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Abstract 

 

High oxygen content apatite germanates, La10Ge6-xWxO27+x, have been prepared by 

doping on the Ge site with W. In addition to increasing the oxygen content, this doping 

strategy is shown to result in stabilisation of the hexagonal lattice, and yield high 

conductivities. Structural studies of La10Ge5.5W0.5O27.5 show that the interstitial oxygen 

sites are associated to a different degree with the Ge/WO4 tetrahedra, leading to five 

coordinate Ge/W and significant disorder for the oxygen sites associated with these units. 

Raman spectroscopy studies suggest that in the case of the WO5 units, the interstitial 

oxygen is more tightly bonded and therefore not as mobile as in the case of the GeO5 

units, thus not contributing significantly to the conduction process.
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1. Introduction 

 

Apatite-type materials, ideal general formula A10M6O24X2 (A=alkaline earth, rare 

earth; M=P, Si, Ge; X=OH, O, halide), have been widely researched, with 

applications ranging from biomaterials to ionic conductors. Notionally, their crystal 

structure can be described as a A4(MO4)6 framework, with the remaining A6X2 units 

accommodated in the channels, formed by the framework (figure 1). In terms of 

applications as ionic conductors, the silicates/germanates, La9.33+2x/3(Si/Ge)6O26+x have 

been shown to represent a new class of oxide ion conductor, with potential use in 

solid oxide fuel cells [1-40]. A key feature of these apatite oxide ion conductors is that 

their conduction mechanism is driven by the presence of interstitial oxide ions, 

contrary to the traditional fluorite and perovskite systems, where oxide ion vacancies 

are responsible [13]. For the silicates it has been shown that oxygen excess in the 

range, 0 ≤ x ≤ 0.5 is possible, while higher oxygen content, 0 ≤ x ≤ 1.0 has been 

achieved for the germanates [13, 18, 20, 21]. For the silicate series, the exact location 

of extrastoichiometric oxygen, x, has attracted some controversy, with reports of 

interstitial sites close to the SiO4 tetrahedra, while in other studies, mobile oxygen at 

the centre of the channels has been claimed [4, 8, 9, 10, 12, 13, 23, 27, 35, 36]. For 

the germanates, the situation appears more clearcut, with computer modeling, neutron 

diffraction and Raman studies indicating occupancy by oxygen sites close to the GeO4 

tetrahedra leading to the formation of five coordinate Ge [10, 20-22, 37, 40].  

A considerable amount of work has been performed on doping studies in the silicate 

apatites, as summarized in the review article by our group [13]. In contrast, there have 

been fewer doping studies performed on the germanate systems, despite the fact that 

these systems can accommodate higher oxygen interstitial contents, important for 

high oxide ion conductivity in apatite systems [13].  The important role of interstitial 
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oxygen has been demonstrated by recent work on the germanate apatite series, 

La8+2xBa2-2xGe6O26+x, where conductivity increases with x for 0≤x≤0.7. However, for 

x>0.7, the apatite symmetry is reduced from hexagonal to triclinic, with a coincident 

depression of conductivity at low temperatures that is attributed to more efficient 

trapping of the interstitial oxygen [24]. The same transition to a triclinic cell is 

observed for the La9.33+2x/3Ge6O26+x series at high values of x [7,10, 20, 21]. Therefore 

it is important to identify strategies to maintain hexagonal symmetry at high oxide ion 

contents to maintain high conductivities. 

The triclinic distortion has been attributed to a size mismatch between the 

La3.33+2x/3(GeO4)6 framework and the La6O2 channels leading to underbonding at the 

channel La atoms, which is relieved by the triclinic distortion, through twisting of the 

GeO4 tetrahedra [20,21,39]. In prior work, we have shown that Y can be selectively 

doped into the La sites within the La3.33+2x/3(GeO4)6 framework altering the diameter, 

and hence relieving the triclinic distortion [18, 37]. In this way it is possible to 

prepare hexagonal samples with high oxygen content, i.e. La7.33+2x/3Y2(GeO4)6O2+x 

(0�x�1.0), which show enhanced conductivity at low temperatures compared with 

equivalent triclinic samples without Y doping [18]. We have also investigated the 

effect of doping the lower valent Co3+, Ga3+ ions on the Ge site, La10Ge6-x(Co/Ga)xO27-

x/2, although in these cases the dopant appears to enhance the triclinic distortion [13, 

19]. This can be explained by the dopants enlarging the framework, and hence 

exacerbating the underbonding at the channel La sites, and driving the triclinic 

distortion.  

