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Abstract 

 

In this paper, we report on the fabrication and characterization of a new hydrogel-based 

microvalve.  The basic structure is a silicon membrane having an array of orifices with an 

internal structure designed to anchor the hydrogel while allowing it to gate the flow across the 

membrane.  Each orifice (140µm diameter) has a central post suspend by four tethers on each 

side of the membrane.  A stimuli-sensitive hydrogel is polymerized inside each orifice.  In the 

swollen state, the hydrogel completely occupies the void space of the orifice, completely 

blocking pressure-driven fluid flow. In the shrunken state, the hydrogel contracts around the 

post, allowing fluid to flow through an opened annular gap.    Fabrication of the microstructured 

silicon membrane requires only two masking steps and involves a combination of deep trench 

and KOH etch.  Two different hydrogels, based on N-isopropylacrylamide (temperature-

sensitive) and phenylboronic acid (pH and glucose-sensitive) were trapped and tested in this 

microvalve.  The measured response times were 10 seconds (temperature), 4 minutes (pH), and 

10 minutes (glucose).  The maximum pressure drop the microvalve can sustain before breakage 

of the hydrogel is 21 and 16kPa for temperature-sensitive and (pH/glucose)-sensitive hydrogels, 

respectively.  

 

Index terms: Hydrogel, Microvalve, Stimuli-Sensitive, Microfluidics. 
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1. Introduction 

 
Environmentally sensitive hydrogels integrated with micromechanical/microfluidic structures 

for active flow control at micro-scale have recently attracted considerable attention.  These 

polymer networks respond with significant volume change to stimuli such as temperature, pH, 

glucose, electric field, and light among others [1, 2]. Hydrogel response time depends on water 

absorption-expulsion kinetics and becomes reasonably short when dimensions are in the 

microscale.  Incorporation of hydrogels into microfluidic structures may therefore lead to rapid 

gating and control of fluid motion, with potential applications in implantable drug delivery 

systems, micro-reaction devices, and lab-on-a-chip micro-Total Analysis Systems (μTAS) [3-

12]. 

Several microvalve structures that utilize the chemomechanical properties of hydrogels have 

been reported.  These include: 1) microvalves formed inside microchannels by selective 

photopolymerization of hydrogel around posts [4], 2) mimics of venous flaps valves [5], 3) 

electronically controlled valves actuated by an integrated heating element formed underneath a 

temperature-sensitive hydrogel [6], and 4) valves based on a temperature-sensitive hydrogel 

loaded in a chamber adjacent to a flow channel but separated from the channel by a flexible 

PDMS membrane [7].   

Recently, a microvalve that is responsive to its external liquid environment was demonstrated 

[8].  This microvalve consists of a thin hydrogel, sandwiched between a rigid porous membrane 

and a flexible silicone rubber diaphragm.  The diaphragm is attached to an embossment that 

opens and shuts the inlet to a flow channel.  Volume changes of the hydrogel, which result from 

exchange of chemical species between the hydrogel and the liquid environment through the rigid 

membrane, are accompanied by deflection of the diaphragm/embossment and hence closure and 
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opening of the channel.  Such a valve can gate the flow and delivery of drug solutions in 

response to physiological changes.  Glucose-controlled insulin delivery is a target application of 

this microvalve.  

The microvalves described above gate the flow of fluid through channels that run primarily 

in-plane with the chip surface.  One might also consider valves that gate flow perpendicular to 

the chip plane.  Such valves would act analogously to membranes containing stimuli-sensitive 

polymers that modulate the flow of fluid when their pore structure is altered in response to an 

appropriate environmental stimulus [9].  Our group recently demonstrated an implementation of 

a hydrogel-gated membrane-type microvalve [10].  This device achieves flow control by 

interlocking the hydrogel with a glass frame fabricated by cutting parallel sets of trenches on 

either side of a glass wafer.  The trenches on the front side are cut orthogonally to those on the 

backside, and all trenches are diced to a depth exceeding the half-thickness of the wafer.  An 

array of holes spanning the wafer thickness is therefore created at the intersections of the 

