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We propose and apply a theoretical description of a Raman amplifier based on the vector model of randomly
birefringent fibers to the characterization of Raman polarizers. The Raman polarizer is a special type of Raman
amplifier with the property of producing a highly repolarized beam when fed by relatively weak and unpolarized
light. © 2010 Optical Society of America
OCIS codes: 230.5440, 060.4370, 230.1150, 230.4320.

Polarization-dependent gain (PDG), an intrinsic charac-
teristic of optical fiber-based Raman amplifiers, is gener-
ally considered an unwanted feature for telecom-related
applications. Very recently, such anopinion about the role
of PDG was reversed as the quest for higher transmission
capacities brings to the forefront the need for polarization-
multiplexing protocols and polarization-controlling de-
vices. Indeed, Martinelli et al. demonstrated in [1] such
a device, called a Raman polarizer, which selectively am-
plifies only one polarization mode of the input beam and
thereby yields only thismode at the output, independently
of the input state of polarization (SOP) of the signal beam.
The development of a simple, yet rigorous as well as
computer-friendly theory of Raman polarizers along with
the scheme for their characterization is thus the purpose
of this Letter.
Telecom fibers are randomly birefringent fibers. Repre-

sentative examples of vector theories of Raman amplifiers
developed for telecom fibers can be found in [2,3]. The
analytic theory of [2] is limited by the condition that the
beat length LB is smaller than the birefringence correla-
tion length Lc, and therefore its validity is questionable
when applied to Raman polarizers, which, as we shall
see, require the opposite inequalityLB ≫ Lc. The full-scale
numerical approach in [3] accurately models a randomly
birefringent fiber consisting of fiber spans with randomly
distributed values and orientations of the birefringence.
Typically, thousands of such realizations are required
for getting accurate statistics. Hence, the required compu-
ter time is 3 to 4 orders of magnitude longer than for the
numerical modeling involved in the theory presented
below. In addition to the much faster performance, our
theory is formulated in terms of a set of deterministic
differential equations and, as such, allows for a simple
physical interpretation.
Starting with the equations of motion formulated by

Lin and Agrawal in [2] we extend the one-beam model
of the stochastic fiber proposed by Wai and Menyuk in
[4] to two beams interacting not only via Kerr, but also
via Raman effect. Detailed derivations can be found in
[5], while here we provide only the final equation formu-

lated for the Stokes vector SðsÞ ¼ ðSðsÞ
1 ; SðsÞ

2 ; SðsÞ
3 Þ of the

signal beam:

ð∂z þ β0ðωsÞ∂tÞSðsÞ ¼ −αsSðsÞ þ γðωsÞðSðsÞ × JðsÞS ðzÞSðsÞ

þ SðsÞ × JXðzÞSðpÞÞ þ ϵsg0ðSðpÞ
0 JR0SðsÞ

þ SðsÞ
0 JRðzÞSðpÞÞ: ð1Þ

The components of the Stokes vector are written in terms
of the two polarization components Vs1 and Vs2 of the
slowly varying signal field in the appropriate reference
frame as Ss

1 ¼ Vs1V�
s2 þ V�

s1Vs2, Ss
2 ¼ iðV�

s1Vs2 − Vs1V�
s2Þ,

and Ss
3 ¼ jVs1j2 − jVs2j2. Similar equations and definitions

(with labels p and s interchanged) hold for the pump
beam. γðωsÞ is theKerr coefficient of the fiber at frequency
ωs of the signal beam, g0 is the Raman gain coefficient,
β0ðωsÞ is the inverse group velocity of the signal beam,
αs is the attenuation coefficient, ϵs ¼ 1, and ϵp ¼
−ωp=ωs. Matrices in Eq. (1) are all diagonal with elements
JR ¼ diagðJR1; JR2; JR3Þ, JX ¼ diagðJX1; JX2; JX3Þ, and
JS ¼ diagðJS1; JS2; JS3Þ. Here JR1 ¼ hReðu2

14 − u2
10Þi, JR2

¼ −hReðu2
14 þ u2

10Þi, JR3 ¼ −hju14j2 − ju10j2i, JX1 ¼ 2
3 hRe

ðu2
10 þ u2

13 − u2
9 − u2

14Þi, JX2 ¼ 2
3 hReðu2

10 þ u2
14 − u2

9 − u2
13Þi,

JX3 ¼ 2
3 hju9j2 þ ju14j2 − ju13j2 − ju10j2i, JS1 ¼ 1

3 hReðu2
6Þi,

JS2 ¼ − 1
3 hReðu2

6Þi, JS3 ¼ 1
3 ½3hu2

3i − 1�, and also JR0 ¼
hju10j2 þ ju14j2i. The three groups of coefficients
fhu2

1i; hu2
2i; hu2

3ig, fhRe2ðu4Þi; hRe2ðu5Þi; hRe2ðu6Þig, and
fhIm2ðu4Þi; hIm2ðu5Þi; hIm2ðu6Þig obey equations