Recently we have extended this Ge site doping work to investigate doping higher 

valent ions on the Ge sites, and here we report the successful incorporation of W into 

La10Ge6O27. Through W doping it is shown that the stabilization of the hexagonal cell 

is achieved, while the higher valence of W means that the total oxygen content is 
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increased above 27, which represents the highest oxygen content reported for these 

systems. The crystal structure and location of the interstitial oxide ions in 

La10Ge5.5W0.5O27.5 have been determined through neutron diffraction and Raman 

spectroscopy studies, while the conductivity was measured by AC impedance 

spectroscopy.    

 

2. Experimental 

Stoichiometric amounts of high purity La2O3, GeO2, and WO3 were ground together, 

and heated for 12 hours at 1100ºC, with a second firing at 1100ºC for a further 12 

hours. Between firings the samples were reground to ensure homogeneity. The 

samples were subsequently ball milled for 1 hour (350 rpm, Fritsch Pulverisette 7 

Planetary Mill), before heating at 1300°C for 2 hours. Phase purity was established 

through X-ray powder diffraction (Bruker D8 diffractometer with Cu Kα1 radiation). 

Conventional sintering of these W doped apatite systems for conductivity 

measurements led to undesirable low density compacts (≈60% theoretical). To 

overcome this problem, spark plasma sintering (SPS) was carried out at the 

Plateforme Nationale de Frittage Flash/CNRS 1 at Toulouse, France. In this process, 

1 g of sample was pressed in a 15.4mm diameter graphite die at 100MPa and 1200°C. 

The maximum pressure and temperature were maintained for less than 2 minutes, 

followed by the fast release of the pressure and natural cooling of the samples. The 

residual carbon was burnt off the pellets by heating at 950○C for several hours before 

coating both sides with platinum paste for conductivity measurements.  

Conductivity measurements were made on the pellets (≈85% theoretical) using AC 

impedance spectroscopy (Hewlett Packard 4182A impedance analyser) in the range 

                                                 
1PNF2/CNRS – MHT, Université Paul Sabatier, Toulouse, France. Created by P. Millet, P. Rozier, J. Galy, 2003-2004. 
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from 0.1 to 103 kHz. The collected impedance data were analysed using equivalent 

circuits to separate both bulk and grain boundary contributions to the resistance (see 

supplementary information for representative plots). 

Time of flight powder neutron diffraction data were collected on the POLARIS 

diffractometer at the ISIS pulsed spallation source, Rutherford Appleton Laboratory, 

UK. Structure refinement was then carried out with the GSAS suite of Rietveld 

refinement software, using data collected in the highest resolution backscattering 

detector bank (<2θ>=145○) [41].  

Raman spectroscopy measurements were carried out using a backscattering setup with 

an optical microprobe spectrometer (Model XY, Dilor, France) with a CCD detector. 

Room temperature spectra were taken  through a X 50 microscope objective lens in a  4 

microns diameter sample region. The power of the laser line was 40mW and the 

spectral resolution 2 cm-1. High temperature spectra were taken with a LINKAM 

TS1500 stage with a temperature stability of 0.5K, and using a X50 long working 

distance objective lens. The 514.5 nm line of an Ar+-ion laser (Model INNOVA 305, 

Coherent, Palo Alto, CA) was used for sample excitation and the Si Raman line at 520 

cm-1 for wavelength calibration. 

 

3. Results and Discussion 

X-ray diffraction studies, on the samples prepared, indicated that it was possible to 

prepare W doped germanates, La10Ge6-xWxO27+x, in the range 0≤x≤0.5. At the highest 

dopant concentration, x=0.5, the sample was hexagonal, while at low levels, the 

samples were triclinic as for the undoped phase (figure 2).  

