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ABSTRACT 

 

Motivation: Recent developments in experimental methods allow 

generating increasingly larger signal transduction datasets. Two 

main approaches can be taken to derive from these data a mathe-

matical model: to train a network (obtained e.g. from literature) to the 

data, or to infer the network from the data alone. Purely data-driven 

methods scale up poorly and have limited interpretability, while lit-

erature-constrained methods cannot deal with incomplete networks. 

Results: We present an efficient approach, implemented in the R 

package CNORfeeder, to integrate literature-constrained and data-

driven methods to infer signalling networks from perturbation ex-

periments. Our method extends a given network with links derived 

from the data via various inference methods, and uses information 

on physical interactions of proteins to guide and validate the integra-

tion of links. We apply CNORfeeder to a network of growth and in-

flammatory signalling, obtaining a model with superior data fit in the 

human liver cancer HepG2 and proposes potential missing path-

ways. 

Availability: CNORfeeder is in the process of being submitted to 

Bioconductor and in the meantime available at 

www.ebi.ac.uk/~cokelaer/cnofeeder/. 

Contact: saezrodriguez@ebi.ac.uk 

Supplementary information: available at 

www.ebi.ac.uk/~cokelaer/cnofeeder/ 

1 INTRODUCTION  
Information about signalling networks is increasingly abundant. 

Thanks to novel high-throughput methods, large amounts of data 

about the interactions among proteins is available, which is en-

compassed in (unsigned and undirected) protein-protein interaction 

networks (PINs)  (Pieroni,E., et al. 2008). More precise (but with 

less coverage) information is derived from literature and is often 

described by means of signed and directed causal interactions 

among proteins. These give rise to what we will call here prior 

knowledge networks (PKN). PKNs are partially collected in differ-

  
*To whom correspondence should be addressed.  

ent databases (e.g. KEGG (Ogata,H., et al. 1999) Reactome (Joshi-

Tope,G., et al. 2005), WikiPathways (Pico,A.R., et al. 2008); sev-

eral are accessible via the portal Pathway Commons (Cerami,E.G., 

et al. 2011)). These databases typically contain literature-derived 

interactions curated with different degrees of stringency and based 

on experimental publications under different experimental condi-

tions and on different cell types.  

PKNs are, for example, very useful to study topological properties 

of networks (Ma'ayan,A., et al. 2005) or to map data (Ideker,T. and 

Sharan,R. 2008, Terfve,C. and Saez-Rodriguez,J. 2012). However, 

they are not functional in the sense that they cannot be used for 

simulation of a signaling process and therefore for prediction of the 

outcome of a certain experiment, which is fundamental to under-

stand signal transduction and its alterations.  

The most common way to model a signalling network is based on 

writing down its biochemistry and subsequently translating it to a 

mathematical form, typically differential equations (Aldridge,B.B., 

et al. 2006). However, information in PKNs often lacks the re-

quired mechanistic detail. In these cases, logic formalisms are a 

useful approach since all they need is to add logic gates to the ex-

isting (signed and directed) interactions.  

One can generate logic gates by manual curation based on litera-

ture, e.g. (Calzone,L., et al. 2010, Saadatpour,A., et al. 2011, 

Samaga,R., et al. 2009), reviewed in (Morris,M.K., et al. 2010, 

Watterson,S., et al. 2008).  An alternative to manual curation con-

sists of generating a logic model from the PKN that is subse-

quently trained to experimental data (Saez-Rodriguez,J., et al. 

2009). This method, implemented in the Bioconductor package 

CellNOptR (http://www.ebi.ac.uk/saezrodriguez/software.html), 

provides context-specific models with predictive power. It is effi-

cient at handling large amounts of data as the space of possible 

models is limited by the prior knowledge. This key feature of the 

approach, however, is also its main limitation: there might be miss-

ing links due to the fact that databases are not complete, and that 

the effect of cross talk between pathways is often not taken into 

account in the canonical linear representation of the pathways. 

