proteolysis of C3b. To explore whether these differences in affinity 

also influence the ability of fH to prevent formation of the C3 proconvertase by competing 

with fB for binding to C3b competition assays were performed on Biacore. We first 
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showed, in keeping with previous reports, that fH does not accelerate decay of the pre-

formed proconvertase C3bB (Figure 6a). When fB together with increasing amounts of fH 

was flowed over a C3b surface, competition between fB and fH for binding to C3b was 

apparent from the fH-dependent decrease in the formation of proconvertase measured 

following dissociation of fH (Figure 6b). Next, fB was flowed over C3b and binding 

competed using identical amounts of the fH-Ile62 and fH-Val62 variants. As expected, fH-

Ile62, shown to bind better to C3b, was a more efficient competitor and caused a small but 

consistent decreased formation of the proconvertase (Figure 6c). These data illustrate that 

the increased C3b-binding affinity of the fH-Ile62 variant makes it not only a better cofactor 

for the fI-dependent inactivation of C3b, but also a more efficient inhibitor of the formation 

of the C3 proconvertase. 

 

Combined effects of the fH Val62Ile and fB Arg32Gln polymorphisms in the formation 

of the AP C3 convertase. 

 Previously, we have characterized the common fB polymorphism, fB-Arg32/fB-

Gln32/fB-Trp32, and found that the AMD-protective allele fB-Gln32 had decreased affinity 

for C3b compared with the fB-Arg32 and fBTrp32 alleles. SPR comparison revealed 

markedly different proenzyme formation activities; fB-Arg32 bound C3b with 4-fold higher 

affinity than fB-Gln32, and formation of activated convertase was enhanced (29). Here we 

tested combinations of these two variants of fB with the two variants of fH characterised 

above in order to explore the consequences of different combinations of variant 

components and regulators. In haemolytic assays, we found that the combinations 

complemented each other as predicted from their individual activities (Figure 7). The fH-

Ile62-fB-Gln32 combination was the least lytic and the fH-Val62-fB-Arg32 combination the 
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most lytic (Figure 7). Calculated EC50s were 4.3nM and 3.5nM (for the fH-Ile62-fB-Gln32 

and fH-Val62-fB-Gln32 combinations, respectively) and 3nM and 2.1nM (for the fH-Ile62-

fB-Arg32 and fH-Val62-fB-Arg32 combinations, respectively). Differences in the EC50 were 

statistically significant between the combinations fH-Val62-fB-Arg32 and fH-Ile62-fB-Gln32 

(P<0.001); fH-Val62-fB-Arg32 and fH-Ile62-fB-Arg32 (P=0.004); and fH-Val62-fB-Gln32 and 

fH-Ile62-fB-Gln32 (P=0.034). P values were calculated using a two-tailed unpaired T test. 

No significant differences were observed between the combinations fH-Val62-fB-Gln32 and 

fH-Ile62-fB-Arg32. 
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Discussion 

 Factor H (fH) plays a key role in regulating the alternative pathway by acting as a 

cofactor for fI-mediated cleavage of C3b to iC3b, by accelerating the dissociation of the 

alternative pathway C3 convertases and by competing with factor B for binding to C3b in 

proconvertase formation (9). All these activities are mediated by the interaction between fH 

and C3b. Functional studies using truncated molecules have demonstrated that fH possesses 

binding sites for C3b located at the N-terminus (SCR1-4), the C-terminus (SCR19-20) and 

in the middle of the molecule (SCR7) (30, 31). The C3b-binding sites at the C-terminal and 

N-terminal ends are well characterized, whereas that in SCR7 is a very weak binding site of 

unknown function. The C3b-binding site in SCR19-20 shows the highest affinity for C3b 

and plays a critical role in recognition of foreign surfaces by fH. At the other end of the 

molecule, the C3b-binding site in SCR1-4 is essential for the regulatory activities of fH as 

it carries the fI-mediated cofactor and decay-accelerating activities of fH. Deletion 

mutagenesis studies have demonstrated that the N-terminal four SCRs are necessary and 

sufficient for these activities of fH, suggesting that multiple interactions occur between C3b 

and the N-terminal region of fH (32, 33).  