∂zG1 ¼ −2L−1
c ðG1 − G2Þ;

∂zG2 ¼ 2L−1
c ðG1 − G2Þ − 4ΔβðωsÞG4;

∂zG3 ¼ 4ΔβðωsÞG4;

∂zG4 ¼ −L−1
c G4 þ 2ΔβðωsÞðG2 − G3Þ;

when we associate them with fG1; G2; G3g, respectively.
Initial conditions are, respectively, ð1; 0; 0Þ, ð0; 1; 0Þ, and
ð0; 0; 1Þ. In turn, the remaining four groups of coefficients,
fhRe2ðu7Þi; hRe2ðu8Þi; hRe2ðu9Þ; hRe2ðu10Þig, fhIm2ðu7Þi;
hIm2ðu8Þi; hIm2ðu9Þ; hIm2ðu10Þig, fhRe2ðu11Þi; hRe2ðu12Þi;
hRe2ðu13Þ; hRe2ðu14Þig, and fhIm2ðu11Þi; hIm2ðu12Þi; hIm2

ðu13Þ; hIm2ðu14Þig, can be found from the equations
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∂zG1 ¼ −2L−1
c ðG1 − G2Þ þ 2Δ−G5;

∂zG2 ¼ 2L−1
c ðG1 − G2Þ − 2ΔþG6;

∂zG3 ¼ 2ΔþG6;

∂zG4 ¼ −2Δ−G5;

∂zG5 ¼ Δ−ðG4 − G1Þ − L−1
c G5;

∂zG6 ¼ ΔþðG2 − G3Þ − L−1
c G6;

whenwe associate themwith fG1; G2; G3; G4g, with initial
conditions as ð1; 0; 0; 0Þ, ð0; 0; 0; 1Þ, ð0; 1; 0; 0Þ, and
ð0; 0; 1; 0Þ, respectively. Here, Δ� ≡ΔβðωpÞ �ΔβðωsÞ,
where ΔβðωsÞ [ΔβðωpÞ] is the magnitude of the birefrin-
gence at frequency ωsðωpÞ. The power of the signal beam

defined as SðsÞ
0 ¼ ðSðsÞ2

1 þ SðsÞ2
2 þ SðsÞ2

3 Þ1=2 obeys the
equation

ð∂z þ β0ðωsÞ∂tÞSðsÞ
0 ¼ −αsSðsÞ

0 þ g0ðJR0S
ðsÞ
0 SðpÞ

0 þ JR1S
ðsÞ
1 SðpÞ

1

þ JR2S
ðsÞ
2 SðpÞ

2 þ JR3S
ðsÞ
3 SðpÞ

3 Þ: ð2Þ

Equations (1) and (2) for the signal (and pump) fields
are the key finding of our study. These equations are valid
for a wide range of parameters and regimes, for an un-
depleted as well as with a depleted pump. The only
limitation is that the total length of the fiber L or the non-
linear length LNL ¼ ½γðωsÞSðpÞ

0 �−1 must be longer than the
correlation length Lc. Equations (1) and (2) can be easily
solved numerically, in particular in the copropagating
configuration and undepleted pump regime, which is
of interest to us here. In this case, the z-dependent
elements on the diagonals of the single-phase modulation
(SPM), cross-phase modulation (XPM), and Raman
matrices, JS , JX , and JR, are obtained as previously
discussed.
When doing this, we found that both SPM and XPM ef-

fects have virtually no impact on the performance of
Raman polarizers operating in the undepleted pump re-
gime. In contrast, the form of the Raman matrix is of
paramount importance. The larger the coefficients on
the diagonal, the stronger the PDG. For moderate values
of the polarization-mode dispersion (PMD) coefficient,
Raman diagonal terms take only appreciable values near

the fiber input, as illustrated in Fig. 1. Therefore, the
power of the pump beam is to be high, in order to provide
significant amplification over the first few hundreds me-
ters of the fiber.

