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We report the discovery of a quantization of the separation between phase-locked soliton pairs that is related

to the radiation waves known as Kelly sidebands, in a passively mode-locked fiber ring laser.
simulations that predict this phenomenon have been confirmed by our experimental results.
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Multiple-pulse generation is a well-known phenome-
non in passively mode-locked laser systems that
appears when the gain exceeds certain thresholds.
Formation of double, triple, and more pulses has been
experimentally observed.!® In some cases these
pulses interact through their tails and form a stable
solution with a fixed distance and a fixed phase differ-
ence.? The formation of these pairs with a 7/2 phase
difference had been predicted theoretically in the
framework of the quintic complex Ginzburg—Landau
equation.’

There are various mechanisms responsible for cou-
pling the adjacent pulses together. For example, long-
range soliton interaction through acoustic waves in a
fiber has been studied in a number of publications.”®
Stabilized pulse spacing as a result of gain depletion
and recovery was reported in Ref. 9. Long-range soli-
ton interactions in periodically amplified fiber links
was considered in Ref. 10. Interaction through the ra-
diation field occurs even in the integrable models.!!

In this Letter we study in detail the process of
double-pulse generation in the model of a passively
mode-locked system with parameter management.
The main feature of the system is the periodicity of
the medium parameters for the pulse propagating
inside the cavity. As a result, the pulse changes
along with propagation in the cavity, but at any
fixed point the pulse shape converges in time to a
stationary profile. Another important property of
the model is that it is creating Kelly sidebands in
the spectrum as a result of periodic pulse reshaping.
These sidebands are small-amplitude radiative waves
emitted by the pulse because of the periodicity of the
processes in the cavity. This radiation in turn can
influence the interaction between the solitons and
relates their phases and separations. We have found
in our simulations that solitons can see each other
at relatively larger distances than they would in the
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absence of radiation. This explanation is further
corroborated by our experiments.

The choice of the system parameters is dictated
by the experimental setup described in Ref. 2. The
model is shown in Fig. 1. It consists of an isotropic
erbium-doped fiber (EDF), a quarter-wavelength
plate, a birefringent single-mode fiber (SMF), and a
polarizer. Linear losses are incorporated between
these elements at points a—d. The wave propagation
in the EDF is described by the nonlinear Schrodinger
equation with an additional gain term:

iU. + - Uy + TIUPU = ig@U +ipUs, (D

where D = p&*/ ,82SMF is the dimensionless dispersion
parameter. AL and BgSMF are the dispersion coeffi-
cients related to the two pieces of fiber, respectively.
I = ASNF /AEL (A4 is the effective area in each type of
fiber), and B is the strength of the spectral filtering as
a result of the gain-limited bandwidth. The function
2(Q) represents gain in the EDF, g(Q) = go(2)/(1 +
Q/EL), where go(z) = go; + (8of — &0i)2/LE:, and @ =
[“.,|U|?dt, Lg, is the length of the EDF, E;, is the
saturation energy, and gy is the small-signal gain,
which depends on z because of the pump depletion.
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Fig. 1. Model of a passively mode-locked fiber laser used
in the simulations.
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For simplicity we adopt linear polarization all along the
EDF. Nonlinear birefringence, which is required for
pulse formation in this laser, is acting during propaga-
tion in the passive SMF fiber, as described by the two
following coupled nonlinear Schrédinger equations:

1 2 1 ,
ig + v + 5 du T ol + TlulPd + Sy =0,

2 1
e = vyt WP S P+ 5 8% =0,
(2)

where ¢ and ¢ are the normalized orthogonal com-
ponents of the optical field defined at the fiber input
by (¢,¢) = (1,i)U/V/2, and y is the half-difference
between the propagation constants. Polarizer IT1
mixes the two components into a single component,
U = ¢ cos(0) + ¢ sin(#). The latter is injected into
the EDF. Observing the pulse at a certain point of
the cavity at each round trip, we can see the pulse’s
convergence to some stationary profile.

The part of the cavity consisting of the birefringent
fiber and the polarizer acts as a fast saturable absorber
with a transmission coefficient that depends on the
instantaneous intensity of the optical field. The laser
starts to generate pulses at y near 0.01 and 6 from
66° to 142°. This range changes at higher values of y.
Once these parameters are chosen, we need to find the
range of values where the two-pulse generation occurs.
The double-pulse generation requires more intracavity
energy.

