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SUMMARY 

During spinal cord development the combination of secreted signaling proteins 

and transcription factors provide information for each neural type differentiation. 

Studies using embryonic stem cells show that trimethylation of lysine 27 of histone 

H3 (H3K27me3) contributes to repression of many genes key for neural 

development. However, it remains unclear how H3K27me3-mediated mechanisms 

control neurogenesis in developing spinal cord. Here we demonstrate that 

H3K27me3 controls dorsal interneuron generation by regulation of BMP activity. 

Our study indicates that Noggin expression, a BMP extracellular inhibitor, is 

repressed by H3K27me3. Moreover, we show that Noggin expression is induced by 

BMP pathway signaling, generating a negative feedback regulatory loop. In 

response to BMP pathway activation, JMJD3 histone demethylase interacts with 

Smad1/Smad4 complex to demethylate and activate Noggin promoter. Together 

our data reveal how BMP signaling pathway restricts its own activity in developing 

spinal cord by modulating H3K27me3 levels at Noggin promoter. 
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INTRODUCTION 

 During embryogenesis, multipotent neuroepithelial precursor cells originate 

specialized neurons and different glial cell types (Gage, 2000; Roegiers and Jan, 2004; 

Temple, 2001). Whether a precursor cell either self-renews or differentiates is regulated 

by interactions between transcription factors and secreted signaling proteins that 

provide positional information (Jessell, 2000; Zhu and Scott, 2004). Bone 

Morphogenetic Proteins (BMP) are some of these extracellular proteins. In developing 

spinal cord, BMPs regulate several processes such as differentiation to dorsal 

interneurons (Liu and Niswander, 2005; Timmer et al., 2002). These differentiation 

processes require nuclear reorganization and general changes in gene expression, 

indicating that epigenetic changes may be involved (Buszczak and Spradling, 2006; 

Hsieh and Gage, 2005; Kondo, 2006). One of the best-illustrated epigenetic effects on 

regulation of pluripotency and differentiation induction is the effect mediated by 

Polycomb repressive complexes (PRC) (Ringrose and Paro, 2007). The hallmark for 

Polycomb-mediated repression is the methylation of lysine 27 of histone H3 

(H3K27me3) (Czermin et al., 2002; Muller et al., 2002). Enhancer of Zeste Homolog 2 

(EZH2), a subunit of the PRC2 complex, is responsible for histone methyltransferase 

activity (Cao et al., 2002; Czermin et al., 2002; Kuzmichev et al., 2002). This mark is 

recognized by the chromodomain of Polycomb protein that forms part of the PRC1 

(Cao et al., 2002). The recruitment of PRC1 leads to final transcriptional repression that 

is reversible by JMJD3 and UTX demethylase activity (Agger et al., 2007; De Santa et 

al., 2007; Lan et al., 2007; Lee et al., 2007). The balance between methyltransferase and 

demethylase activity gives a dynamic character which is reflected by the fact that many 

key developmental promoters are often marked by H3K27me3 (Boyer et al., 2006; 
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Bracken et al., 2006; Lee et al., 2006; Pan et al., 2007). In addition to H3K27me3, an 

active modification, H3K4me, is often found at these promoters (Bernstein et al., 2006; 

Mikkelsen et al., 2007; Pan et al., 2007; Zhao et al., 2007). It is believed that the 

presence of both activating and repressive chromatin marks keeps these developmental 

regulators poised for rapid resolution after the appropriate stimulus is received 

(Bernstein et al., 2006). 

 Many models have been used to examine epigenetic changes that take place 

during cell differentiation and, in particular, to analyze the role of Polycomb complexes 

using embryonic stem cells (ESC) (Boyer et al., 2006; Bracken et al., 2006; Lee et al., 

2006; Pietersen and van Lohuizen, 2008). However, these systems generally do not 

progress toward a specific terminal cell type as it occurs in vivo. In this paper we take 

advantage of an in vivo model for neurogenesis, the chick embryo neural tube, to 

analyze the role of H3K27me3 during nervous system development.  

  Here we report an H3K27me3-mediated mechanism to edge the boundaries of 

BMP activity during spinal cord development. We show that expression of Noggin, an 

extracellular inhibitor of BMPs, is regulated by H3K27me3. As a consequence, a 

reduction of H3K27me3 disturbs BMP-regulated dorsal spinal cord development. 

Moreover, we show that H3K27me3-mediated Noggin repression is sensitive to 

changes in BMP activity. Hyperactivation of BMP signaling pathway induces JMJD3 

interaction with Smad1/Smad4 and their recruitment to Noggin promoter for 

H3K27me3 demethylation that triggers Noggin expression. Our results reveal an 

essential role of H3K27me3 in the negative feedback regulation of BMP signaling that 

guarantees proper neurogenesis in developing chick neural tube. 

 

MATERIALS AND METHODS 



  Akizu et al. 

 5 

Plasmids and recombinant proteins  

Human EZH2 and its deleted form lacking SET domain (aminoacid 622-707) were 

cloned from pCDNA3 (Caretti et al., 2004) into pCIG vector (Megason and McMahon, 

2002), upstream of an internal ribosomal entry site (IRES) and three nuclear localization 

sequences-tagged EGFP. Human Myc-JMJD3 and Myc-JMJD3DN (H1390A truncated 

JMJD3) (Xiang et al., 2007) were cloned into pCIG. Mouse BMP4/7, chick Shh 

(Roberts et al., 1998) and human FlagSmad1 (Liu et al., 1996) were also cloned into 

pCIG. Mouse Wnt1, chick Noggin and human HaSmad4 are described elsewhere 

(Alvarez-Medina et al., 2008; Garcia-Campmany and Marti, 2007). DNA sequences for 

chick Noggin shRNA and a random shRNA (shRNA C-) were cloned into pSHIN 

vector (Kojima et al., 2004). Noggin shRNA target sequence: 5’gtggctctggtcccagacc3’. 

Random sequence: 5’gctccacatcagtccttcc3’ 

Chick in ovo electroporation 

Eggs from White-Leghorn chickens were incubated at 38.5ºC and 70% humidity. 

Embryos were staged following Hamburger and Hamilton (HH) (Hamburger and 

Hamilton, 1992). Chick embryos were electroporated with purified plasmid DNA at 

0.25-3 µg/µl in H2O with 50 ng/ml of Fast Green. Plasmid DNA was injected into the 

lumen of HH10 or HH16 neural tubes, electrodes were placed at both sides of the neural 

tube and embryos were electroporated by an IntracelDual Pulse (TSS-100) 

electroporator delivering five 50 ms square pulses of 20-25 V.  