Impedance measurements showed that for the low W content triclinic phases (x=0.1), 

the conductivity at low temperatures was rather low, consistent with the expected 
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defect trapping in the triclinic cell. In contrast, the conductivity for La10Ge5.5W0.5O27.5, 

which was hexagonal, was significantly higher at low temperature (figure 3). Both 

compositions showed similar conductivities at high temperature, as they both exhibit 

hexagonal symmetry at these elevated temperatures (high temperature X-ray 

diffraction data showed that for La10Ge5.9W0.1O27.1, there is a triclinic-hexagonal 

phase transition between 700 and 750○C). The similar high temperature conductivities 

(σ ≈ 0.02 S cm-1 at  820°C) of the x=0.1, and 0.5 samples is interesting, and suggests 

that either there is an upper limit for the magnitude of the oxide ion conductivity with 

increasing oxygen content, such that there is an optimum oxygen interstitial 

concentration, or there could be partial trapping of the interstitial oxide ion defects by 

W, which counterbalances the effect of the increase in oxygen content.  

Following our recent work on the study of the position and mobility of interstitial 

oxygen in the apatite germanates, La8+xBa2-xGe6O26+x/2 by Raman spectroscopy, we 

performed Raman dispersion measurements on samples with different W content. 

Figure 4 shows the Raman spectra of La10Ge5.7W0.3O27.3 and La10Ge5.5W0.5O27.5. 

These spectra are very similar to those of La8+xBa2-xGe6O26+x/2 [40]. In particular, they 

present the band at  645 cm-1 whose intensity was correlated with interstitial oxygen 

content in Ref [40]. However, an additional band at 830 cm-1 is observed in the W-

doped samples, its intensity increasing with W content. No other band is found at 

higher frequencies, up to at least 1200 cm-1. According to Hardcastle et al [42], this 

frequency (830 cm-1) is much lower than that expected for the stretching of a W-O 

bond in an ideal WO4 tetrahedron, suggesting a higher coordination of tungsten in the 

form of WO5 or even WO6. These results imply the distribution of the interstitial 

oxygen between both germanium and tungsten. In fact, from the line-shape analysis of 

these spectra, the intensity of the 645 cm-1 band, attributed to the presence of 
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interstitial oxide ions resulting in the formation of five coordinate Ge, remains 

constant with increasing W content. That means that the extra oxygen ions introduced 

by the aliovalent doping with hexavalent W do not form GeO5 units, but increase the 

coordination of the dopant. In order to study the effect of this interstitial site on the 

ionic conductivity, we have performed high temperature Raman measurements on the 

La10Ge5.5W0.5O27.5 sample. Figure 5 shows the Raman spectra of this sample at 

temperatures ranging from RT to 700ºC. These spectra have been corrected by 

dividing by the prefactor (n(ω,T)+1) affecting the Raman intensities, where n(ω,T) is 

the Bose-Einstein factor, n(ω,T)=1/(exp(ħω/kT)-1). Apart from the expected 

broadening of the Raman bands, the only change observed is the thermally activated 

decrease in the intensity and subsequent disappearance of the 645 cm-1 band that was 

attributed to the “freeing” of the interstitial oxide ions from the GeO5 units and hence 

the onset of significant oxide ion conduction [40]. No intensity decrease is observed 

for the 830 cm-1 band (see supplementary information), suggesting that the tungsten 

groups are not significantly involved in the conduction process. This fact would 

explain the similar high temperature conductivity values measured for La10Ge-

5.5W0.5O27.5 and La10Ge5.9W0.1O27.1 (figure 3) and even La8Y2Ge6O27 [44], regardless 

the different oxygen content. The beneficial effect of W doping on the low 

temperature oxide ion conductivity of these apatite systems would then merely lie in 

the stabilization of the hexagonal phase.  

As there have been recent reports of water incorporation in apatite germanates [16, 

43], the conductivity measurements were repeated under a wet atmosphere. These 

data showed no change in the bulk conductivities, although for La10Ge5.5W0.5O27.5 

there was a slight enhancement of the grain boundary conductivity (figure 6). The 

change from H2O hydrated nitrogen gas to D2O-hydrated led to a slight decrease in 
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this enhancement, suggesting the presence of an isotopic effect and hence suggesting 

that the increase in this grain boundary conductivity was due to a protonic 

contribution. 

The structure of the highly conducting hexagonal sample, La10Ge5.5W0.5O27.5, was 

then analysed in detail using powder neutron diffraction measurements. In the 

refinement, space group P63/m, which is typical for apatite systems, was employed. 

