
852 OPTICS LETTERS / Vol. 23, No. 11 / June 1, 1998

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital.CSIC
Phase locking and periodic evolution of solitons
in passively mode-locked fiber

lasers with a semiconductor saturable absorber

N. N. Akhmediev

Australian Photonics Cooperative Research Centre, Optical Sciences Centre, The Australian National University,
Canberra, ACT 0200, Australia

J. M. Soto-Crespo
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Passively mode-locked lasers with intracavity weakly birefringent fiber are theoretically analyzed based on
two coupled complex one-dimensional Ginzburg–Landau equations. The model includes fiber birefringence,
spectral filtering, saturable gain, and saturable loss. Phase-locked soliton solutions are found for small
amounts of birefringence and several types of soliton with periodic polarization evolution for higher amounts of
birefringence. Numerical simulations show qualitative agreement with experimental results.  1998 Optical
Society of America
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Passively mode-locked fiber lasers1 – 11 are unique
sources of ultrashort optical pulses for telecommu-
nications and other applications. Ultrashort-pulse
generation in f iber lasers is based on a variety
of schemes, including coupled cavities,1,5 fast satu-
rable absorbers,3 additive-pulse mode locking,6 and
nonlinear polarization rotation.7 – 9 Semiconductor
mirror-saturable absorbers have been used in a vari-
ety of mode-locked lasers.10,11 Birefringent elements
in the cavity are of special interest because they
can give rise to new phenomena. Phase locking
of the two orthogonal polarization components of a
soliton owing to nonlinear effects’ overcoming the
linear beating in a weakly birefringent, lossless f iber
was theoretically predicted.12,13 Polarization-locking
effects were experimentally discovered14 in a laser
with birefringent fibers and a semiconductor satu-
rable absorber but without an explicit polarizer.
Although there are similarities between these, it is
not immediately obvious that the theoretical results
apply to a system that incorporates gain and (satu-
rable) loss.

Our aim here is to relate the phenomena predicted in
Refs. 12 and 13 to those discovered experimentally in
0146-9592/98/110852-03$15.00/0
Ref. 14. These phenomena are similar in that in both
cases the phase-locking effect is due to the nonlinearity
in the birefringent fiber. However, in the theoretical
research,12,13 the phase locking happens in a Hamilton-
ian system in which, for a given set of experimental pa-
rameters, there exists a one-parameter family of soliton
solutions. In the experimental observations dissipa-
tive effects play an important role in the pulse propaga-
tion inside the laser cavity, fixing the amplitude, width,
and shape of the soliton. The pulse profile then de-
pends on the parameters that describe the dissipative
effects in the cavity. Here we investigate the behavior
of pulses in this system as the linear birefringence in
the cavity is varied. We have found, in particular, that
there exist at least four different branches of soliton
solutions. For one of these branches the two polari-
zation components are locked in phase. For the other
branches the polarization state evolves periodically.

A laser with birefringent fiber elements in the cavity
and with a saturable absorber can be modeled as a
distributed system that is governed by the following
two coupled modified nonlinear Schrödinger equations
with nonlinear, nonlocal in time, and nonconservative
terms15:
 1998 Optical Society of America
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where z is normalized to the cavity length Z0; t is
the normalized retarded time t ­ hT 2 fzysVgZ0dgjyT0

sT0 ­
p

Z0jb2j d; b2 is the intracavity group-velocity dis-
persion, c and f are the normalized envelopes of the
two optical f ield components; g is half-difference be-
tween the propagation constants of the two components
of the f ield; D ­ b2yjb2j; A is the cross-phase modu-
lation coefficient; B is the coefficient of the energy-
exchange term (four-wave mixing); b represents
spectral filtering sb . 0d; gsQid is the gain in the
cavity, which depends on the energy, Q1 ­

R`

2`sjfj2ddt,
Q2 ­

R
`

2`sjcj2ddt; and ds is the total loss, including loss
that is due to a semiconductor saturable absorber.

In the cavity used in the research reported in Ref. 14,
two sections of the f iber that made up the laser cav-
ity were wrapped around the paddles of a polarization
controller. The bending of the f iber produced birefrin-
gence with well-defined axes in these sections. The
relative angles of the birefringence axes to each other
as well as to the rest of the cavity were varied by
changes in the angles u1 and u2 of the paddles (see
Fig. 1 of Ref. 14). Each of these pieces can be de-
scribed by a 2 3 2 matrix. Multiplying the matrices of
all cavity elements and diagonalizing the resulting ma-
trix, we find the axes and the amount of birefringence
for the whole cavity. Equations (1) are written on this
basis; g gives the half-difference between the propa-
gation constants of the two polarization components.
Although there is relatively large birefringence in the
sections of the cavity that are wrapped around the po-
larization controller, the net phase shift between the
two components per round trip is of the order of one
wavelength. This justifies the use of the above analy-
sis, which applies to the case of low birefringence. For
high birefringence, qualitatively different behavior can
occur.16