 Here we report that the Val62Ile substitution in SCR1 of fH increases its affinity for 

C3b; as a consequence, when compared to fH-Val62, fH-Ile62 competes more efficiently 

with fB for C3b binding in proconvertase formation and acquires enhanced cofactor activity 

for the factor-I mediated cleavage of C3b proteolysis; however, its decay accelerating 

activity is not altered. These findings show that fH-Ile62 is a better AP convertase inhibitor 

and provide an explanation for the association of the fH-Ile62 variant with protection in 

three distinct disorders linked by AP dysregulation. The fact that the Val62Ile substitution 
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affects binding to C3b but not decay accelerating activity suggests that different regions in 

fH may be involved in binding C3b/cofactor activity and in decay accelerating activity.  

 SCR1 is necessary for both cofactor and decay accelerating activities (32, 33). Our 

findings imply that the C3b-binding site in SCR1 is not directly involved in decay 

accelerating activity and that SCR1 may contain distinct, although perhaps overlapping, 

sites for cofactor and decay accelerating activities. This scenario dictates that the 

interactions of fH with C3b and with C3bBb are structurally distinct. Previously, we 

showed that the aHUS-associated fB mutation, K323E, located remote from the C3b-fB 

interaction site, makes the C3bBb convertase resistant to decay by decay accelerating factor 

(DAF) and fH (24, 34). The mutation apparently affects a complement regulator binding 

site in the von Willebrand factor type A (vWA) domain of fB (24). We have also 

previously showed that DAF-SCR2 interacts with Bb, whereas DAF-SCR4 interacts with 

C3b in the C3bBb complex (27). From comparison with DAF it is likely that decay 

accelerating activity of fH also requires binding to both Bb and C3b. We suggest that there 

are two distinct binding sites in SCR1, one including the Val62Ile fH polymorphism that is 

necessary for cofactor activity, and a second that binds fB at, or close to, K323 in fB that is 

essential for decay accelerating activity. We also postulate that fH has a C3b binding site in 

SCR3/SCR4 that contributes to both cofactor and decay accelerating activities. 

 Overwhelming evidence has associated MPGN2/DDD, aHUS and AMD with 

mutations or polymorphisms in the CFH gene and provided conclusive data that AP 

dysregulation is a unifying pathogenetic feature of these diverse conditions (35). However, 

only MPGN2/DDD and AMD have pathological similarities. Indeed, occasionally, they 

occur in the same patient (36). The hallmark of AMD is drusen, a complex, complement-

containing material that accumulates beneath the retinal pigmented epithelium; in 
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MPGN2/DDD, accumulation of a drusen-like C3 and electron-dense material occurs along 

the glomerular basement membrane (GBM). In contrast to these ‘debris-associated’ 

conditions, aHUS is characterized by renal endothelial cell injury and thrombosis 

(thrombotic microangiopathy), resulting in haemolytic anaemia, thrombocytopenia and 

renal failure. Consistent with these differences, distinct functional alterations in fH 

associate with pathogenesis in these disorders. Mutations or polymorphisms altering the 

C3b/polyanions-binding site located at the C–terminal region of fH are strongly associated 

with aHUS because they impair the capacity of fH to protect host cells but have no effect 

on fluid-phase fH activities. On the other hand, mutations that disrupt the capacity of fH to 

inhibit complement activation in plasma result in massive activation of C3 that causes 

MPGN2/DDD. This clear genotype-phenotype correlation contrasts with the association of 

the fH Val62Ile polymorphism, associated with lower risk for the three diseases (18, 22).  

To understand why the fH-Ile62 variant confers protection from aHUS, 

MPGN2/DDD and AMD, we purified to homogeneity both fH-Val62 and fH-Ile62 variants 

and compared in a series of functional assays for potential effects on proenzyme formation 

and cofactor and decay accelerating activities in fluid phase and on cell surfaces. Using 

four different experimental approaches, we showed that fH-Ile62 binds better to C3b, 

competes better with fB to reduce proenzyme formation, and performs more efficiently as a 

cofactor of fI in the proteolysis of fluid phase and surface-bound C3b. These enhanced 

activities explain the protective role of fH-Ile62 both in diseases associated with fluid phase 

complement dysregulation, like MPGN2/DDD, and membrane-restricted dysregulation as 

is the case in aHUS.  