Antibodies 

Antibodies used were: anti-BrdU, anti-Pax7, anti-ISL1/2 (DSHB), anti-neural b-Tubulin 

III (Tuj1), anti-Pax6 (Covance), anti-LHX2/9 (from TM Jessell), anti-trimethylH3K27, 

anti-acetylH3 (K9 and K14), anti-acetylH4 (K12), anti-di/trimethylH3K4, anti-

trimethylH4K20, anti-phosphoH3S10 (Upstate Biotechnology), anti-EZH1 (kindly 
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provided by Dr. Reinberg), anti-trimethylH3K9 (Abcam, UK), anti-HA (Sigma H6908), 

anti-Flag (Sigma M2), anti-phosphoSmad1/5/8 (Cell signaling), anti-myc ChIP Grade 

(Abcam) and anti-myc (from Dr. S. Pons). 

Indirect immunofluorescence 

The collected embryos’ brachial regions were fixed for 2h at 4ºC in 4% 

paraformaldehyde, rinsed, sunk in PBS 30% sucrose solution and embedded in OCT for 

sectioning in LEICA cryostat (CM 1900). Sections were blocked at room temperature 

for 1h in 1% bovine serum albumin (in PBS with 0.1% TritonX) before overnight (O/N) 

incubation at 4ºC with primary antibodies. Finally, sections were incubated for 2h at 

room temperature with Alexa-conjugated goat secondary IgG antibodies (Jackson 

Immuno Research Inc.) and 0.1 ng/µl DAPI (Sigma). Images were captured by Leica 

SP5 confocal microscope using LAS-AF software. Fluorescence intensity was 

quantified using Leica LAS-AF software.  

Histone extraction and Immunoblotting 

HH14 and HH25 wild-type (WT) embryos were collected and neural tubes were 

dissected out. For histone acid extraction, neural tubes were incubated for 30 min at 4ºC 

in lysis buffer (Hepes/kOH 10 nM, MgCl2 1.5 mM, KCl 10 mM, DTT 0.5 mM, PMSF 

1.5 mM, TSA 0.33 µM, HCl 0.2 N). After centrifugation for 10 min at 13,400 rpm, 

supernatant was collected and dialysis was done, with acetic acid 0.1 M and miliQ H20, 

using slide-A-lyzer mini dialysis units (Pierce). Histone concentration was measured 

with Bradford protein assay reagent and 10 µg of proteins were separated in SDS-

PAGE gel. Immunoblotting was performed with standard procedures and visualized by 

ECL kit (Amersham).  

BrdU incorporation 
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0.5 µg/ml bromodeoxyuridine (BrdU) was injected into the chick embryo neural tube 

lumen  30 min before fixation. BrdU was detected on sections by treatment with HCl2 

N for 30 min, NaBorate 0.1 M (pH 8.5) and incubation with anti-BrdU antibody.  

In situ hybridization (ISH) 

Embryos were fixed overnight at 4ºC in 4% paraformaldehyde, rinsed and processed for 

whole-mount RNA ISH , following standard procedures using ESTbank probes for 

chick EZH2, JMJD3, Hes5, NeuroD, NeuroM, Noggin, ID1 and ID3. After 

hybridization, embryos were post-fixed in paraformaldehyde 4% for 2h, embedded in 

sucrose 10%, agarose 5% solution and sectioned in a Leica vibratome (VT 1000S).  

Fluorescent associated cell sorting (FACS) 

Electroporated embryos were dissected out and trypsinized for 5-10 min in Trypsin-

EDTA 0.5% (Sigma). Trypsinization was stopped with  20% horse serum in PBS-0.1% 

glucose solution. GFP+ cells from cell suspension were sorted by flow cytometry using 

a MoFlo flow cytometer (DakoCytomation, Fort Collins, CO).  

Cell cycle analysis 

Trypsinized cell suspension from electroporated neural tubes was treated 2h at room 

temperature with 10 µg/ml Hoescht33342. Hoescht and GFP fluorescence were 

determined by flow cytometry using a MoFlo flow cytometer (DakoCytomation, Fort 

Collins, CO). DNA content analysis (Ploidy analysis) was done using Multicycle 

software (Phoenix Flow Systems, San Diego, CA). 

Microarrays analysis 

Fifteen chick embryo neural tubes were electroporated with empty vector or 

EZH2DSET for each replicates. RNA-s from 100,000 FACS-purified GFP+ cells of 

each replicate were supplied to IRB's Affymetrix Facility for quality control, 

quantification, reverse transcription, labeling and hybridization onto Affymetrix 



  Akizu et al. 

 8 

Chicken GeneChip. Results in CEL files were provided to the Bioinformatics and Data 

Analysis service of UB-SCT, for analysis of data quality, normalization with the RMA 

algorithm and selection of differentially expressed genes (absolute fold change >1.5 in 

both replicates). 

mRNA extraction and quantitative PCR (qPCR) 

mRNA from FACS-separated cells or from dissected neural tubes was extracted by 

TRIZOL (Invitrogen) protocol with 2 µl of pellet paint co-precipitant (Novagene). 

Reverse transcription was performed with Transcriptor kit (Roche), following the 

manufacturer’s procedure. qPCR was performed with Sybergreen (Roche) in LC480 

Lightcycler (Roche). GapdH was used for normalization. Primer sequences:  Noggin 

FW5’gctacagtaaaaggtcttgctc3’; RW5’cctcaggatcgttaaatgcac3’; Hes5 

FW5’taaaccataactcaagctgtgtag3’; RW5’gcatacatatcctgaacctcac3’; NeuD 

FW5’actacttgttacctttcccg3’; RW5’atggtttaaaataggaaatccacg3’; Id1 

FW5’tgaagggctgctactcg3’; RW5’aggtcccagatgtagtcg3’; Id3 

FW5’cgactgctactccaaattgc3’; RW5’gaagatataatcgatgacgtgctg3’. 

Chromatin immunoprecipitation (ChIP)  

For histone ChIPs 300,000-400,000 cells separated by FACS or 2-3 dissected neural 

tubes, were used. ChIPs were performed essentially as described elsewhere (Attema et 

al., 2007). Cells were treated with formaldehyde 1% at room temperature for 10 min. 