The gain term gsQid in Eqs. (1) describes an active
medium with a recovery time much longer than the
round-trip time of the cavity and therefore does not
depend explicitly on t. It describes depletion of the
gain medium and depends on the partial pulse energy

gsQid ­
g0

1 1 QiyEL

,

where g0 is the small-signal gain and EL is the satu-
ration energy. The absorption in the semiconductor is
described by the following rate equation10:
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where T1 is the recovery time of the saturable absorber,
d0 is the loss introduced by the absorber in absence of
pulses, Y refers to c or f, and EA is the saturation
energy of the absorber.
The solution of the latter equation is17
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Our numerical results show that for small values
of the birefringence parameter g the two polarization
components are phase locked, but they are not neces-
sarily equal (see Fig. 1). The point on the Poincaré
sphere that corresponds to this state is close to the
north pole but does not coincide with it [or equiva-
lently to the south pole, because if sf, cd is a solution,
then sf, 2cd is also a solution]. The energy Q ver-
sus g for these states is represented by the upper dot-
ted curve in Fig. 2. In addition to these phase-locked
states, there are solutions for which the state of polari-
zation evolves periodically, i.e., phase locking is absent
(see the trajectories on the Poincaré spheres in Fig. 2).
There are at least three qualitatively different types
of solution with different trajectories on the Poincaré
sphere. Their corresponding curves Q versus g are lo-
cated separately in the diagram in Fig. 2. Almost all
solitons that are described by these curves are stable.
The results shown in Figs. 1 and 2 were obtained for
EL ­ 2, d0 ­ 0.15, T1 ­ 3, b ­ 0.02, g0 ­ 0.2, EA ­ 1,
A ­ 2y3, B ­ 1y3, and D ­ 11. Similar results were
obtained for other values of the gain and loss parame-
ters, although the locations of the soliton branches on
the Q g diagram changed.

The calculated polarization-evolution frequency
(PEF) for the phase-locked solutions and for type II
periodic solitons is shown in Fig. 3(a). To calculate
the frequency, we scaled our dimensionless magni-
tudes, taking Z0 ­ 4 m, b2 ­ 16 ps2ykm, so that time
scaling is T0 ­ 253 fs and the cavity round-trip time is
ø0.02 ms. Figure 3 shows that switching between the
two soliton states happens at approximately g ­ 0.14.

The experimental PEF as a function of g is shown
in Fig. 3(b).14 The PEF measured for cw operation is
used to estimate g. The PEF is directly related to the
beat length, which in turn is related to g. The tran-
sition from polarization locked to unlocked states is in

Fig. 1. Amplitude profiles for the two components of the
phase-locked solutions. Solid curve, f; dashed curve, c.
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Fig. 2. Pulse energy Q versus g for four qualitatively dif-
ferent types of soliton. The two polarization components
are phase locked in the interval 0 , g , 0.16 (upper dotted
curve). The state of polarization is elliptical and can be
represented by a dot on the Poincaré sphere that is close
to the north or south pole. The periodic evolution of the
state of polarization on the Poincaré sphere for other solu-
tions is shown above each curve. In the case of the other
three kinds of solution with lower values of Q, the state of
polarization evolves periodically. In each sphere we show
two trajectories that correspond to the two solutions for the
limiting values of g in their corresponding curves Qsgd.

Fig. 3. (a) Calculated PEF for phase-locked solitons and
for the type II periodic solitons in Fig. 2. (b) Experimen-
tally observed PEF.

qualitative agreement between theory and experiment,
in which switching occurs at approximately g ­ 0.17.
In our model the main control parameter is the linear
birefringence, as in the experiments.14 The pulse
energy is the parameter that self-adjusts to a given g.
Numerical simulations show that there are at least four
different branches of solitons. There are phase-locked
solutions at small values of the linear birefringence
and relatively high values of the pulse energy. In
addition, there are three branches of dynamic solitons
with qualitatively different types of evolution of the
state of polarization. These appear at higher values
of g and lower values of Q.

In experimental results presented in Fig. 3(b), there
is a second region of polarization locking for larger val-
ues of g that does not appear in the theoretical results.
We ascribe this to the presence of several sections of
higher-birefringence f iber within the experimental
laser cavity. Preliminary theoretical investigation
showed that phase locking is also present in such
a cavity. Determining whether this phase locking
results in the experimentally observed multiple
locking regions will require a much more extensive
investigation.
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