One important conclusion from this report is that the protective effect of the fH-Ile62 

variant is subtle, with alterations in activities of between 20% and 50% depending on the 
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assay used. This is consistent with the recent observation (37) that the Val62Ile 

polymorphism causes a very minor perturbation in the structure of SCR1, this contrasts 

with the larger structural disturbance caused by an aHUS-associated mutation (Arg53His) 

which has detrimental consequences on the functional activities of fH. Nevertheless, the 

very nature of the complement system will amplify these small effects. Further, as we show 

here by combining known functional variants in fB with fH-Ile62 and fH-Val62, particular 

combinations of variants in components and regulators will result in very different AP 

characteristics, markedly affecting formation and regulation of the AP C3 convertase in 

plasma and on cell surfaces. Identification of individuals carrying ‘high risk’ or ‘low risk’ 

combinations (‘complotypes’) of the polymorphic complement component and regulator 

variants will be of great importance for prediction of disease risk and may also help in 

diagnosis and choice of treatment for diseases involving complement dysregulation. 
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Materials and Methods 

Purification of complement components and activation fragments 

Normal healthy volunteers were screened for mutations/polymorphisms in the CFH 

gene by automatic DNA sequencing of PCR amplified fragments. Genomic DNA was 

prepared from peripheral blood cells according to standard procedures (23). Each exon of 

the CFH gene was amplified from genomic DNA by using specific primers derived from 

the 5’ and 3’ intronic sequences as described (14). Automatic sequencing was performed in 

an ABI 3730 sequencer using a dye terminator cycle sequencing kit (Applied Biosystems, 

Foster City, CA).  

Factor H was purified from individuals homozygous for either the fH-Ile62 and fH-

Val62 variants who were identical at all other amino acid residues. Fresh EDTA plasma 

(100 ml) was precipitated with 7% polyethylene glycol 8000 overnight at 4ºC. The 

precipitate was re-dissolved in PBS, dialysed extensively against 20 mM Tris-HCl (pH 

7.4), 50 mM NaCl, 5 mM EDTA and applied to a heparin-Sepharose column (Heparin 6B 

Fast Flow, Amersham) equilibrated in the same buffer. The proteins bound to the column 

were eluted with a 100-200 mM NaCl gradient in 20mM Tris-HCl, pH 7.4, 5mM EDTA. 

Fractions containing fH were identified by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE), pooled, dialysed against 20 mM Tris-HCl; pH 7.6, 20 mM 

NaCl and 10 mM EDTA and applied to a DEAE-Sephacel column. Bound proteins were 

eluted with a 20-300 mM NaCl gradient. Fractions containing fH were identified by SDS-

PAGE, pooled and further purified by gel filtration on a SuperoseTM 6 10/300 column (GE 

Healthcare). The fH peak fractions were pooled and stored frozen at -70ºC. The fH used in 

haemolysis assays and Biacore studies was purified by affinity chromatography using 

immobilised anti-fH (35H9; in house). Protein was eluted with 0.1M Glycine/HCl pH 2,5 
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and gel filtered into assay buffer using a Superdex 200 10/300 column (GE Healthcare) 

immediately prior to analysis. The purity of the final preparations was confirmed by SDS-

PAGE. Preparations of fH-Ile62 and fH-Val62 were obtained without any detectable 

contaminants or aggregates (Figure 1b). 

C3 and Factor B were purified by affinity chromatography and gel filtration as 

described previously (24). Concentration of proteins was assessed using absorbance at 

A280, molarities were calculated using an extinction coefficient for fH of 1.95 (25), for fB 

of 1.43 and for C3 of 0.98 (coefficients were obtained by using Protean Software, 

DNAStar). C3b was generated by limited digestion with trypsin or convertase as previously 

described (24, 26) and re-purified by ion exchange and/or gel filtration as described above 

(GE Healthcare). C3b was obtained without any detectable contaminants or aggregates. 

Factor I, factor D and properdin were purchased from Comptech (Tyler, TX).  