The reaction was stopped  with 125 mM glycine. Cells were washed once in ice-cold 

PBS with protease inhibitors and lysed with 50 µl lysis buffer [SDS 1%, EDTA 10 mM, 

Tris 50 mM (pH 8), protease inhibitors 1 µg/ml, PMSF 1 mM], incubated 5 min on ice 

and diluted with 150 µl PBS before 10 min sonication in biorruptor (Novagene) (High 

power, 30 sec ON, 1 min OFF). 200-500bp chromatin fragments containing supernatant 

was precleared with 8 µl of proteinA agarose/ssDNA beads (Upstate 16-157) for 30 min 
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at 4ºC under rotation. Supernatant was recovered by centrifugation and input was 

separated. The rest of the chromatin was diluted with IP buffer [Triton X-100 1%, 

EDTA 2 mM, NaCl 150 mM, Tris 20 mM (pH 8) and protease inhibitors] and divided 

into three eppendorfs. 2 µg of antibodies or IgG were added O/N incubation at 4ºC 

under rotation. Antibody:protein:DNA complexes were then collected with 10 µl of 

proteinA agarose/ssDNA beads for 1h. The beads were washed with buffers I [SDS 

0.1%, Triton X-100 1%, EDTA 2 mM, Tris-HCl 20 mM (pH 8), NaCl 150 mM], II 

[SDS 0.1%,  Triton X-100 1%,  EDTA 2mM, Tris-HCl 20 mM (pH 8), NaCl 500 mM], 

III [LiCl 0.25 M, NP40 1%, NaDOC 1%, EDTA 1mM, Tris-HCl 10 mM (pH 8)], and 

three times with Tris-EDTA. Washed pellets were eluted with 400 µl of SDS 1%, 

NaHCO3 0.1 M solution and de-crosslinked O/N at 65ºC. DNA was recovered by using 

phenol chloroform extraction and ethanol precipitation.  

For non histone proteins ChIPs were performed as described above with some 

modifications: 400,000-500,000 cells separated by FACS or 20-25 dissected 

electroporated side of neural tubes, were fixed at room temperature 45 min with DSG 2 

mM (Sigma) and 20 min with formaldehyde 1%. Cells were lysed with 1.1 ml lysis 

buffer [SDS 0.1%, EDTA 1 mM, Tris 20 mM (pH 8), Triton X-100 1%, NaCl 150 mM, 

protease inhibitors 1 µg/ml, PMSF 1 mM]. After immunoprecipitation beads were 

washed with buffers I (SDS 0.1%, NaDOC 0.1%, Triton X-100 1%, EDTA 1 mM, 

HEPES 20 mM, NaCl 150 mM), II (SDS 0.1%, NaDOC 0.1%, Triton X-100 1%, 

EDTA 1 mM, HEPES 20 mM, NaCl 500 mM), III (LiCl 250 mM, NP40 0.5%, NaDOC 

0.5%, EDTA 1mM, HEPES 20 mM), and IV (EDTA 10 mM, HEPES 200 mM).  

DNA was analyzed by qPCR with Sybergreen (Roche) in LC480 (Roche). Primer 

sequences are: Noggin(-2000) FW5’cttgcgatgctttttgtgac3’, 

RW5’cgtggagcagttttacagac3’; Noggin(-1000) FW5’gggtagggtgggttagaaga3’, 
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RW5’ccaaagcctttaaatttcctgc3’; Noggin(+300) FW5’gctacagtaaaaggtcttgctc3’, 

RW5’cctcaggatcgttaaatgcac3’; Hes5(-2000) FW5’tgaaagattggcagaggaaac3’, 

RW5’gtacccatttctcactacagc3’; NeuD(-2000) FW5’ttccgtaatcgtgtgtactcg3’, 

RW5’atttagttaatggaaaagacatcgc3’. 

Cell culture, transfection and Coimmunoprecipitation (CoIP) assay 

Hek293T cells were grown in DMEM with 10% fetal calf serum and 1% 

Penicillin/Streptomycin at 37°C, 5% CO2. Cells were transfected by a standard calcium 

phosphate co-precipitation protocol and harvested 48h after transfection. 

Immunoprecipitations and immunoblot analysis were performed essentially as described 

elsewhere (Valls et al., 2003).. Immunoblotting was performed using standard 

procedures and visualized using ECL kit (Amersham).  

Identification of Smad binding sequences in the Noggin promoter region 

Sequence comparison of the Noggin locus between Human and Chicken was performed 

using the global alignment programme Shuffle-LAGAN (Brudno et al., 2003) and 

visualized with  VISTA visualization tool (Mayor et al., 2000). Smad conserved binding 

sites were found using rVISTA 2.0 searches for Smad matrix from the TRANSFAC 

library. 

Statistical analysis 

Quantitative data were expressed as mean and standard deviation (s.d.). Significant 

differences between groups were tested by Student’s t-test. 

 

RESULTS  

H3K27me3 global levels increase during neural differentiation 

To understand the contribution of histone marks in neural development, we 

examined their distribution throughout early development. We studied the pattern of 
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histone acetylation and methylation in HH14 and HH25 chick embryo neural tubes. 

While in HH14 embryos the neural tube is mainly formed by proliferating neuroblasts 

in HH25 embryos two zones are distinguished: the ventricular zone (VZ) formed by 

proliferating neuroblasts and the mantle zone (MZ) where differentiated neurons reside 

(Fig. 1A). First, we analyzed histone marks along neurogenesis by immunoblotting of 

histones purified from neural tubes. While global histone acetylation and H3K4me2/3 

levels were similar in HH14 and HH25 embryo neural tubes (Supplementary Fig. 1A), 

clear increase in global H3K27me3 was detected from stage HH14 to stage HH25 (Fig. 

1B). This correlates not only with neurogenesis progression but also with enrichment in 

differentiated neurons. Then, we tested whether H3K27me3 levels were higher in 

differentiated neurons than in proliferating neuroblasts. By HH25 embryo neural tubes 

immunostaining we observed that global H3K27me3 levels were 3 times higher in 

differentiated neurons (MZ) than in neuroblasts (VZ) (Fig. 1C). These data indicate that 

global H3K27me3 levels increase along neurogenesis, while differentiated neurons 

accumulate in the neural tube. Similar results were observed for H3K9me3 and for 

H4K20me3 (Supplementary Fig. 1B). 