opposing cuts.  The pregel solution is loaded and polymerized in the trenches.  When the gel is 

swollen it fills the trenches and blocks fluid flow perpendicular to the wafer.  When the hydrogel 

shrinks, fluid flows through gaps that open up at the wafer-spanning intersections.  The 

dimensions of the hydrogel in this case are constrained by the wafer thickness and dicing saw’s 

minimum cut depth and width.  The response times of the criss-cross cut structure, created from 

a 500μm-thick glass wafer cut with 120μm-wide and 300μm-deep trenches and loaded with 

temperature- and glucose-sensitive hydrogels, were 50 seconds and 4 hours, respectively. 

In this paper we describe a micromachined silicon membrane valve that contains an array of 

micro-orifices whose internal structure is designed to confine the hydrogel while allowing it to 
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control flow perpendicular to the chip surface.  This structure is expected to provide fast, 

reproducible response to external stimuli.   

 

2. Device Concept and Design 

 
Figure 1 shows a schematic representation of the microstructured silicon membrane, which 

features an array of cylindrical orifices containing central posts, suspended by narrow tethers on 

each side of the membrane.  The orifices are loaded with a stimuli-responsive hydrogel.  The 

resulting structure is hereafter called the “microvalve”.  In the swollen state, the hydrogel 

occupies the whole volume of the orifice, and fluid flow is essentially blocked.  In the shrunken 

state, the gel contracts around the central post, allowing fluid to flow through an annular gap 

opened up between the hydrogel and the orifice wall.  The tethers secure the post and anchor the 

hydrogel so that it is not dislodged by flow.   

Both physical and chemical stimuli-sensitive hydrogels can be polymerized inside the 

orifices.  In this paper, we present results with temperature- and pH/glucose-sensitive hydrogels 

[11].  The small dimensions of the hydrogel-confining structure enable shorter response times 

compared to previously reported membrane-type structures [10, 12].  The microvalve can be 

designed to provide a wide range of flow rates at the open state by adjusting the membrane 

thickness and the diameter and number of orifices.    

In the present design, the membrane is 100µm thick, has area 2x2mm2, and contains an array 

of 25 identical orifices that open and shut together when exposed to a common stimulus.  

Diameters of the orifices and their central post are 140µm and 40µm, respectively.  Four tethers 

in each orifice, having length 50µm, width 10µm, and thickness 20µm, unite the central post 

with the orifice perimeter on both sides of the membrane. 
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3. Methods 

3.1 Valve Microfabrication 

Fabrication of the double-tethered structure was accomplished in two masking steps by 

combining different kinds of silicon etch, as shown in Figure 2.  Initially, a 100µm thick silicon 

membrane was formed by KOH-etching the back side of a 500µm thick <100> silicon wafer.  A 

patterned 2µm-thick nitride layer deposited by LPCVD on the wafer was used as a mask for this 

etch step. 

Formation of the top set of tethers was based on a modified SCREAM fabrication process 

[13].  Nitride was patterned on the front side (top) of the membrane with the spoked feature 

shown in Figure 2-c.  The exposed silicon, which consisted of four annular sectors, was then 

etched to a depth of 20µm in a deep trench etcher (ICP Plasma-Therm SLR series with Bosch 

process).  During this step the outer circle of the pattern defined the outer orifice wall, the central 

circle defined a thick post, and the four radial spokes defined thin silicon slats.  Next, a 0.5µm-

thick oxide layer was deposited in the etched sectors by PECVD.  The oxide layer deposited on 

the floor of the features was then removed by anisotropic oxide etch.  Oxide on the walls was 

essentially undisturbed during this step.  

The process continued with a second 60µm deep silicon trench etch.  At this point, the top 20 

microns of the post and the thin silicon slats were protected by the oxide layer, whereas the lower 

60 microns were bare silicon.  The lower parts of the walls were removed either by wet (KOH) 

anisotropic or dry (plasma) isotropic etch, leaving behind four freestanding silicon tethers 

bridging the central post to the orifice outer wall.  The last step consisted of a third deep trench 

etch that punched through the back of the silicon membrane.  Because of shadowing by the front 
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tethers, a complementary pair of rear tethers remained connecting the back side of the central 

post to the outer wall of the orifice. 