Adding to the PKN links based on the dedicated data leads to an 

improved goodness of fit (Saez-Rodriguez,J., et al. 2009).  
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With a different and complementary perspective, different ‘reverse 

engineering’ methods have been used in the literature to infer net-

works from perturbation experiments in a data-driven way that 

does not rely on prior knowledge on the network (Bansal,M., et al. 

2007, Markowetz,F. 2010). Most of these methods were first de-

veloped for transcriptional data but can be applied also to signal-

ling data. For example, in (Ciaccio,M.F., et al. 2010) Bayesian 

networks (Pe'er,D. 2005) were used to infer the connections be-

tween 67 proteins with high-throughput data collected using micro-

western array. Two mutual information based approaches, the ‘al-

gorithm for the reconstruction of accurate cellular networks’ 

(ARACNe) (Margolin,A.A., et al. 2006) and the ‘context likeli-

hood of relatedness’ (CLR) (Faith,J.J., et al. 2007), were also ap-

plied to the same dataset to corroborate the results. Different meth-

ods were also applied in the context of the DREAM initiative 

(www.the-dream-project.org) for the DREAM4 Predictive Signal-

ling Network Challenge (Prill,R.J., et al. 2011), where 12 research 

groups inferred signalling networks from perturbation experiments 

data and were evaluated based on the accuracy of their predictions 

of the outcome of the network under different experimental condi-

tions. One of the methods that performed best in this task was a 

simple approach, strictly data-driven, that encodes in a cause-effect 

network significant effects of stimuli and inhibitors on measured 

proteins (Eduati,F., et al. 2010).  

These purely data-driven methods need to consider all possible 

topologies, and thus in general need more data and scale-up worse 

than methods that rely on a give topology such as CellNOptR.  

Furthermore, the resulting data-driven networks (that we will call 

here DDNs) are limited to interactions between perturbed and 

measured nodes that are only a subset of the nodes involved in the 

pathways. Thus, DDNs are not as biologically interpretable as the 

PKNs and mapping DDNs to PKNs is not simple as one link in the 

inferred network can generally correspond to multiple links in the 

PKN and it is not trivial how to correctly map it.  

In this paper we attempt to combine the strengths of literature-

based and data-driven inference methods. We describe a procedure 

(implemented in the R package CNORfeeder), to integrate prior 

knowledge encoded in the PKN with data-driven information ob-

tained using reverse engineering approaches. PINs are used to pri-

oritize links and to provide experimental support for them, and 

thus help to discriminate among options and add information on 

integrated links. The resulting network is then trained against ex-

perimental data to obtain a final refined model that has a better fit 

to data with respect to the PKN, highlighting plausible links that 

were missing in the PKN. We illustrate its application with a sig-

nalling network encompassing multiple pathways and readouts 

trained with data from the liver cancer cell HepG2, showing how 

CNORfeeder provides a significantly improved fit based on links 

supported by known interactions among proteins.  

2 METHODS 
We implemented CNORfeeder, an R package designed to be integrated 

with methods based on prior-knowledge such as CellNOptR as shown in 

Figure 1. The integrated pipeline ca be summarized in the following steps: 

A. Inference (CNORfeeder) A strictly data-driven network (DDN) is in-

ferred from available data using different reverse engineering methods (so 

far FEED, Bayesian networks, ARACNe, CLR). This network is specific 

for the experiments under study, thus it only includes perturbed and meas-

ured nodes and does not exploit information available in literature. 

B. Compression (CellNOptR) The prior knowledge network (PKN) is com-

pressed according to the procedure detailed in (Saez-Rodriguez,J., et al. 

2009). First, if a node has no readout downstream of it (such as D in Fig. 

1), its state cannot be inferred (is non-observable), and is not considered. 

Similarly, if a node has no perturbation upstream of it is not included as it 

will not be affected. Then, nodes that are neither perturbed nor measured 

are bypassed so that their compression does not change the logic of the 

remaining nodes (e.g. B which is between A and C in Fig. 1).  

C. Integration (CNORfeeder) The compressed network is expanded using 

the DDN in order to include links that are missing in the a priori informa-

tion but seems to be supported by data. 