The observed global H3K27me3 level increase led us to analyze the expression 

of the two mayor enzymes responsible for H3K27me3, EZH2 and JMJD3. Transversal 

sections of HH10 and HH14 embryo ISH show that EZH2 and JMJD3 are ubiquitously 

expressed in the neural tube, although their expression level is higher in the dorsal 

region (Fig. 1D,E). At HH25 neural tubes, EZH2 and JMJD3 are highly expressed in 

VZ while the mRNA levels of both enzymes in MZ are lower. Moreover the VZ 

expression of EZH2 and JMJD3 is higher at dorsal neuroblasts, resulting in a well 

defined dorsal JMJD3 domain and a dorsoventral EZH2 gradient (Fig. 1D,E). The 

EZH2 and JMJD3 expression pattern suggests that H3K27me3 could be more 
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dynamically controlled in VZ neuroblasts, especially at dorsal region. However, it 

doesn’t completely correlate with global H3K27me3 increase during neural 

differentiation. Thus, we analyzed the expression of EZH1, whose histone 

methyltransferase (HMT) activity has been recently described (Margueron et al., 2008; 

Shen et al., 2008). Supplementary Fig. 1C shows that EZH1 expression is higher in 

differentiated neurons than in proliferating neuroblasts at HH30 embryo neural tubes. 

This result suggests that in addition to EZH2 and JMJD3, EZH1 contributes to the  

H3K27me3 levels maintaining at differentiated neurons. 

   

Maintenance of global H3K27me3 is not required for neural differentiation or for 

progenitor proliferation 

Consistent with the observed global H3K27me3 levels increase during neural 

differentiation (Fig. 1B,C) recent evidences demonstrates that PcG proteins and 

H3K27me3 are present at promoters of many genes specific for neurogenesis (Boyer et 

al., 2006; Lee et al., 2006; Pietersen and van Lohuizen, 2008). Therefore, we 

investigated whether a global H3K27me3 increase is required for neurogenesis 

(although this does not necessarily reflect a requirement of H3K27me3 at a particular 

chromatin locus). To address this possibility we reduced global H3K27me3 levels in the 

chick neural tube to next analyze the effects on neural differentiation. In order to reduce 

H3K27me3 levels, chick embryo neural tubes were in ovo electroporated with a 

dominant negative form of EZH2 (EZH2DSET), which lacks the SET domain 

responsible for HMT activity. First, we tested the ability of EZH2DSET to block 

endogenous EZH activity. Fig. 2A shows that EZH2DSET over-expression (GFP+ 

cells) reduces by 70% endogenous H3K27me3 levels 24h post-electroporation (PE). 

H3K27me3 is maintained at low levels for 48h, but it starts to recover 72h-PE 
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(Supplementary Fig. 2A). EZH2 over-expression caused no change in global 

H3K27me3 levels (Fig. 2A). Similarly, no changes in global H3K9me3 or H3K4me3 

levels were detected after EZH2DSET over-expression (Supplementary Fig. 2B,C). 

Once global H3K27me3 levels were reduced in chick neural tube, we examined its role 

in neural differentiation by analyzing the expression of NeuroD and NeuroM, proneural 

genes expressed in differentiating neurons and previously identified as H3K27me3 

targets in ESC (Boyer et al., 2006; Lee et al., 2006). To this end, EZH2DSET, EZH2 or 

the empty vector were electroporated in HH10 embryo neural tubes, when the neural 

tube is mainly formed by proliferating neuroblasts. No changes in the expression levels 

of NeuroD and NeuroM differentiation markers were detected after H3K27me3 

reduction (Supplementary Fig. 3A). To confirm these results, we checked the pan-

neural differentiation marker Tuj. Embryos transfected with EZH2DSET and stained for 

Tuj does not show changes in the number of differentiated cells neither at 48h nor at 

72h-PE (Fig. 2B and Supplementary Fig. 4A). These results indicate that global 

H3K27me3 maintenance is not essential to neural differentiation; the observed global 

H3K27me3 increase during neurogenesis might be a consequence of the differentiation 

process itself, in which extensive structural changes in chromatin are known to take 

place over all the genome (Keenen and de la Serna, 2009). In line with this hypothesis, 

other heterochromatin marks, such as H3K9me3 and H4K20me3, also increase during 

neurogenesis (Supplementary Fig. 1B). 

The high EZH2 and JMJD3 expression at the VZ suggests that a dynamic 

control of H3K27me3 might be important in neuroblast proliferation. Moreover, EZH2 

and H3K27me3 regulate  several proliferating processes (Agger et al., 2009; Bracken et 

al., 2003; Ezhkova et al., 2009; Varambally et al., 2002). Then, we analyzed the 

function of H3K27me3 in the maintenance of the proliferating neuroblast population. 
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To this end, EZH2DSET, EZH2 or the empty vector were electroporated in HH10 

embryo neural tubes and the effect on neuroblast proliferation and cell cycle 

progression was analyzed. Immunostaining using H3S10p antibody shows that 

electroporated and control sides of the neural tubes have the same number of mitotic 

cells  (Supplementary Fig. 3B). We also evaluated neural tube cells entry into S-phase 

of the cell cycle: when electroporated embryos were pulse-labeled with BrdU, no 

differences were observed between EZH2DSET, EZH2 or empty vector 

electroporations neither at 24h nor at 72h-PE (Fig. 2C and Supplementary Fig. 4B). 

Finally, by GFP+ DNA content analysis, no changes on cell cycle phase distribution 

were observed after global H3K27me3 decrease (Supplementary Fig. 3C and 

Supplementary Fig. 4C). Taken together, these findings suggest that global H3K27me3 

levelmaintenance is not essential to neuroblast proliferation. 

 

H3K27me3 regulates BMP activity  

Next, we examined whether the observed dorsoventral expression gradient of 

EZH2 and JMJD3 (Fig. 1D,E) has any physiological significance in the neural tube 

dorsoventral pattern formation. We analyzed the development of dorsal neural 

populations by immunostaining of Lhx2/9 and Isl1/2 dorsal interneuron markers, after 

H3K27me3 reduction (by EZH2DSET over-expression). Lhx2/9 and Isl1/2 positive 

dorsal interneuron populations decrease in EZH2DSET electroporated side of the neural 

tubes (Fig. 3A). It is well established that BMP pathway is the main factor responsible 

for dorsal patterning of the neural tube (Liu and Niswander, 2005; Timmer et al., 2002). 

Then, we examined whether low levels of H3K27me3 affect BMP activity. To this end, 

we activated the BMP pathway by in ovo electroporation of BMP expression vector in 

the presence or absence of EZH2DSET. The expression pattern of Pax6/7 genes, known 
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to be regulated by BMP activity (Liu and Niswander, 2005), was analyzed by 

immunostaining. Fig. 3B shows that BMP activity leads to a ventral expansion of 

Pax6/7 domains that is counteracted by H3K27me3 reduction after EZH2DSET over-

expression. This result indicates that H3K27me3 is required to maintain proper BMP 

activity in the developing spinal cord.  