 

3.2 Synthesis and Incorporation of Hydrogels in Orifices 

The temperature-sensitive hydrogel was prepared from a pregel solution consisting of 100mg 

isopropylacrylamide (NIPA, purified in the lab, Polysciences), 1mg N,N’-

methylenebisacrylamide (Bis, >99%, Polysciences, cross-linker), 5µl tetraethyl 

methylenediamine (TEMED, 99%, Sigma-Aldrich, accelerator), and 1mg ammonium persulfate 

(APS, electro pure, Polysciences, initiator), all dissolved in 1ml of deionized water.  The 

pH/glucose-sensitive hydrogel was prepared from a pregel solution containing 80mg acrylamide 

(AAm, 99%, Sigma-Aldrich), 52mg methylacrylamidophenylboronic acid (MPBA, synthesized 

according to ref. [14]), 0.5mg Bis, 5µl TEMED, and 0.5mg APS, 0.25ml 1N NaOH solution and 

deionized water with total volume 0.7ml. 

Devices were immersed in the pregel solution.  Bubble entrapment inside the orifices was 

avoided by first wetting one side of the device and forcing some of the solution through the 

membrane.  Polymerization occurred after 10 minutes at room temperature, but was carried to 

completion overnight.  After polymerization, excess hydrogel was removed by separate methods 

for the two different hydrogels.  The device loaded with the temperature-sensitive hydrogel was 

immersed in deionized water to fully swell the hydrogel.  Excess hydrogel was easily peeled off 

from both sides of the membrane.  Excess pH/glucose-sensitive hydrogel was removed 

immediately after polymerization using a flat-end wood stick.  Both hydrogels were polymerized 

in their swollen states, so that space would open up for fluid flow when the hydrogels shrank.  
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3.3 Flow Tests 

To test microvalve’s flow gating capability in response to an environmental change, the 

membrane was clamped in a fixture with fluidic connectors.  Figures 3-a, b show the 

experimental setups used for the temperature- and pH/glucose-sensitive microvalves, 

respectively.  The temperature-sensitive device was connected to rubber tubing (ID=3mm and 

OD=4.8mm) on both sides (Figure 3-a). The upstream tubing led to a water reservoir at constant 

pressure head, while the downstream tubing served as a drain.  This assembly was immersed in a 

water bath at specified temperature, or was alternated between baths at low and high 

temperatures.  The upstream tubing was coiled to ensure adequate thermal equilibration between 

the luminal water and the bath.  For the pH/glucose-sensitive membrane it was necessary to 

directly expose the hydrogel to the solution being transported, as shown in Figure 3-b. A 

negative pressure was applied at the outlet tubing to drive fluid flow.  For both test setups, flow 

rate was determined from the velocity of an air bubble injected in a glass tube connected to the 

outlet [8].    

 

4. Results  

4.1 Microvalve structure 

Microvalves were successfully fabricated using both wet and dry etching techniques to 

release the top tethers.  Figures 4-a,b show SEM micrographs revealing the orifice walls, the 

central post, and the tethers.  In Figure 4-a the orifices were fabricated on a full-thickness wafer 

(no initial KOH etch) in order to obtain a clean section of the structure when cleaving the wafers 

for SEM inspection.  In this case, release of the top tethers was carried out using KOH.  The 

presence of fast and slow etch planes in the silicon led to polygonal shapes of the central post 
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and orifice wall below the top tethers, and a V-shaped underside of those tethers.  The bottom set 

of tethers was formed during the last deep RIE step, with the top tethers serving as a “shadow 

mask” for anisotropic etch of the passivation layer during the three step cycles of the Bosch 

process.  The bottom tethers were slightly wider than the top tethers.  Figure 4-b shows the top 

view of a complete orifice on a 100µm-thick silicon membrane.  Again, KOH etch was used to 

release the top tethers.  The orifice is open on both sides of the membrane and has the desired 

double-tethered structure for entrapment of the hydrogel.   