Fig. 1. Integrated pipeline of CNORfeeder (cyan boxes) and CellNOptR (magenta boxes). A. Data are used to infer, using reverse-engineering methods, a 

strictly data-driven network (DDN); B. the prior knowledge network (PKN) is compressed according to the data (green, red and blue nodes are respec-

tively stimulated, inhibited and measured), removing non-identifiable nodes (dashed ones); C. the compressed network is integrated with the DDN (blue 
links are obtained from the DDN and black ones from the PKN); D. information derived from protein-protein interaction network (PIN) is used to support 

and prioritize integrated links; E. The integrated network is used as input for the training: in trained model, thick black lines denote interactions (and gates) 

in final model, and light-grey links present in integrated network but not in trained model. 
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D. Weighting (CNORfeeder) Protein interaction networks (PINs) are used 

to support and prioritize the integrated links. 

E. Training (CellNOptR) The integrated network is finally converted in to a 

superstructure containing all possible logic gates compatible with the net-

work. If a node (such as G) is affected by multiple ones (A and F), then 

both an OR and an AND gates are created. Then a genetic algorithm is used 

to search for the model contained in the superstructure which best describe 

data (as determined by the mean square error) with the minimum number of 

links. The objective function is modified with respect to the one introduced 

in (Saez-Rodriguez,J., et al. 2009) to include additional penalization for the 

integrated links using weights derived from PINs (Equation 2). 

 

Steps performed by CNORfeeder will be detailed in the following sections.  

 

2.1 Inference using reverse-engineering 
methods 

CNORfeeder can in principle leverage any network inference method. So 

far, we have integrated the following ones: 

 

FEED inference is the R implementation of an improved version of the 

algorithm described in (Eduati,F., et al. 2010). The inference of the network 

can be divided in two steps. Fist, perturbation experiments are used to infer 

a Boolean table for each measured protein, codifying if a particular stimu-

lus inhibitor combination affects the protein. A stimulus or an inhibitor 

significantly affects an output protein if it is able to modify its activity level 

of a quantity that exceeds the uncertainty associated with its measurement. 

These Boolean tables are than translated into links among stimulated, in-

hibited and measured nodes giving rise to the inferred network (see Sup-

plementary Material for more details). 

 

Bayesian Network inference There are different approaches to derive causal 

influences between measured proteins using Bayesian networks. We have 

used the ‘catnet’ R package (available from http://cran.r-

project.org/web/packages/catnet/index.html) to derive categorical Bayesian 

networks from static data (see Supplementary Material for more details). 

 

Mutual information networks This class of methods computes the mutual 

information matrix between the measurements associated with different 

proteins and, based on that, infers an undirected network. In particular, 

ARACNe and CLR algorithms as implemented in the ‘minet’ R package 

(Meyer,P.E., et al. 2008) (see Supplementary Material for more details), are 

included in CNORfeeder. 

 
In silico data were generated using a ‘Gold Standard’, or true network, de-

picted in Figure 2E to compare the four algorithms. The ‘Gold Standard’ 

was randomly generated and interpreted as a logic Boolean model to simu-

late perturbation experiments using CellNOptR by stimulating (nodes in 

green), inhibiting (nodes in red) and measuring (nodes in blue) some pro-

teins. These in silico data were then given as input to the inference meth-

ods; resulting networks (DDNs) are shown in Figure 2 A-D. The advantage 

of this approach, with respect to the use of real data, is that the Gold Stan-

dard can be used to compare the performances of the different methods.  