 

BMP activity is regulated by Noggin induction via H3K27 demethylation 

To understand how H3K27me3 regulates BMP activity, we performed a micro-

array analysis comparing GFP+ cells purified by FACS from EZH2DSET or empty 

vector electroporated neural tubes (Fig. 4A left panel). Differentially upregulated genes 

after H3K27me3 removal (by EZH2DSET electroporation) were analyzed by Gene 

Ontology (GO). 22 upregulated genes were associated with seven GO biological 

process terms related to nervous system development (Fig. 4A right panel). 

Interestingly, we found among them Noggin, a known BMP inhibitor (Zimmerman et 

al., 1996). As confirmed by qPCR, Noggin is upregulated (1.9±0.6-fold) in 

EZH2DSET-transfected neural tube cells (Fig. 4B), suggesting that Noggin 

upregulation could be responsible for the phenotype described above. 

In order to examine whether changes in Noggin expression are directly 

associated with H3K27me3 levels, HH16-18 embryo neural tubes were dissected out 

and H3K27me3 ChIP analysis were performed. In addition to Noggin, NeuroD and 

Hes5 promoters, which are not transcriptionally affected by H3K27me3 reduction (Fig. 

4B), were also analyzed. Hes5 was used as a negative control of ChIP analysis, as it is 

highly expressed in neural tubes (ISH in Fig. 4C) and, thus, it is expected not to be 

enriched in H3K27me3. NeuroD, a known H3K27me3 target in ESC (Boyer et al., 

2006; Lee et al., 2006) and repressed in analyzed neural tubes (ISH in Fig. 4C) was used 
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as positive control of H3K27me3 ChIP. Fig. 4C shows that Noggin promoter, which is 

transcriptionally inactive in most of the neural tube cells, is enriched in H3K27me3 

nucleosomes (7.2±2.5 % of input), although this enrichment is smaller than in the 

NeuroD promoter (22.1±7.5 % of input). As expected, Hes5 promoter H3K27me3 

levels are in the same range of mock ChIP (Fig. 4C).  

Next, GFP+ cells from neural tubes electroporated in ovo with empty vector or with 

EZH2DSET were sorted by FACS and H3K27me3 levels at Noggin, NeuroD and Hes5 

promoters were analyzed by ChIP assays. Results in Fig. 4D show that, after 

EZH2DSET expression, H3K27me3 levels decrease at both, Noggin promoter (2.8±1.2 

fold) and NeuroD promoter (2.1±0.01 fold), though only Noggin is activated (Fig. 4B). 

Many promoters of key development regulators bear, in addition to H3K27me3, the 

active H3K4me mark (Bernstein et al., 2006; Mikkelsen et al., 2007; Pan et al., 2007; 

Zhao et al., 2007). It has been hypothesized that these marks’ combination creates a 

poised state suitable for rapid induction (Bernstein et al., 2006). To find whether the 

presence of H3K4me together with H3K27me3 contributes to gene expression 

regulation, we tested the presence of this histone modification at the three gene 

promoters analyzed previously. Fig. 4C shows that in HH16-18 embryo neural tube 

cells, Hes5, Noggin and NeuroD promoters are enriched in H3K4me2 (Fig. 4C; 

14.8±1.3, 6.±2.7, 3.1±1.5 % of input respectively). H3K4me2 levels at Noggin 

promoter are similar to H3K27me3 ones, while at NeuroD promoter H3K4me2 levels 

are clearly lower than H3K27me3 levels (Fig. 4C right diagram). ChIP assays analyzed 

by qPCR show that H3K4me2 is not affected by EZH2DSET over-expression (Fig. 4D). 

However, loss of H3K27me3 levels at Noggin promoter, leads to a predominance of 

H3K4me2 over H3K27me3. The contrary happens at NeuroD promoter where 

H3K27me3 is maintained above H3K4me2 levels even after the H3K27me3 reduction 
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by EZH2DSET over-expression. These ratios correlate well with Noggin and NeuroD 

expression levels observed after H3K27me3 reduction (Fig. 4D right diagram).  

 

Noggin transcription is regulated by BMP pathway 

Then, we asked whether Noggin upregulation upon a signal induction requires 

H3K27me3 removal. To establish the activity responsible for Noggin regulation, BMP, 

Wnt and Shh signaling pathways were activated and Noggin mRNA levels were 

determined by qPCR and  ISH. Results in Fig. 5A show a clear Noggin induction 24h 

after BMP electroporation (20.19±7.6-fold BMP7; 44.0±7.6-fold BMP4). A 7.1±1.2 

fold increase of Noggin expression is already observed 6h after BMP electroporation 

(Supplementary Fig. 5A). In addition, electroporation of constitutively active Smad1 

(one of the  BMP pathway effectors) also induces Noggin expression (Supplementary 

Fig. 5B). Next, we analyzed whether this activation is associated with changes in 

H3K27me3 at Noggin promoter. To do this, HH10 neural tubes electroporated in ovo 

with BMP were dissected out 24h-PE and analyzed by ChIP assays. Fig. 5B shows that 

BMP induced Noggin activation correlates with 3.3±2 fold decrease of H3K27me3 and 

a 1.6±0.003 fold increase of H3K4me2. Consequently, the resulting 

H3K4me2/H3K27me3 relative levels at Noggin promoter reach those observed at 

transcriptionally active Hes5 promoter (Fig. 5B right panel). Furthermore, H3K4me3, a 

histone modification associated to transcriptionally activated genes (Barski et al., 2007), 

increases 2.11±0.33 fold close to transcriptional start site of Noggin after BMP 

induction (Supplementary Fig. 6). Together, these data suggest that active H3K27me3 

demethylation of Noggin promoter takes place upon BMP signaling activation. JMJD3 

has been described as an H3K27me3 specific demethylase. Moreover, it has been 

suggested that JMJD3 activity could be associated to an H3K4 methyltransferase 
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activity (Lim et al., 2009). Therefore, we wondered whether JMJD3 histone 

demethylase (HDM) activity is involved in BMP-dependent Noggin induction. To 

answer this question, neural tubes were electroporated with BMP together with an 

empty vector or a dominant negative form of JMJD3 (JMJD3DN) that lacks HDM 

activity. Electroporated neural tube cells were separated by FACS to next analyze 

Noggin mRNA and promoter H3K27me3 levels. Fig. 5C shows that Noggin mRNA 

level is 1.7±0.2 fold lower when JMJD3DN is overexpressed correlating with 1.8±0.2 

higher H3K27me3 level at Noggin promoter. These results suggest that JMJD3 

contributes to BMP-induced Noggin expression. Then, we tested if JMJD3 interacts to 

Noggin promoter upon BMP pathway activation. To that end, neural tubes were 

electroporated with an empty vector, myc-JMJD3 or myc-JMJD3 with BMP. 