Optical micrographs of an orifice loaded with temperature-sensitive NIPA hydrogel in the 

shrunken and swollen states are shown in Figures 5-a and 5-b, respectively.  In the swollen state 

(low temperature, 25 °C), the hydrogel occupies the entire orifice. In the shrunken state (high 

temperature, 50 °C), the hydrogel is collapsed around the central post, and an annular gap is 

opened between the hydrogel and the outer orifice wall.  It is through this gap that fluid flows.   

 

4.2 Temperature-sensitive microvalve test  

For the temperature-sensitive microvalve (NIPA hydrogel), the flowing liquid was deionized 

water with a 74cm pressure head.  The microvalve was alternately immersed in two beakers with 

water at 25ºC and 50ºC.  Figure 6 shows the flow response resulting from this alternation.  Flow 

was completely stopped at 25ºC, whereas at 50ºC the flow rate was about 1ml/min.  The 

response time was about 10 seconds for opening and 20 seconds for closing.  In a second 

experiment, bath temperature was increased progressively from 25ºC to 50ºC and flow rate was 

recorded at several temperatures, as shown in Figure 7.  The sharp change in flow-rate observed 

at 34ºC is expected based on the volume phase transition temperature of the poly(NIPA) 

hydrogel [15].  
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Flow behavior at higher pressure heads was also investigated at 50˚C.  As shown in Figure 8, 

the steady state flow rate of water increased almost linearly at low applied pressure (below 5 

kPa), but the slope of the flow-pressure characteristic decreased at higher pressure values.  This 

decrease is probably due to elastic deformation of the hydrogel.  When exposed to a high 

pressure gradient, the length of the hydrogel decreases, with corresponding increase in its cross-

sectional area and constriction of the annular gap between the hydrogel and the outer wall of the 

orifice (constriction effect).  This in turn increases the flow resistance at high pressures hence 

decreasing the flow-pressure slope (see appendix for a simple model).  In the closed state (25˚C), 

the microvalve could tolerate a 21kPa of pressure drop before hydrogel rupture and initiation of 

leakage.   

 

4.3 pH/glucose-sensitive microvalve test. 

Figure 9 shows the flow response to pH change for the microvalve loaded with the 

pH/glucose-sensitive, MPBA/AAm hydrogel.  The device was alternately immersed in phosphate 

buffered saline (PBS) solutions at pH 3.0 and 10.0 while a negative pressure of 55cm-H2O was 

applied at the outlet.  The pH response time of this microvalve was an order of magnitude slower 

(4 minutes) than that of the thermally-responsive system. 

Figure 10 illustrates the response of the same microvalve immersed between two PBS 

solutions at pH 7.4 with glucose concentration alternated between 0mM and 20mM while a 

negative pressure of 90cm-H2O (8.8kPa) was applied at the outlet.  Since glucose diffusivity in 

the gel is slower than that of hydrogen ions and phosphate buffer, an even longer response time 

(10 minutes) was observed.  With the valve in the closed state (pH 10.0), it was found that the 

MPBA/AAm hydrogel could withstand a 16kPa pressure drop before leakage ensued. 
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5. Discussion 

 

Environmentally-controlled gating of diffusive and convective transport through membranes 

has been studied for over two decades.  Most of the literature deals either with stimuli-responsive 

hydrogels cast in the form of membranes [16-18], or stimuli-responsive polymer chains that are 

grafted to the walls of microporous membranes [9, 19].  Recently, at least two groups have 

produced membrane composites consisting of water-swollen stimuli-sensitive nanogels dispersed 

above the percolation threshold within a hydrophobic membrane that acts as a continuous 

support [20, 21].  When swollen, the nanoparticles block transport through the membrane.  When 

collapsed, voids are created in the membrane through which diffusion or convection is now 

permitted.  The present micromachined system is analogous to the latter composite systems, but 

the geometric configurations of the pores and hydrogel are better defined and much stronger 

modulation of transport is achieved.  The present system is also an improvement over the 

previously reported cross-cut system [10], as the much smaller micromachined features permit 

faster response.  A final advantage of the microfabricated system is the potential to integrate 

controlling elements such as electrically controlled microheaters directly into the device, rather 

than relying exclusively on the fluid environment in which the device is immersed. 