One of the main consequences of periodic changes of
the soliton shape is the radiation of small amplitude
waves at fixed frequencies located symmetrically
at each side of the soliton spectrum in the form of
sidebands. Spectral sidebands related to periodic
perturbation of a soliton were described in the original
paper by Kelly.}? More detailed theory based on per-
turbation theory of solitons'® was presented later in
Ref. 14. This effect is similar to Cherenkov radiation
by solitons.!® The radiation serves as a bath for soli-
tons in the cavity and can relate the separation and
phase differences between the solitons. Because of
the losses, the radiation field is decaying exponentially
out of the soliton. Hence the interaction between the
solitons will also be the strongest when solitons are
located close to each other. At the same time, the
interaction between the solitons will have periodic
components because of the specific wavelength of
radiation fields. This periodicity in the case of fiber
links was noted in Ref. 10. Clearly, it should exist in
the case of multiple-pulse generation by lasers.

We solve Egs. (1) and (2) taking as the initial con-
dition an arbitrary localized input. Fixing the cavity
parameters and choosing the proper angle of the
polarizer 6, we observe a solution that converges to a
stationary state consisting of one or several solitons.
When the two-pulse solution appears, its relative phase
difference (a) and separation (p) converge to fixed
values.

To find more two-soliton stationary states with
different values of the phase difference and separa-
tion between solitons we start simulations with two
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single solitons of Eqgs. (1) and (2) at arbitrary relative
phase and distance. The single-soliton solutions are
obtained for the same cavity parameters but with
half the gain required for observation of two-soliton
solutions. We then let them evolve until a stationary
solution is reached. These simulations are repeated
with many initial values of (pg, ap). Each stationary
state has a basin of attraction to which the two-pulse
solutions converge. The final values of p and a for
15 stationary states are shown by the filled circles in
Fig. 2. The phase difference for each of these states
is close but not equal to 7/2. It oscillates as the
number N increases, approaching the limiting value
of 7 /2.

Figure 3 shows the spectra of the two-soliton so-
lutions produced in the numerical simulations just
after the polarizer. The solid curve corresponds to a
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Fig. 2. Phase difference versus soliton separation for a
discrete set of stable pairs obtained for the same cavity
parameters.
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Fig. 3. Numerical spectra of the two-soliton solutions de-
noted 19 and 21 in Fig. 2. The solid curve corresponds to
the spectrum of a single pulse.
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Fig. 4. Experimental spectra of the two-soliton solution.

single-soliton solution. The two strongest Kelly side-
bands on each side of the main maximum are clearly
seen. The spectra for two-soliton solutions are the
result of interference between the two single-soliton
spectra and therefore show the fringe pattern with
a frequency that is the inverse of the pulse separa-
tion. The envelope of these spectra always coincides
with the single-pulse spectrum. The two spectra for
soliton pairs correspond to the solutions numbered as
N =19 and N = 21 in Fig. 2. One can see clearly
that one of the fringes coincides exactly with the
left-hand Kelly sideband (solutions numbered with
even N possess a fringe coinciding with the right-hand
Kelly sideband). Each successive stable solution has
a fringe centered in one of the Kelly sidebands. The
accuracy of this centering is higher for larger N. This
observation proves that radiation related to the Kelly
sidebands plays one of the major roles in the soliton
coupling. It is remarkable that the phase difference
between the solitons is fixed to 7/2, which makes
the solution asymmetric so that only one side of
the spectrum is attached to the sideband. Taking
into account the asymmetry above, we note that the
discrete time separation py between the centers of
the two solitons (filled circles in Fig. 2) can be easily
calculated as py = 2N — 1)/(48v1), where Sv; is
the frequency displacement of the lowest-order Kelly
sideband.

The relation between the Kelly sidebands and the
quantized separations between solitons is further
confirmed experimentally. The experimental setup
that we are using is the same as in Ref. 2. It is clear
from the analysis above that the spectral observations
are sufficient for conclusive judgment. Figure 4
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shows the two spectra for two different soliton-pair
generation processes obtained for the same cavity pa-
rameters. First, one can notice that Kelly sidebands
are much stronger in the experiment than in our nu-
merical simulations. This is due to the unavoidable
differences between the model and the real experi-
mental setup. The stronger radiation allows further
separation between the solitons that are still coupled
to each other. The number of fringes between the
two sidebands differs also from those in the numerical
simulations. Despite these differences, the spectral
peaks on the right-hand sides of the two spectra
exactly coincide with the peak of the Kelly sideband.
This fact confirms our numerical findings that the
two-pulse separation takes quantized values that are
related to the Kelly sidebands. Another fact that
agrees with our numerical results is that the spectra
are asymmetric. This means that the phase differ-
ence between the solitons is ~7 /2 rather than 0 or 7.
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