Electroporated neural tube cells were separated by FACS and the presence of JMJD3 at 

Noggin promoter was analyzed by ChIP assays, using myc antibody. Results show 

1.7±0.035 fold higher JMJD3 recruitment to Noggin promoter upon BMP signaling 

activation (Fig. 5C). On the other hand, immunoprecipitated chromatin levels are 

similar for myc-JMJD3 alone and for the empty vector electroporated neural tube cells. 

This indicates that in the absence of BMP hyperactivation (when Noggin is repressed in 

most of the neural tube cells) JMJD3 is not recruited to Noggin promoter. In agreement 

with this result, JMJD3 over-expression, which effectively reduces global H3K27me3 

levels (Supplementary Fig. 7A), has no significant effect on Noggin expression 

(Supplementary Fig. 7B), nor on H3K27me3 levels at the Noggin promoter 

(Supplementary Fig. 7C). All together, these data suggest that BMP pathway activates 

Noggin promoter through JMJD3-mediated H3K27 demethylation.  

Then, we sought to determine whether a direct link exists between BMP 

signaling pathway effectors and JMJD3. Smad1 is a BMP pathway effector (Liu and 
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Niswander, 2005). Upon BMP signaling activation Smad1 is phosphorylated and 

interacts with Smad4 to enter into the nucleus. Once in the nucleus, Smad1/Smad4 

heterodimer regulates its target genes interacting with co-activator or co-repressor 

proteins (Liu and Niswander, 2005). Fast BMP-induced Noggin expression 

(Supplementary Fig. 5A) and evidences of conserved Smad response-element presence 

at Noggin promoter (Supplementary Fig. 5C) suggest that Noggin could be a direct 

target of Smad1/Smad4. To test this hypothesis, HH10 neural tubes electroporated with 

BMP were dissected out 24h-PE and analyzed by ChIP using pSmad1/5/8 antibody. Fig. 

6A shows that BMP-induced Noggin activation correlates with endogenous phospho-

Smad1 recruitment (2.3±0.3 fold increase) to Noggin promoter. The observed effects of 

JMJD3 on BMP-induced Noggin expression (Fig. 5C) as well as the association of 

active Smad1 (Fig. 6A) and JMJD3 (Fig. 5C) at Noggin promoter upon BMP pathway 

activation led us to test whether Smad1/Smad4 interacts with JMJD3. CoIP experiments 

indicate that JMJD3 interacts with Smad1/Smad4 complex (Fig. 6B,C,D). Fig. 6B 

shows that Smad1 interacts with JMJD3 only in the presence of Smad4. Smad4 binding 

to JMJD3 also requires the presence of Smad1 (Fig. 6C). Moreover, Smad1/Smad4-

JMJD3 interaction increases after BMP pathway activation (Fig. 6D). All these data 

suggest that upon BMP pathway activation, Smad1/Smad4 heterodimer recruits JMJD3 

histone demethylase to Noggin promoter. This targeting results in a decrease of 

H3K27me3 levels that correlates with gene transcription activation. 

Finally, we sought to analyze whether BMP-dependent upregulation of Noggin 

plays any role controlling BMP activity. To do that, HH10 neural tubes were 

electroporated  with BMP and shRNA for Noggin (that partially reduces BMP-induced 

Noggin expression, Supplementary Fig. 8A) or BMP and shRNA control. They were 

dissected out 24h-PE and electroporated cells (GFP+) were separated by FACS for 
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mRNA extraction. Then we tested whether the reduction of Noggin levels affect BMP 

activity by analyzing mRNA levels of Id3 [a well known BMP transcriptional target 

(Hollnagel et al., 1999)] by qPCR and ISH. Fig. 7A shows that coelectroporation of 

BMP and Noggin shRNA leads to a 2.2±1.1 fold higher Id3 mRNA levels compared to 

BMP and shRNA control electroporation. Similar results were observed for Id1 

(Supplementary Fig. 8B). Moreover, Noggin over-expression leads to a reduction of 

Lhx2/9 and Isl1 dorsal interneurons, regulated by endogenous BMP pathway activity 

(Supplementary Fig. 8C). All together, these data strongly suggest that BMP-induced 

Noggin activation modulates BMP activity in the neural tube. 

 

DISCUSSION 

  Our studies have uncovered new insights into the in vivo role of H3K27me3 

mark in the context of lineage establishment within a tissue. We have shown that this 

epigenetic mark regulates dorsal patterning in developing neural tube by repressing 

Noggin promoter. BMPs are needed for the formation of dorsal neural cell types (Liu 

and Niswander, 2005). Thus, regulation of BMP activity by expression of BMP 

inhibitors plays an important role in this process. Our studies suggest a model in which 

Noggin, a known BMP antagonist, is regulated by an H3K27me3-dependent mechanism 

in the developing spinal cord (Fig. 7B). Noggin, is repressed in most of the developing 

neural tube cells. This repression requires H3K27me3 at Noggin promoter (1). In 

response to high BMP activity, Smad1/Smad4 and JMJD3 are recruited to Noggin 

promoter that in turn demethylates this promoter (2). H3K27me3 decrease, together 

with H3K4me increase, leads to Noggin full induction (3), which in turn rapidly 

moderates high BMP activity (4). This may occur in the most caudal developing spinal 
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cord, in which Noggin is expressed at dorsal cells to finally fine-tune levels of BMP 

activity along the anterior-posterior axis of the neural tube (Fig. 7B). 