Fig. 2. Reverse engineering of a Gold Standard network (E) using four different inference methods (A-D).  Green, red and blue nodes are respectively 
stimulated, inhibited and measured. The colour of links represent the comparison of the inferred networks (DDNs) with the Gold Standard: dark green 

for links in both networks, light green for links in the DDN that correspond to a path in the Gold Standard, red for links in the Gold Standard not present 

in the DDN and blue for links in the DDN that are not in the Gold Standard, grey for links that are not in the network under exam but are in one of the 
other networks. In panel F the gradation of grey represent the consistency between DDNs in panels A-D. 
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In Figure 2 A-D dark green links are those that are perfectly reconstructed 

being present both in the Gold Standard and in the inferred network. Some 

of the links in the Gold Standard are not inferred by the algorithm (red 

ones), e.g. tgfaras or rasmek12 for FEED, however in some cases the 

algorithm is still able to infer at least an indirect link (light green ones), e.g. 

tgfamek12 for FEED. Blue links are those that are inferred by the algo-

rithm but do not correspond to links in the Gold Standard even as indirect 

links. In this example, FEED is able to infer all links in the Gold standard, 

at least as indirect ones, without including any false positive link. It is im-

portant to notice that mutual information approaches do not allow for de-

termining the directionality of the links; for light and dark green links the 

directionality was assessed based on comparison with the Gold Standard to 

simplify the Figure. A similar approach can be used in real cases by com-

parison with the PKN, but there is no way to assess the directionality of 

missing links. In Figure 2 F, links are represented with different gradations 

of grey according to the consistency between the analyzed inference meth-

ods: black links are reconstructed by all methods. As expected, links in-

volving proteins that are neither perturbed nor measured (white nodes) can-

not be reconstructed by any inference algorithm. However, those nodes can 

be important for the signalling network and often there is available litera-

ture derived information about their role. This is one of the reasons why it 

is fundamental to integrate the information derived from data-driven infer-

ence methods, with the prior knowledge obtained from other resources. 

2.2 Integration with the PKN 
Some of the links included in the DDN might be missing in the PKN, and 

are thus candidates to be integrated in it. However, the PKN generally in-

cludes more nodes with respect to the DDN and a link in the DDN could, in 

some cases, correspond to more than one link in the PKN. As shown in 

Figure 1 C, if there is a connection between a cue (i.e. a stimulated or an 

inhibited protein) and a measured protein in the DDN (e.g. from A to H), 

we have to connect all nodes in the different paths corresponding to that 

link. This means to add a link not only from the cue to the measured pro-

tein, but also from all nodes downstream of the cue, until reaching the fol-

lowing cue, to all nodes upstream of the measured proteins, until reaching 

the previous measured protein.  

2.3 Protein-protein interaction network 
The human protein-protein interaction network was built using a unified 

PPI dataset obtained as APID (Prieto,C. and De Las Rivas,J. 2006), by the 

combination of interactions coming from six source databases. The starting 

whole dataset was composed by 68488 human physical protein-protein 

interactions validated at least by one experimental method and reported in 

one article published in PubMed. From this dataset we obtained two PPI 

subsets with increasing confidence: a set of 28971 interactions validated by 

at least one "binary" experimental method (binary as defined in  (De Las 

Rivas,J. and Fontanillo,C. 2010)); a set 6033 interactions validated by at 

least two experimental methods, one of them binary. 

2.4 Weighting and training of integrated 
network 

The integrated network is then optimized using CellNOptR to find the 

model which best describes the data using information from PIN to differ-

ently prioritize integrated links. As described in (Saez-Rodriguez,J., et al. 

2009), a bipartite objective function is used to balance fit and size, thus to 

find models with good fit to the data but with the minimum number of 

links. Defining P as a Boolean vector encoding the candidate solution 

model (value 1 or 0 is assigned depending if the link is included or not in 

the model), the function that is minimized during the optimization process 

is the following 

                                                     (1) 

where       
 

 
              

  
    is the mean square error (MSE) 

deviation between the normalized experimental data (continuous values 

between 0 and 1), and the model prediction (binary values 0 or 1), for all N 

measured data points.          
 
      is a term to penalize increasing 

model size according to a tunable parameter  . The size penalty       is 
computed as the weighted sum of the M links, which are mathematically 

hyperedges in the hypergraph that defines the model; see (Saez-

Rodriguez,J., et al. 2009) for details.  The weight ( ) is given by the num-
ber of starting nodes, e.g. hyperedge A AND B  C is weighted twice A 

 C. In Equation (1) it is possible to include a tunable parameter  to 

allow a stronger penalization of links integrated to the PKN leading to 

                                                          (2) 

 

where the size penalty       is the sum of two terms: one for the links in 

the PKN (       ) and one for integrated links (       ). This is moti-

vated by the fact that, being supported by literature, links in the PKN are 

more reliable with respect to links integrated using data-driven approaches 

and they should be prioritized in the training.  