The microvalve orifices were formed by first defining the orifice, central post, and slats, then 

undercutting the slats to release the top tethers, and finally punching through the back side by 

shadowed plasma etch to release the bottom tethers.  In the second step, either wet chemical or 

dry isotropic plasma etch could be performed.  The main difference in these two methods is that 

whereas chemical etching left behind polygonal walls, dry etch resulted in rounded features. 
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Hydrogels were incorporated into the orifices by immersing the membranes into an excess of 

pregel solution, polymerization, and removal of excess hydrogel from the membrane surfaces.  

After removal of this excess hydrogel, which exerts a negative osmotic pressure, and exposure to 

water, the remaining hydrogel will develop an excess positive swelling pressure inside the 

orifice, tightening the seal.  This excess swelling pressure must be reduced below zero before the 

gel can shrink within the orifice, and this may contribute to the delay in the valve’s opening.  

One future design consideration may be to alter synthesis conditions to control this excess 

swelling pressure.  It should also be noted that the excess swelling pressure may be reduced if the 

fluid to be gated contains macromolecules that are unable to enter the gel network and therefore 

reduce the difference in osmotic pressure between the fluid and the hydrogel [22]. 

In the present paper we have only considered a gating function of the hydrogel in the orifice, 

so we have termed the composites “microvalves.”  For the thermally responsive systems with 

NIPA gels, the response to temperature exhibits a discrete transition, as illustrated in Fig. 7.  

However, thermally responsive hydrogels with gentler swelling-temperature response 

characteristics exist [23], and it may possible to place these hydrogels into the tethered orifices to 

produce continuous, temperature-based flow control.  The response of the MPBA/AAm to 

changes in either pH or glucose is gradual [14], but we bypassed this aspect by exposing the 

system to somewhat extreme alternating conditions.  Investigation of the present system in a 

“fluid microcontroller” mode may be of interest, particularly in the thermal case where, as 

described above, temperature control can be provided by external means. 

Despite the increase in speed of response in the present system, the thermal response remains 

much faster than the response to chemical stimuli.  Direct comparisons are somewhat deceiving, 

since there is no common basis for comparison of the thermal and chemical stimulus magnitude.   
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However, there are basic differences between the mechanisms by which the hydrogel in the 

microvalve can respond to changes in temperature and chemical environment. 

A change in temperature will propagate rapidly through the whole “membrane,” including 

the silicon and hydrogel components.  Upon exposure to high temperatures, NIPA hydrogels 

initially undergo microphase separation, with appearance of water- and polymer-rich 

microdomains [24].  Even without bulk shrinkage of the hydrogel, this microphase separation 

may lead to an initial increase in hydraulic permeability [25].  Following this initial step and the 

accompanying reduction of swelling pressure against the outer orifice wall (see above), the 

hydrogel will undergo bulk shrinkage and recede from the outer wall, opening up the annular 

channel for fluid flow.  Conversely, a cooling stimulus will be rapidly felt throughout the 

hydrogel.  For both warm and cool stimuli, hydrogel swelling response will be limited primarily 

by collective diffusion of the crosslinked hydrogel chains in the aqueous solvent [26]. 

Unlike thermal changes, which are conducted through the whole device, changes in pH or 

glucose concentration can impact the hydrogel only where the latter is in direct contact with the 

bathing aqueous medium.  When the hydrogel completely fills the orifice (flow suppressed), 

solutes can only enter at the upstream interface.  (Recall that the downstream interface is 

connected to tubing that is closed off from the external solution.)  The solute “invasion” process 

is thus geometrically constrained in this case, and this may lead to some initial slowing down of 

response.  Once the hydrogel collapses away from the orifice wall, however, solutes may enter 

by way of the annular gap. Due to the elastic properties of the hydrogel, this gap should originate 

at the front face and propagate longitudinally.   Closure of the valve, however, should occur 