 

ELISA C3b–binding Assay  

The binding of fH variants to surface-bound C3b was determined by ELISA. In a 

96-well polystyrene microtiter plate, C3b (5 μg/ml) in coupling buffer (0.1 M NaHCO3 pH 

9.5) was coated overnight at 4ºC. The plate was blocked with washing buffer (20 mM Tris, 

150 mM NaCl and 0.1% Tween 20) with 1% Bovine Serum Albumin for 1 hour at room 

temperature (RT). After washing, serial dilutions of fH variants (10μg/ml) in blocking 

buffer containing 150 mM NaCl, 5mM EDTA, were added and incubated with surface-

bound C3b for 2 hours at 37ºC. After washing, the plate was incubated with anti-fH 

monoclonal antibody (mAb) 35H9 (in house) in blocking buffer, for 1 hour at RT, and then 

with a secondary antibody coupled with horseradish peroxidase (DAKO). Colour reaction 
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was developed with o-phenylene-diamine (DAKO) and absorbance measured at 492nm. fH 

preparations used in the ligand assay were quantified in duplicate in the same ELISA plate 

using immobilised polyclonal anti-fH antibody to capture fH and the same anti-fH mAb, 

35H9, and secondary antibodies to measure the amount of protein. Concentrations of fH 

were calculated from curves obtained using purified standard samples. 

 

Biosensor Analysis 

Kinetic analyses (Figure 2) were carried out on a Biacore T100, all other analyses 

were carried out using a Biacore 3000 (GE Healthcare). To measure affinity, fH was amine 

coupled to a CM5 (carboxymethylated dextran) chip as instructed by the manufacturer 

(NHS/EDC coupling kit). Number of RUs loaded for both variants were 1004RU (fH Ile62) 

and 1003RU (fH Val62). C3b was flowed across the surface at different concentrations and 

bound protein was allowed to decay naturally, the buffer was 10mM Hepes pH7.4, 100mM 

NaCl, 0.005% Surfactant P20. Data were collected at 25°C at a flow rate of 30μl/minute 

and were double-referenced (data from reference cell and blank inject were subtracted) to 

control for bulk refractive index changes. To calculate Kd values (Figure 2) we repeated 

this experiment on three different surfaces: twice with C3b flowing, and once with 

hydrolysed C3 flowing. Pooling the data from different runs is difficult. However, the ratio 

of the derived Kd values was the same for each run as follows: fH-Ile62 was 0.77, 0.78 or 

0.8 fold lower than the fH-Val62 form. We flowed C3b over the surface (rather than fH 

over C3b) in order to minimise the avidity effects seen when flowing fH over the surface.  

In order to obtain the best quality data, the C3b was gel-filtered prior to use to remove any 

aggregates and then used in the experiment without further concentration.  The C3b needed 
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to be at a very high concentration pre-filtration in order to achieve 1mg/ml post-filtration, 

this was the maximum concentration that we could use without precipitating the protein 

pre-filtration. Although we did not achieve saturation in these experiments, in each case the 

concentration of C3b used exceeded the Kd value (2.2-fold for fH-Ile62 and 1.7-fold for 

fH-Val62). 

In the following experiments the buffer was 10mM Hepes pH 7.4, 150mM NaCl, 

1mM Mg2+. To test the decay activity of fH (Figure 5), fB at 100μg/ml (1.1μM) and fD 

(2μg/mL), were flowed across the C3b surface to form the AP C3 convertase as previously 

described (27). The fH variants were subsequently flowed across the C3b surface at 

11.3μg/ml (73nM) and decay was monitored. To examine competition between fH and fB 

for binding to C3b (Figure 6), both proteins were mixed at the indicated concentrations and 

flowed at 30μl/min across the C3b surface in the absence of fD. To determine whether fH 

accelerated decay of the proenzyme, fH was flowed over the surface subsequent to the fB 

injection rather than being premixed. 

 

Cofactor activity for fI-mediated proteolysis of fluid phase C3b 

The fluid-phase cofactor activity of factor H was determined in a C3b proteolysis 

assay using purified proteins. In brief, C3b, fH and fI were mixed in 10mM Hepes pH 7.5, 

150mM NaCl, 0.02% Tween 20 at final concentrations of 50 μg/ml (263nM), 4 μg/ml 

(25.8nM) and 10 μg/ml (114nM), respectively. Mixtures were incubated at 37ºC in a water 

bath and 20μl aliquots were collected at 2.5, 5, 7.5 and 10 minutes. The reaction was 

stopped by the addition of 3μl of SDS sample buffer (2% SDS, 62.5mM Tris, 10% 

Glycerol, 0.75% Bromophenol Blue). Samples were analyzed in 10% SDS-PAGE under 
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reducing conditions. Gels were stained with Coomassie brilliant blue R-250 (Bio Rad) and 

proteolysis of C3b determined by measuring the cleavage of the α’-chain using a GS-800 

calibrated densitometer (BioRAD) and the MultiGauge software package (FUJIFILM). The 

C3b β-chain was used as an internal control to normalize the % of cleavage between 

samples. Percentage of cleavage was determined by the ratio between α´chain / βchain of 

C3b and setting as 0% the amount of α’-chain at time 0. 