Additionally, integrated links can be differently prioritized based on infor-

mation derived from PINs: the basic idea is that if, for a directed link A  

B integrated in the PKN, there is a corresponding path in the PIN, it is more 

plausible that there is a molecular pathway A  B. Because shorter paths 

are more feasible, as a first approximation the shortest path length between 

A and B in the PIN can be used as a reliability score for the integrated link. 

Since the optimization is performed on a compressed version of the PKN, 

one link integrated in the compressed network generally corresponds to 

multiple possible links integrated in the PKN (Figure 1 E). Thus, the reli-

ability score for each integrated link i is given by            
    

, where 

ji=1,…,Ji are the links in the PKN corresponding to the integrated link i in 

the compressed network. The shortest path  is computed using the 

Dijkstra’s algorithm implemented in the igraph R package (Csardi,G. and 

Nepusz,T. 2006) considering the PIN as a graph where the weight of the 

edges is the inverse of the number of experiments (experimental evidences) 

that validate it.  

Thus, the penalty for all A integrated links into the compressed network P, 

can be defined as 

 

           
 
    

 

  
                                        (3) 

 

The training step, to find the P that minimizes      in Equation 1, is per-

formed with CellNOptR using a genetic algorithm that explores the P-



d

Fig. 3. Panel A: effect of tuning parameter β on the number of integrated 
links and on the fit (MSE).  Panel B: links integrated for different values of 

β (1, 100, 500); a reduced number of links is selected when using PIN to 

prioritize links (dark blue). 
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space. The genetic algorithm is run multiple times, and in each run the val-

ues for the explored models is recorded, so that at the end a family of mod-

els is reported. 

3 RESULTS 
The method was applied to a dataset of a human liver cell line 

(HepG2) from DREAM 4 challenge (Prill,R.J., et al. 2011), where 

the phosphorylation of seven proteins (akt, erk12, ikb, jnk12, p38, 

hsp27, mek12) is measured 30 minutes after combinatorial stimu-

lation with four ligands (tnfa, il1a, igf1, tgfa) and four inhibitors 

(pi3k, ikk, p38, mek12). The level of phosphorylation of proteins is 

measured using Luminex xMAP assay and provides a value of the 

phosphorylation in arbitrary units, that can be used to compare 

values at two conditions. In our case we compare the values be-

tween 0 and 30, and this change is a proxy of the induced activa-

tion of the corresponding protein. The normalization of this data 

into a value between 0 and 1 is achieved using a method based on a 

set of thresholds as described in (Saez-Rodriguez et al. 2009). Ac-

cording to the CellNOptR pipeline, the PKN was first compressed 

removing all non-observable and non-controllable nodes and then 

expanded as described in (Saez-Rodriguez,J., et al. 2009) to in-

clude all possible combinations of AND and OR gates compatible 

with the network obtaining a total of 62 hyperedges. Additionally, 

18 links inferred using FEED were integrated in the network ac-

cording to the procedure previously described and the integrated 

network was used for optimization using CellNOptR.  