 Interestingly, EZH2 and JMJD3 expression is higher at dorsal cells at the 

analyzed stages of neural tube development. This coincides with both high BMP (Sela-

Donenfeld and Kalcheim, 2002) and dorsal Noggin expression (Fig. 7B) in the 

developing neural tube. These observations support the role of H3K27me3 in the BMP-

dependent generation of dorsal neural subtypes described in our study. On the other 

hand, both EZH2 and JMJD3 are expressed in the VZ of the neural tube, and their 

mRNA levels are reduced in the MZ occupied by differentiated neurons. The loss of 

EZH2 expression during differentiation is a common feature, as it has been described in 

in vitro neural differentiation models (Sher et al., 2008) or during epidermal 

development (Ezhkova et al., 2009). Nonetheless it does not explain the observed global 

H3K27me3 increase during neural differentiation. These data suggest that in addition to 

EZH2 and JMJD3, other enzymes might be responsible for global H3K27me3 in the 

developing neural tube. According to this, high global H3K27me3 levels found in 

differentiated neurons could be maintained by observed high EZH1 expression at 

differentiated neurons. This correlates with the data supporting that EZH1 is the main 

responsible for HMT activity in differentiated tissues (Margueron et al., 2009).  

In agreement with the proposed role for H3K27me3 in development, our studies 

have uncovered a distinct promoter behavior in response to H3K27me3 removal that 

might be critical to determine the promoter activity in response to the developmental 

decisions. Our data show that some H3K27me3 target genes are not activated after 

H3K27me3 removal (as Neuro D). This observation suggests a context-dependent 

H3K27me3 function that might rely on the targeting of sequence-specific transcription 

factors in response to different pathway activation. H3K27me3 mark might ensure that 
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further developmental decisions are firmly controlled by robust induction signals. In 

agreement with this, different Polycomb and H3K27me3 targets have been identified in 

transformed human cells (Bracken et al., 2006; Squazzo et al., 2006), undifferentiated 

stem cells (Pasini et al., 2007) and human T cells (Barski et al., 2007; Roh et al., 2006) 

in which different signaling pathways operate.  

Another possibility to explain the lack of transcriptional consequences after 

EZH2DSET over-expression implies the chromatin context of H3K27me3 target genes. 

The fact that Noggin, but not NeuroD, is activated after H3K27me3 removal, even in 

the absence of any induction signal, suggest that the presence of H3K27me3 should be 

combined with other chromatin features to fine tune the transcriptional regulation. In 

ESCs H3K4me active and H3K27me3 repressive marks coexist over many of the 

lineage-regulatory genes that are governed by PRCs (Haudenschild et al., 2004; Liu and 

Niswander, 2005; Pasini et al., 2007). They are found in transcriptionally silenced genes 

and they poise them for activation upon a signal induction (Bernstein et al., 2006). 

Transcriptional activation of these genes requires an increase on H3K4me over 

H3K27me3 levels. Our results show that both, Noggin and NeuroD promoters contain 

active and repressive marks. However only Noggin is activated after H3K27me3 

reduction. The ratio between H3K4me2 and H3K27me3 at Noggin promoter is higher 

than at NeuroD promoter, suggesting this ratio (and not only the presence of both 

marks) might be determinant in the genes becoming active or repressed at some 

particular development stage. Therefore our data suggest that H3K27me3/H3K4me2 

relative levels might regulate the promoter sensitivity to respond to developmental 

decisions. 

We have shown that small changes in Noggin expression, mediated by discreet 

changes in H3K27me3 levels of its promoter, lead to altered BMP-regulated dorsal 
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patterning in the neural tube. Many processes of neural development, like neural 

induction and axon guidance, are also regulated by BMP signaling (Liu and Niswander, 

2005). These processes are temporally and spatially separated along the nervous system 

development. Thus, the duration and strength of BMP signaling are essential to correct 

neural development. One way to modulate BMP activity is by the transcriptional 

activation of its own extracellular antagonists (Haudenschild et al., 2004; Liu and 

Niswander, 2005). Here we also show that Noggin expression is upregulated fast after 

BMP over-expression. This upregulation is essential to moderate BMP activity, since 

the partial blocking of BMP-mediated Noggin induction, increases transcriptional 

activity of Id1 and Id3 BMP target genes (Hollnagel et al., 1999). Moreover, we 

demonstrated that Noggin expression is directly regulated by BMP responding Smad 

proteins (Smad1/5/8). BMP-induced Noggin expression is accompanied by a JMJD3-

dependent removal of H3K27me3 from Noggin promoter. The identified JMJD3 

interaction with Smad1/Smad4 heterodimer, suggests that they could form a complex 

responsible for JMJD3 recruitment to Noggin promoter. One question that remains to be 

answered is whether this mechanism is also working for other BMP target genes. 

Our study has uncovered a fine-tuning regulatory mechanism of the BMP 

pathway where chromatin structure is implicated. We propose that the chromatin 

structure at Noggin promoter allows a fast response to small BMP activity variations, 

thus ensuring the proper BMP levels required for nervous system development. A key 

question is whether this is a developmental-stage specific mechanism that only operates 

during embryonic development or it can be a more general mechanism. The latter is 

supported by data showing that both EZH2 and BMPs are implicated in the 

development of several cancers (Haudenschild et al., 2004; Varambally et al., 2002). 
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However, further evidence will be required to ascertain the contribution of H3K27me3-

mediated BMP regulation in tumorigenesis. 
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FIGURE LEGENDS 

Figure 1. H3K27me3 global levels increase during neural differentiation 
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(A) Diagram showing regions occupied by proliferating progenitors (ventricular zone, 

VZ) and post-mitotic neurons (mantle zone, MZ) in HH25 and HH14 (only progenitors) 

chick embryo spinal cord. TZ: transition zone. (B) H3K27me3 levels of HH14 and 

HH25 embryo spinal cord histone extracts determined by immunoblotting. 

(C) Sections from HH25 chick embryos (brachial region) stained with anti-H3K27me3  

and DAPI (DNA). The graphic underneath shows mean of H3K27me3/DAPI (DNA) 

signal intensity in individual cells relative to progenitor mean intensity. Intensities were 

quantified by Leica LAS-AF software. Data show mean of n=80 cells (from 4 different 

embryo sections). Error bars indicate s.d. ***p<0.0001  

(D) EZH2 and (E) JMJD3 mRNA analyzed by HH10, 14 and 25 chick embryos ISH. 

 

Figure 2. H3K27me3 maintenance is not essential for neural differentiation or for 

progenitor proliferation 

HH10 embryos were electroporated with EZH2DSET, EZH2 or the empty vector in a 

bicistronic vector containing GFP. 

(A) H3K27me3 immunostaining (grey and red) of 24h post-electroporated (24h-PE) 

embryos. The graphic shows mean of H3K27me3 signal intensity in EZH2DSET 

electroporated individual cells (GFP+, green bar), relative to non-electroporated ones 

(grey bar). Intensities were quantified by Leica LAS-AF software. Data show mean of 

n=44 cells (from 4 different electroporated embryo sections). Error bars indicate s.d. 