more uniformly. 
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More important in determining valve response rate is the relatively slow diffusion of 

chemical species compared to heat.  Furthermore, the hydrogel’s response to changes in pH or 

glucose concentration is due to a change in fixed charge density, which results from the 

reversible binding of hydrogen ion, hydroxide ion, and glucose to the phenylboronate sidechain 

of the hydrogel [27].  Slowing of molecular diffusion due to reversible binding is a well-

documented phenomenon [28, 29], and is the most likely cause of the relatively slow response of 

the microvalve to chemical changes.  In this regard it should be noted that kinetics of response to 

pH change may be strongly buffer related, since pH buffers act as carriers of acidic protons [30-

32], and the same pH change for two different buffer systems may be associated with very 

different concentrations of acidic protons that are available for transport into and out of the 

hydrogel.  Diffusional transport of other supporting electrolytes, such as NaCl, is relatively rapid 

in hydrogels [33], and is not expected to limit swelling and deswelling rates in the present 

system. 

As a final comparison, we note that glucose is a larger molecule that hydronium ion, hydroxide 

ion, and most typical pH buffers.  Therefore its diffusivity will be lower.  It is therefore not 

surprising the response to change in glucose level is not as fast as the pH response.  Note, 

however, that a direct kinetic comparison would require that the changes in fixed charge density 

on the hydrogel be the same given changes in pH and glucose concentration.  

It is noteworthy that hydraulic permeability of the silicon membrane with hydrogel in the 

collapsed state was much smaller for the pH/glucose sensitive system than for a temperature-

sensitive system.    This difference is attributable to the greater degree of collapse exhibited by 

NIPA hydrogels compared to MPBA/AAm gels. 
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The leakage observed at high pressure gradients was due to hydrogel failure, not fracture of 

the tethers.  This is not surprising, since hydrogels are notoriously weak materials, weakness 

being due to inhomogeneities and the tendency to develop high stress fields around fracture seed 

points.  It has recently been demonstrated that the mechanical strength of hydrogels can be 

greatly increased by co-incorporating a dilute but mobile linear polymer that interpenetrates the 

primary hydrogel [34].  This second polymer can rapidly move into fracture areas and relieve 

stress.  It is conceivable that with this strategy, the ultimate strength of the tethered construct will 

depend on the tethers themselves. 

 

5. Conclusions and Outlook 

 
We have demonstrated the fabrication of double-sided, tethered structures in silicon 

membranes.  These structures, when loaded with hydrogel, function as a microvalve that can gate 

fluid flow in response to external stimuli such us temperature, pH, and glucose concentration.  

The response time for the temperature-sensitive microvalve is of order 10 seconds, while the pH- 

and glucose-sensitive microvalves response times are of order 4 and 10 minutes, respectively.  

While these response times are significantly improved compared to previously-studied 

microfabricated systems [14], even faster response times might be achieved by further 

miniaturization. Another possible improvement would be to provide focused polymerization 

inside the orifices, perhaps using photoinitiation. This alteration may eliminate the need to peel 

or scrape off excess hydrogel from the surface, which is both inconvenient and inelegant. 

The environmentally-sensitive microvalve presented here can be used to implement 

autonomous systems.  For example, it can be integrated within a microreaction chamber having 

catalysts, enzymes or cells. Reaction or metabolization processes take place in the chamber 
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resulting in a change in certain chemical concentration (e.g. pH or glucose).  Once the desired 

concentration is reached the microvalve orifices open and let the product out.  As product is 

pumped out new reactants or medium enters the chamber.  At this point the chemical 

concentrations return to the original values and the flow through the microvalve stops, thus 

initiating a new reaction cycle.  Such a system would work without need of additional control 

electronics.  
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APPENDIX-SIMPLE MODEL FOR PRESSURE-FLOW CHARACTERISTIC 

 
In the microvalve, fluid flow occurs through a channel comprised of an approximately 

annular gap between the hydrogel surrounding the cylindrical post, and the outer wall of the 

orifice.  Let a, b, and R denote, respectively, the radius of the post, the radius of the orifice, and 

the distance from the post center to the outer edge of the hydrogel (see Figure 4-a).  Let L denote 

the axial length of the hydrogel.  Assuming the usual no-slip boundary condition for fluid flow at 

the hydrogel surface and the outer wall of the orifice, flow through the channel is given by [35] 
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where ΔP is the pressure drop across the channel and η is the liquid viscosity. 