Fixing α=0.001, the influence of the integration penalty (β) on 

the number of integrated links selected by the optimization process 

on the fit of the optimal model to the data (in terms of MSE) was 

tested as shown in Figure 3. As expected, a low value of β permits 

to obtain the best fit but at the price of a high number of integrated 

links included in the optimal model (9 with β=1). An increase of 

the value of β decreases the number of selected integrated links but 

worsen the fit to the data. With β=1000 only the integrated link 

tnfaikk is included in the optimal model: the presence of this 

link is well supported by the data since it permits to lower the MSE 

from 0.064 (the optimal fit obtained with CellNOptR using as in-

put the non-integrated network) to 0.040. The integrated links can 

be ranked as shown in Figure 3 B according to the highest value of 

β allowing their selection and thus according to their effect on the 

improvement of the fit. A lower number of links is selected when 

using the PIN to additionally penalize unsupported links (high-

lighted in dark blue in Figure 3B). Those links, combined with the 

information from the PIN, suggest possible missing connections in 

the PKN. For example, in the PIN there is an interaction between 

the adaptor irs1 and the kinase pdk that would justify the link 

igf1akt in the compressed network since in the PKN (Fig S2 in 

Supplementary Material) igf1 binds to its receptor and pdk regu-

lates akt (links igf1igfr and pdk1akt in Fig. S2; note that in 

Fig. 4 the compressed networks are shown and thus intermediates 

igfr, irs1s and pdk1 are not present).  Therefore the path igf1igfr 

irs1spdk1akt is supported by a combination of literature and 

interaction data. Similarly, to support the link tnfaikk there is a 

validated interaction between the tnfa receptor and cot, a protein 

that activate ikk, leading to the combined pathway tnftnfr 

cotikk.  

In Figure 4 A and B the results of CellNOptR optimization (with 

β=700) are shown using as input the compressed network and the 

integrated network respectively. In the upper panels, optimal mod-

els are show: links selected by the optimization algorithm are rep-

resented in green if derived from the PKN and blue if integrated 

using FEED. In the lower panel the improvement in the fit is 

shown (from 0.064 to 0.022), which is particularly large for pro-

Fig. 4. Results of the training of the compressed model (A) and of the integrated network (B) against data using CellNOptR. Green, red and blue nodes are 

respectively stimulated, inhibited and measured. Selected links are represented in green if derived from the PKN and blue if integrated, links not selected 

are in grey. In the tables the fit (in terms of MSE) is reported for each measured protein along with the sum for all proteins. 
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teins ikb, mek12 and akt. In this case study, using the same param-

eter setting (α=0.001, β=700), networks integrated using ARACNe 

and CLR do not provide an improvement of the fit, while Bayesian 

networks permits to obtain a MSE of 0.040 (see Supplementary 

Information). As for the computational times, FEED, CLR, and 

ARACNe inferred the network in ~ 1 second while Bayesian infer-

ence took ~ 1 hour on a cluster. 

To evaluate the scalability of our method, we applied CNORfeeder 

to a larger dataset obtained also in the cell lines HepG2, compris-

ing 7 stimuli, 7 inhibitors and 15 readouts (Saez-Rodriguez,J., et 

al. 2009) obtaining comparably good results (see Supplementary 

Information). 

Furthermore, we investigated the ability of our method to capture 

feedback loops, which are fundamental in the regulation of signal 

transduction. We constructed a toy model containing a negative 

feedback loop and simulated data at 2 different time points (10 and 

30 minutes). We used FEED as reverse-engineering method to re-

trieve, from the data, a link of the feedback that was missing in the 

PKN and then applied a recently implemented package of 

CellNOptR (www.cellnopt.org) that, looking also at the second 

time point, was able to select all links of the feedback loop (see 

Supplementary Information for further details). 

4 DISCUSSION 

In this paper we present an approach that integrates literature-

constrained and data-driven methods to efficiently infer signalling 

networks from experimental data collected under perturbation ex-

periments with different stimuli and inhibitors. The procedure is 

implemented in the R package CNORfeeder and consists of (i) in-

ference of a data-derived network (DDN) using strictly data-driven 

reverse-engineering methods (so far FEED, Bayesian networks, 

and mutual information approaches), (ii) integration of the DDN 

with a literature-derived prior knowledge network (PKN), using 

protein interaction networks (PINs) to prioritize and validate inte-

grated links, and (iii) training of the integrated network against 

data using CellNOptR to obtain a logic model that best describe 

the data with the minimum number of links.  