 

Factor H-dependent haemolysis assays  

 

NHS was sequentially depleted of fB and fH (NHSΔBΔH) by flowing over 

immobilised anti-Bb (JC1 mAb; in house) and immobilised anti-fH (35H9; in house) 

affinity columns in complement fixation diluent (CFD; Oxoid), undiluted depleted serum 

was pooled and used in haemolysis assays as described below. Antibody-coated sheep 

erythrocytes (EA) were prepared by incubating sheep E (2% v/v) with Amboceptor (1/1000 

dilution; Behring Diagnostics) in complement fixation diluent (CFD; Oxoid) for 30 minutes 

at 37ºC, EA were washed and resuspended at 2% (v/v) in CFD. To deposit C3b on the E 

surface (E-C3b), equal volumes of EA and NHSΔBΔH (8% v/v) were incubated at 37ºC for 

10 minutes, the C5 inhibitor (OmCI; 6μg/ml; (28) was added to block the terminal 

pathway).  

To test fH dependent decay accelerating activity, washed E-C3b cells were 

resuspended to 2% (v/v) in AP buffer (5 mM sodium barbitone pH 7.4, 150 mM NaCl, 7 

mM MgCl2, 10 mM EGTA) and AP convertase was formed on the cell surface by 

incubating with fB 42μg/ml (0.46μM) and fD (0.4μg/ml) at 37ºC for 15 minutes. 1/25 
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volume of PBS/0.25M EDTA was added to prevent further enzyme formation and cells 

(50μl) were mixed and incubated with 50μl of fH (serial dilution from 15.4μg/ml (99nM)) 

in PBS/10mM EDTA for 12 minutes. Lysis was developed by adding 50μl NHSΔBΔH 

(4%, v/v) in PBS/EDTA and incubating at 37ºC for 20 minutes. To calculate lysis, cells 

were pelleted by centrifugation, and hemoglobin release was measured by absorbance at 

415 nm. Control incubations included 0%lysis (buffer only) and 100%lysis (0.1% Nonidet-

P40). Percentage lysis 100*(A415 test sample-A415 0% control)/(A415 100% control-

A415 0% control). 

To test fH cofactor activity, washed EA-C3b cells were resuspended to 2% in AP 

buffer and incubated with an equal volume of different concentrations of fH as indicated 

and constant fI (2.5μg/mL) for 7 minutes at 22ºC. After three washes in AP buffer, 50μl 

cells (2%) were mixed with 50μl of 70μg/ml fB (0.75μM; fB32R or fB32Q) and fD 

(0.4μg/ml) and incubated for 10 minutes at 22ºC to form convertase on residual C3b (EA-

C3bBb). Lysis was developed by adding 50μl NHSΔBΔH (4%, v/v) in PBS/EDTA and 

incubating at 37ºC for 20 minutes. Percentage lysis was calculated as described above.  

To assess the effect on lysis by combining different polymorphic variants of fB and fH, the 

above two assays were combined and modified as follows. EA-C3b cells were incubated 

with 80ng/ml (0.5nM) fH-Ile62 or fH-Val62 variant and 2.5μg/ml fI for 7 minutes at 22ºC. 

Washed cells were incubated as described above with different concentrations of fBArg32 

or fBGln32, fD and properdin (1μg/ml) and lysis was developed using NHSΔBΔH.
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Figures 

 

Figure 1. ELISA of fH-Ile62 and fH-Val62 binding to C3b 

(a) Interaction between serial dilutions of purified fH-Ile62 (open circles) or fH-Val62 (filled 

circles) with C3b deposited in 96-well plates is expressed as Abs492. Means ± S.D. of three 

independent experiments are shown. Inset panel shows the double reciprocal plot of the fH-

Ile62 (open circles) and fH-Val62 (filled circles) C3b-binding curves. Multiple linear 

regression analysis revealed significant differences between Val62 and Ile62 binding to C3b 

(P<0.0001). 