 
Assuming that the hydrogel behaves as a linearly deformable medium, and that only axial 

stress is important in the deformation process, we may write  

 
)'/1(0 YPLL Δ−=   

and  

))('/'1( 0 aRYPaR −Δ+=− σ  

 
where L0 and R0 are the length and outer radius of the hydrogel before deformation, and 'Y  and 

'σ  represent, respectively, modified Young’s modulus and modified Poisson’s ratio.  Because 

the shrinking of the hydrogel is constrained by the post, the hydrogel is already in a state of 

stress, so the values of the elasticity parameters are modified from the values they would take in 

the free-swelling case. 
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Figure 11 depicts a non-dimensionalized pressure-flow characteristic based on this model, with a=20μm, 

b=70μm, and R0=50μm, based on the micrographs in Figure 4.  While we have no direct measurement of 

the modified Young’s modulus and Poisson’s ratio, we will, for the present purpose, use data presented 

by Hirotsu [15] for free deswollen N-isopropylacrylamide hydrogels at equilibrium, and estimate that 

'Y ~30kPa and 'σ ≈0.45.  Note that this value of Poisson’s ratio implies that at equilibrium the hydrogel 

shrinks upon compression by expelling some of its water.  Upon initial compression, water will not have 

time to leave, and one will have 'σ =0.5.  However, equilibrium is achieved rapidly in the present system 

due to its small size.  The range of ΔP/ 'Y  shown in Figure 11 is therefore roughly consistent with the 

range of ΔP explored in Figure 8.  The downward departure from linearity seen in Figure 8 is 

qualitatively reproduced in Figure 11.  Because of parameter uncertainties, a direct comparison is not 

made.  However, we also include in Figure 11 predictions based on 'σ =0.33.  In this case, lateral 

expansion of the hydrogel does not overcome the effect of axial shortening due to the pressure difference, 

and the pressure-flow characteristic is nearly linear. 
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LIST OF FIGURES 

 

Figure 1: 3D schematic representation of a sectional view of the silicon membrane with 

structured orifices. 

 

Figure 2: Fabrication process: a) nitride deposition, b) backside nitride patterning and KOH etch, 

c) and d) front side nitride patterning and first DRIE, e) PECVD oxide deposition, f) floor oxide 

etch, g)  second DRIE,  h) short KOH etch or silicon plasma etch, i) third DRIE. 

 

Figure 3: Experimental setups for the measurement of the microvalve response to a) temperature, 

and b) pH/glucose concentration. The device is clamped between two plates with fluidic 

connectors to tubing. 

 

Figure 4: SEM micrographs of  a) the side view of a fractured structure fabricated without initial 

back side KOH etch,  and b) top view of a complete microstructured orifice. 

 

Figure 5: Micrographs of an orifice loaded with hydrogel and immersed in water at a) 50 ºC 

(hydrogel shrunken), b) 25 ºC (hydrogel swollen). a, b, and R are defined in the Appendix. 

 

Figure 6: Flow rate vs. time for thermosensitive microvalve, with temperature alternated between 

25ºC and 50ºC and pressure head of 74mm H2O. 
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Figure 7: Flow rate vs. temperature curve for the thermosensitive microvalve, with pressure head 

74mm H2O. 

 

Figure 8: Flow rate vs. external pressure for a thermosensitive microvalve at 50˚C. 

 

Figure 9: Flow rate vs. time for pH-sensitive microvalve when alternating pH between 3.0 and 

10.0.  Pressure head 90 cm H2O. 

 

Figure 10: Flow rate vs. time when alternating glucose concentration between 0 and 20 mM. 

Pressure head 90 cm H2O. 

 

Figure 11:  Predicted dimensionless flow vs. pressure characteristic based on parameters in the 

appendix. 
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