 Links that improve the fit to data with respect to the PKN alone 

may be missing due to the difficulty assembling all available path-

way information or because of incomplete knowledge of the biol-

ogy. Protein interaction networks (PINs) are used as a complemen-

tary source of information to tackle this problem. PINs contain 

physical interactions between proteins, including potentially those 

that lead to protein activations, and they typically include more 

nodes and many more links that that those based on literature-

derived pathways. For this reason they have been proposed to ex-

tend pathways (Glaab,E., et al. 2010) but they have the main limi-

tation of a lack of directionality. PINs are also known to have high 

false positive and false negative rates, and we therefore used a very 

curated PIN that integrates different sources and experimental 

techniques. This PIN seems to be quite complete for the pathways 

we studied (canonical pro-growth and inflammatory pathways) 

since we verified that for links in the PKN there is generally also a 

direct connection in the PIN (Figure 5). Interestingly, mapping to 

the PIN the links integrated to the PKN we found a corresponding 

short path that do not pass through other nodes of the PKN. To 

limit the effect of false positive links in the PIN when searching for 

the shortest path, we weighted the edges according to the number 

of experimental evidences that support them. The length of shortest 

path is then used to differently prioritize the integrated links in the 

training of the network, but other metrics could be used to dis-

criminate between links. PIN were previously shown to be poten-

tially useful to find previously unknown modulator of signalling 

pathway in (Vinayagam,A., et al. 2011), where a Bayesian learning 

strategy was applied to assign directionality to a comprehensive 

PIN exploiting information on the shortest path from membrane 

receptors to transcription factors. In our method, we can take ad-

Fig. 5.  Mapping of the prior knowledge network (PKN) to the protein-

protein interaction network (PIN). Panel A represents the subgraph of the 
PIN that include only nodes belonging to the PKN (green) and nodes used 

in the mapping of integrated links (blue); network was plotted with R 

package igraph. The same colour code is used for the edges: as expected, 
shortest paths between nodes in the PKN (green) are generally shorter 

than paths used to map integrated links (blue). This is highlighted also in 

panel B where the density of the shortest path length (in terms of number 
of edges) is plotted for integrated links (blue), for links in the PKN 

(green) and for random links (red). 
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vantage of the directed links inferred via reverse engineering to 

limit the paths present in the PIN we integrate, limiting the search 

space for the optimization algorithm. 

We have used different data-driven inference methods, and ap-

plied them to both in silico (to reverse-engineer a benchmark net-

work with known topology) and real data (to integrate links miss-

ing in the PKN that improve the fit of the model to the data in the 

liver cancer cell line HepG2). Each reverse-engineering method 

has specific features and can be suitable for different needs: for 

example Bayesian networks can provide statistically rigorous re-

sults but at the price of high computational costs, while mutual in-

formation approaches are computationally fast but are limited 

mostly by the lack of directionality of the inferred links. FEED 

seems to be particularly suitable to infer causal networks from sin-

gle-stimulus/single-inhibitor experiments with low computational 

costs but, as for know, does not permit to exploit data from all 

multiple combinatorial perturbation experiments. 

It is not the purpose of this study to compare reverse-engineering 

methods (which would require a larger set of benchmark networks 

with known topology and a more realistic simulation of experi-

mental data). The spirit of the paper is more in line with the lesson 

derived from the DREAM challenges (Marbach,D., et al. 2010, 

Prill,R.J., et al. 2011) that different approaches can provide com-

plementary insights into the same problem, and  we have thus em-

ployed various approaches and we plan to extend it to others in the 

future. Furthermore, some reverse-engineering methods can use 

prior knowledge, in particular Bayesian inference methods 

(Bender,C., et al. 2011, Mukherjee,S. and Speed,T.P. 2008), so that 

we could use the PKN or results from the training with CellNOptR 

to guide a further search for novel links.  

To conclude, the integration of literature-constrained and data-

driven inference methods allows to overcome the limitations of 

both: for purely data-driven inference methods, the poor scalability 

(as the search space increase exponentially) and limited biological 

interpretability (since they are limited to measured and perturbed 

proteins excluding intermediate ones), and for methods constrained 

to prior knowledge their inability to overcome incompleteness in 

the networks. We propose here an approach (and software pack-

age) to combine them that is effective and extensible to include 

other methods. 
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