For analyzing the performance of Raman polarizers,
we identify three characteristic quantities: the degree of
polarization (DOP) of the outcoming signal beam, its
SOP, and the overall signal gain. The DOP and SOP char-
acteristics are illustrated in Fig. 2. Because the signal
SOP depends on the pump SOP, it is reasonable to define
a quantity that measures the relative difference between
these two SOPs. As usual, such a quantity is the align-
ment parameter

A↑↑ ≡
hSðsÞ

1 SðpÞ
1 þ SðsÞ

2 SðpÞ
2 þ SðsÞ

3 SðpÞ
3 i

SðsÞ
0 SðpÞ

0

; ð3Þ

which is the cosine of the angle between the pump and
the signal Stokes vectors, averaged over the ensemble of
beams with random SOPs, which models the unpolarized
signal beam. The hypothesis that the signal SOP is at-
tracted to the pump SOP is rooted in the model of isotro-
pic fibers, in which JR1 ¼ JR2 ¼ JR2 ¼ 1. In randomly
birefringent fibers, the equality, and even positivity, of

Fig. 1. (Color online) Elements of the Raman matrix (JR1,
black solid curve; JR2, red dashed curve; and JR3, green dotted
curve) as a function of distance in the fiber for LBðωpÞ ¼
0:016km and Lc ¼ 0:05km. (Note that the black solid and
red dashed curves coincide; i.e., JR1 ¼ JR2.)

Fig. 2. (Color online) DOP of the signal beam (black, solid
curve) and alignment parameter A↑↑ (red, dashed curve) as a
function of correlation length Lc for the four SOPs of the
pump beam: (a) ð1= ffiffiffi

3
p Þð1; 1; 1Þ, (b) ð1; 0; 0Þ, (c) ð0; 1; 0Þ,

(d) ð0; 0; 1Þ. Here and in Figs. 3 and 4, the value of the beat length
LBðωpÞ is indicatedon theplots inkilometers. The twoellipses on
plot (d) indicate one (of infinitely many) pair of points with
equal PMD coefficients. Other parameters are (also used in
Figs. 3 and 4) input signal power, 1 μW; input pump power, 8W;
g0 ¼ 0:6ðW · kmÞ−1; γ ¼ 1ðW · kmÞ−1; α ¼ 0:2 dB=km; and
L ¼ 1:5km.

Fig. 3. (Color online) DOP of the signal beam for two SOPs of
the pump beam that either maximize (black, solid curve) or
minimize (red, dashed curve) the signal DOP. For each value
of Lc, we perform a separate search for these two SOPs. The
beat length is indicated on the plots in kilometers.
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the three elements is not always the case, as exemplified
in the plot of Fig. 1. In these cases, it is remarkable that
the signal SOP is attracted to an SOP that is different
from that of the pump. In spite of this observation, we
found that for ideal Raman polarizers (those with DOP
>0:9), and in the range of lengths 0:001 < LB < 0:05
and 0:0001 < Lc < 0:05, given here in kilometers, the sig-
nal SOP, on average, is attracted to the pump SOP; see
Fig. 2. This is not the case in the counterpropagating con-
figuration, for which the appropriate alignment para-
meter A↑↓ is different from that given in Eq. (3); see
[5]. Moreover, the performance of Raman polarizers
(namely, DOP) sensitively depends on the pump SOP,
as demonstrated in Fig. 3.
Another important practical issue is the selection of

fibers for Raman polarizers. The main parameter in this
selection is the value of the PMD coefficient. In this re-
spect, we found that for obtaining a signal DOP close to
unity (i.e., >0:99), the PMD coefficient should be less
than 0:0145 ps=

ffiffiffiffiffiffiffi

km
p

for, say, 8W of pump power (as
in [1]). Nevertheless, we found that the PMD coefficient
does not always provide full information about the fiber.
For example, in Fig. 2(d), we can see that two fibers with
equal PMD coefficients exhibit a different performance

as Raman polarizers. In one case, the DOP is 0.25; in
the other it is 0.45. For this reason, it is preferable to con-
sider the beat and correlation lengths separately, rather
than combining them into the single PMD coefficient,
which for our model is expressed as [4] Dp ¼ 2

ffiffiffi

2
p

π
ffiffiffiffiffi

Lc
p

=ðLBωsÞ.
The third characteristic of Raman polarizers is Raman

gain; see Fig. 4. Even for a 1.5-km-long fiber with 8W of
pump power we may have an enormous 55dB gain that is
almost twice the gain of the same Raman amplifier but
with a high value of the PMD coefficient. This means that
Raman polarizers are simultaneously very efficient
Raman amplifiers. Such values of gain are obtained in the
undepleted regime, i.e., for input signal powers in the
microwatt range. For the milliwatt range, which is typical
of telecom applications, the analysis necessarily enters
the depleted pump regime, to which our theory can also
be readily applied.

In conclusion, we presented a theory for describing the
interaction of two optical beams in randomly birefringent
fibers via Kerr and Raman effects and applied it to the
quantification of the performance of Raman polarizers.
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Fig. 4. (Color online) Average Raman polarizer gain as a func-
tion of the correlation length. The pump SOP is ð1; 0; 0Þ, and the
signal beam is initially unpolarized.

3972 OPTICS LETTERS / Vol. 35, No. 23 / December 1, 2010

http://arxiv.org/abs/1009.0446
http://arxiv.org/abs/1009.0446
http://arxiv.org/abs/1009.0446