***p<0.0001. 

(B) TUJ immunostaining (grey and red) of 48h-PE embryos.  

(C) BrdU immunostaining (grey and red) of 24h-PE embryos. The graphic shows 

percentage of electroporated cells (GFP+) positive for BrdU. Data show mean of n=30 

sections (from 4-6 embryos). Error bars indicate s.d. 
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Figure 3. H3K27me3 regulates BMP activity  

(A) LHX2/9 (upper panel) or ISL1/2 (lower panel) immunostaining 48h-PE of 

EZH2DSET, EZH2 or  empty vector in HH16 chick embryos. Graphics show 

quantification of LHX2/9+ (upper) and dorsal ISL1/2+ (lower) cells on electroporated 

(GFP+) versus non-electroporated side. Data show mean of n=30-35 sections (from 4-6 

embryos). Error bars indicate s.d. *p<0.05; ***p<0.0001. 

 (B) Pax6 and Pax7 immunostaining 24h-PE of BMP7, BMP7 and EZH2DSET or 

BMP7 and EZH2 in HH10 chick embryos. 

 

Figure 4. Noggin expression is regulated by H3K27me3 

(A) Diagram summarizing experimental procedure before microarray analysis. HH10 

embryos were electroporated with the empty vector or EZH2DSET (bicistronic vector 

containing GFP). 24h-PE (HH16-18) neural tubes were dissected out and GFP+ cells 

were sorted by FACS. mRNA was extracted and retro-transcribed for microarray 

analysis (right) or qPCR (B). List of genes upregulated in EZH2DSET and found in GO 

terms relating to nervous system development (right).  

(B) Noggin, Hes5 and NeuroD mRNA relative levels determined by qPCR.  

(C) Hes5, Noggin and NeuroD mRNA in situ hybridization in HH16-18 embryo spinal 

cord (upper). ChIP assays using HH16-18 chick neural tubes were performed using anti-

H3K27me3 and H3K4me2 antibodies; and their levels at Hes5, Noggin and NeuroD 

promoters (-2000bp from TSS) were analyzed by qPCR (lower graphs). Right graph 

represents the H3K27me3 occupancy relative to H3K4me2 occupancy in each promoter 

and the mRNA expression level of each gene in WT HH16-18 spinal cord. Relative 

occupancy was determined calculating the percentage of each histone mark related to 
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the number resulting from the addition of both histone mark levels (% input). (D) 

Diagram summarizing the experimental procedure to obtain cells for ChIP (upper). 

HH10 chick neural tubes were electroporated with the empty vector or EZH2DSET. 

24h-PE (HH16-18) neural tubes were dissected out and GFP+ electroporated cells were 

sorted by FACS for ChIP assays. Lower graphs show H3K27me3 and H3K4me2 levels 

at Hes5, Noggin and NeuroD promoters (-2000bp from TSS) analyzed by qPCR. Right 

graph represents the H3K27me3 occupancy relative to H3K4me2 occupancy in each 

promoter and the mRNA expression level of each gene in EZH2DSET electroporated 

spinal cord cells. Relative occupancy was estimated as in (C) but using data resulting 

from the difference between each histone mark level in empty vector and EZH2DSET 

normalized to the WT levels. (A-D) Results are mean of two independent experiments. 

Error bars indicate s.d. 

 

Figure 5. BMP pathway regulates Noggin transcription via H3K27 demethylation 

HH10 embryos were electroporated and neural tubes were dissected out 24h-PE (A-B).  

(A) Relative Noggin mRNA levels quantified by qPCR (top panel) and ISH (bottom 

panel) after electroporation with BMP7, BMP4, Wnt, Shh or empty vector.  

(B) ChIP assays were performed as in Fig. 4C using BMP4 electroporated neural tubes. 

Graphs show H3K27me3 and H3K4me2 levels at Hes5, Noggin and NeuroD promoters 

(-2000bp from TSS) analyzed by qPCR. Right graph represents the H3K27me3 

occupancy relative to H3K4me2 occupancy in each promoter and the mRNA expression 

level of each gene after BMP4 electroporation. Relative occupancy was estimated as in 

(Fig. 4C) but using data resulting from the difference between each histone mark level 

in empty vector and BMP4 normalized to the WT levels. (C) HH10 embryos were 

electroporated and 24h-PE neural tubes were dissected out for GFP+ cell sorting. 
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Graphs show Noggin mRNA relative levels (left) and H3K27me3 levels at Noggin 

promoter (-2000bp from TSS) (middle) in empty vector and BMP4 or JMJD3DN and 

BMP4 electroporated neural tube cells. Right graph shows JMJD3 levels at Noggin 

promoter (-2000bp from TSS) in empty vector, myc-JMJD3 or myc-JMJD3 and BMP4 

electroporated neural tube cells. JMJD3 levels were analyzed by qPCR of DNA purified 

from ChIP with anti-Myc antibody (Abcam). (A-C) Results are mean of two 

independent experiments. Error bars indicate s.d. 

 

Figure 6. BMP induces pSmad1 recruitment to Noggin promoter and the 

interaction of Smad1/Smad4 complexes with JMJD3 

(A) HH10 neural tubes were electroporated with empty vector or BMP4 and dissected 

out 24h-PE. The presence of endogenous phospho-Smad1 (pSmad1) at Noggin 

promoter (-1000bp from TSS) analyzed by qPCR of purified DNA from ChIP.Results 

are mean of two independent experiments. Error bars indicate s.d. 

(B, C, D) Immunoblot of CoIP experiments. Top panel indicates the transfected plasmid 

combination used in each line. CoIPs were performed using the anti-Myc antibody. (B) 

Smad1 and JMJD3 interaction in the absence or presence of Smad4. (C) Smad4 

interacts with JMJD3 in presence of Smad1. (D) Smad1/Smad4 and JMJD3 interaction 

in the absence or presence of BMP4. IB (immunoblot); IP (immunoprecipitation). 

Results are representative of two independent experiments. 

 

Figure 7. BMP-dependent upregulation of Noggin plays a role controlling BMP 

activity 



  Akizu et al. 

 32

(A) Id3 mRNA levels determined by qPCR of FACS separated GFP+ cells or ISH of 

24h-PE dissected out embryos electroporated at HH10 with indicated plasmids. Results 

are mean of two independent experiments. Error bars indicate s.d. 

(B) Model for Noggin regulation by H3K27me3 in developing spinal cord (see text for 

details).  
