(b) SDS-PAGE illustrating the fH-Ile62 and fH-Val62 purified from the plasma of 

homozygote carriers as described in Materials and Methods and then gel filtered to remove 

aggregates. 

 

Figure 2. SPR analysis of fH-Ile62 and fH-Val62 binding to C3b.  

(a) Identical amounts of fH were immobilised onto a CM5 chip (fH-Ile62 1004RU 

immobilised; fH-Val62 1003RU immobilised). C3b (2.2μM-8.6nM; 1/2 serial dilution) was 

flowed across the fH-Ile62 or fH-Val62 surfaces in 10mm Hepes pH 7.4, 100mM NaCl, 

0.005% surfactant P20. Data from a reference cell was subtracted to control for any bulk 

changes in refractive index. Sensorgrams resulting from fH-Ile62 are solid lines and fH-

Val62 are dotted lines; identical concentrations are illustrated for the two variants.  

(b) Steady state analysis of the data in these buffer conditions indicate the affinities for C3b 

are: KD fH-Ile62: 1.03μM, KD fH-Val62: 1.33μM. The standard errors (SE) in the fits are 

0.14μM for fH-Val62 and 0.12μM for fH-Ile62. 
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Figure 3. Cofactor activity of fH-Ile62 and fH-Val62 variants in the proteolysis of fluid 

phase C3b. 

(a) SDS-PAGE of C3b proteolysis. C3b, fH and fI were incubated for the times indicated, 

the reaction was stopped by the addition of SDS sample buffer. Samples were analyzed by 

SDS-PAGE under reducing conditions and gels were Coomassie-stained. 

(b) Densitometric analysis of C3b proteolysis. Fluid phase cofactor activity was measured 

be examining C3b cleavage at 2.5, 5, 7.5 and 10 minutes reaction for both fH-Ile62 (open 

circles) and fH-Val62 (filled circles) variants. Percentage of cofactor activity was 

determined by the ratio of cleaved α´chain:βchain, normalized to 0% proteolysis of control 

samples. Inset panel shows the double reciprocal plot of the fH-Ile62 (open circles) and fH-

Val62 (filled circles) of the cofactor activity curves. Multiple linear regression analysis 

revealed significant differences between the slopes for fH-Val62 and fH-Ile62 cofactor 

activities (P=0.0012). 

(c) Densitometric analysis of C3b proteolysis from an independent set of assays at 6 

minutes incubation time. Difference in percentage of cofactor activity between fH-Val62 

and fH-Ile62 was significant (P<0.001). 

 

Figure 4. Cofactor activity of fH-Ile62 and fH-Val62 variants in the proteolysis of 

surface-bound C3b. 

The ability of the fH variants to mediate fI-catalysed inactivation of surface-bound C3b was 

assessed using a haemolysis assay. C3b was deposited on the surface of sheep E using the 

classical pathway as described in Methods. E-C3b were incubated in AP buffer with 

different concentrations of fH-Ile62 (open circles) or fH-Val62 (filled circles) and constant fI 
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for 7 minutes at 22ºC. Cells were washed and AP convertase was formed using purified fB 

and fD. Lysis was developed in EDTA-containing buffer using serum depleted of fB and 

fH. Percent lysis was calculated for each concentration of fH. The log10 of fB 

concentration (final concentration in the incubation) was plotted on the x axis, and 

percentage lysis on the y axis. Data points represent mean ±SD of 3 determinations. The 

curves were fitted by using nonlinear regression analysis to calculate the EC50. There are 

significant differences (P=0.0025) between the EC50 values corresponding to the fH-Ile62 

(14nM) and fH-Val62 (22.6nM) variants. 

 

Figure 5. Decay accelerating activity of fH-Ile62 and fH-Val62 variants on surface-

bound AP convertase. 

The ability of the fH variants to accelerate decay of the AP convertase, C3bBb, was 

assessed using haemolysis assays with convertase coated sheep E as target (a), and in real 

time using SPR (b). (a) C3b was deposited on the surface of sheep E using the classical 

pathway as described in Methods. AP convertase was formed on the cell surface using 

purified fB and fD, convertase formation was stopped after 15 minutes using EDTA. E-

C3bBb were incubated in EDTA with different concentrations of fH-Ile62 (open circles) or 

fH-Val62 (filled circles) for 12 minutes to allow decay of the convertase and lysis was 

developed using serum depleted of fB and fH. Percent lysis was calculated for each 

concentration of fH. (b) AP convertase was formed on the surface of a C3b-coated Biacore 

chip by flowing fB and fD over the surface. Convertase decayed naturally for 160s prior to 

injection of either fH variant (73nM). Change in RU (y-axis) during the fH injection 

represents the combined effect of fH binding to the surface and to C3bBb, and loss of Bb 

from the convertase due to fH-mediated accelerated decay. Despite enhanced binding of 
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fH-Ile62 to the surface (grey line), an identical amount of Bb was decayed from the surface 

as measured following complete dissociation of fH from the chip surface. 

 

Figure 6. Competition between fH and fB for binding to C3b. 

(a) Proconvertase was formed on the surface of a C3b-coated Biacore chip by flowing fB, 

this was allowed to decay naturally for a short time before injection of fH as indicated. As 

expected, fH did not accelerate decay of the proenzyme. The binding profile of fH on the 

C3b surface only (no fB injected) is illustrated in grey for comparison. (b) In order to 

demonstrate competition between fB and fH for binding to the C3b-coated surface, fB 

(662nM) was flowed across the C3b-coated surface alone (black line), or was premixed 

with 26 or 66nM fH (dotted grey and solid grey lines respectively) before injection. Note 

that the change in RU (y-axis) represents the sum of both fB and fH binding to the surface. 

Decreased proconvertase formation is evident with increasing fH. (c) In order to analyse 

differential effects of fH-Ile62 and fH-Val62 on proconvertase formation, 132nM of either 

variant was premixed with fB (338nM) and injected over the surface. Comparison of 

binding curves (following dissociation of fH from the surface) with fB binding in the 

absence of any fH demonstrates that both fH variants prevent proconvertase formation and 

that the fH-Ile62 variant is more effective.  

 

Figure 7. Hemolytic activity of different fH and fB variant combinations. 

To test the combined effect of the fH-Ile62, fH-Val62 and the fBArg32, fBGln32 variants, C3b 

was deposited on the surface of sheep E using the classical pathway as described in 

Methods. E-C3b were incubated in AP buffer with 1nM of fH-Ile62 or fH-Val62 (final 

concentration) and constant fI for 7 minutes at 22ºC. Cells were washed and AP convertase 
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was formed using different concentrations of purified fBArg32 or fBGln32, and constant fD 

and properdin. Lysis was developed in EDTA-containing buffer using serum depleted of fB 

and fH. Percent lysis was calculated for each concentration of fH.  

The log10 of fB concentration (final concentration in the incubation) was plotted on the x 

axis, and percentage lysis on the y axis. Data points represent mean ±SD of 3 

determinations. The curves were fitted by using nonlinear regression analysis to calculate 

the EC50. Two-tailed unpaired T test showed significant differences in the EC50 between 

the combinations fH-Val62-fB-Arg32 (filled circles) and fH-Ile62-fB-Gln32 (open triangles) 

(P<0.001); fH-Val62-fB-Arg32 (filled circles) and fH-Ile62-fB-Arg32 (open circles) 

(P=0.004); and fH-Val62-fB-Gln32 (filled triangles) and fH-Ile62-fB-Gln32 (open triangles) 

(P=0.034). 
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Abbreviations 

 CFH, gene encoding factor H; AP, alternative pathway; CP, classical pathway; LP, 

lectin pathway; MAC, membrane attack complex; fH, Factor H; SCR, short consensus 

repeats; MPGN2/DDD, membranoproliferative glomerulonephritis type II or dense deposit 

disease; aHUS, atypical haemolytic uraemic syndrome; AMD, age-related macular 

degeneration; SPR, surface plasmon resonance; fI, factor I; fB, factor B; NHS, normal 

human serum; CFD, complement fixation diluent; EA, antibody-coated sheep erythrocytes; 

DAF, decay accelerating factor; vWA, von Willebrand factor type A. 
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Figure 4
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Figure 7

[fB] (nM)

Ly
si

s
(%

)

[fB] (nM)

Ly
si

s
(%

)