The initial structural model employed the non-electroneutral cell (La10Ge5.5W0.5O26) 

containing no interstitial oxide ions. Fourier maps showed the presence of unfitted 

nuclear density between two Ge/WO4 units, at a position close to (0,0.5,0.5), while for 

the channel oxygen sites (0,0,0.25), a large spread of nuclear density along the z 

direction was observed, consistent with a large degree of static disorder. In addition, 

these Fourier maps suggested significant disorder within the oxide-ion sites of the 

Ge/WO4 tetrahedra, in particular the O3 site (see supplementary information). In 

order to account for these features, extra oxygen was placed on the interstitial site 

between the tetrahedra, while the O3 site was split, with the atomic displacement 

parameters of the split sites constrained as equal, while their occupancies were linked 

such that the total occupancy (O3a + O3b) =1.0. Similar features were observed in the 

refinement of the related high oxygen content hexagonal apatite germanate, 

La8Y2Ge6O27, and in modelling studies on La9.33Ge6O26 [22, 37]. The latter indicated 

that the presence of interstitial oxide ions, leading to the formation of “GeO5” units, 

results in substantial displacement of the other oxygens on the original GeO4 unit 

[22]. Due to the high correlation between the atomic displacement parameter and the 

site occupancy factor for the interstitial site, the occupancy was fixed at that expected 

from the sample stoichiometry.  For the channel oxide ion, O4, the ion was allowed to 

move off the mirror plane at z= ¼ , ¾, leading to two closely spaced sites, each with 
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half occupancy. The same off-site displacement was also allowed for the O2 site of 

the tetrahedra. The final structural data are given in table 1, and the neutron 

diffraction profiles and structural figure shown in supplementary information. 

Selected bond distances are given in table 2, which show that the refined model 

overall gives sensible bond distances. It should, however, be noted that the data in 

table 2b does show some apparently short (<2.5Å) O-O distances. However, these 

split oxygen sites are not fully occupied, and therefore occupancy of both sites in 

close proximity can be eliminated through local oxygen ordering.  

Further improvements in the fit could be made by introducing more disorder of the 

oxide ion sites, but in these cases the refinement led to some unreasonably short 

Ge/W-O bond distances. Similarly a refinement without split sites, but with 

anisotropic atomic displacement parameters was also examined. Although this gave 

slightly smaller ‘R’ values, it also gave some physically unreasonable values for the 

atomic displacement parameters (see supplementary information), while we believe 

that the split site model provides a realistic interpretation of the local distortions. 

Overall the results suggest that although the long range structure is hexagonal, there is 

considerable local disorder, such that the local structure may be more likely triclinic, 

as for the undoped system.   Indeed the diffuse background in the ND profiles 

(supplementary information) suggests significant short range correlations, most likely 

to eliminate short O-O interactions, consistent with the observed high atomic 

displacement parameters and need for split oxide ion sites. This emphasises the 

complexity of these apatite systems, and suggests the need for further total scattering 

experiments to investigate these short range features.   

As with the structure refinements for related La10Ge6O27 and La8Y2Ge6O27 [20,21, 

37], the neutron diffraction data showed the presence of interstitial oxide ions 
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between the tetrahedra. This position gives physically sensible Ge/W-O bond 

distances, and is also in agreement with predictions made by modelling studies [22] 

and results from the Raman studies discussed earlier. With respect to the latter, by 

collecting data from many W oxides, Hardcastle et al. [42] proposed an exponential 

functional form that relates the W-O bond distance to the frequency of the W-O 

stretching vibration. Using that relation for a frequency 830 cm-1 we obtain d(W-O) 

≈1.81 Å, which is slightly larger than the average  Ge/W-O distance derived from 

neutron diffraction, in agreement with the larger size of W compared to Ge.  From the 

powder neutron diffraction data collected in this study, it is not possible to determine 

whether the interstitial oxide ions are spread randomly over all available O5 positions 

in the crystal, or whether they associate preferentially with framework tetrahedral 

sites containing W (or alternatively Ge). However, as detailed earlier the Raman 

results suggest that two kinds of interstitial oxide ions exist: those introduced by W 

doping appear to be tightly bound to W atoms, forming WO5 entities, whereas 

interstitial oxygen ions close to GeO4 tetrahedra, forming GeO5 units, are loosely 

bound and release easily upon heating.  

The occupancy of the interstitial oxide ion site also leads to significant displacements 

in the other oxygen sites of the tetrahedra as well as the channel oxygen site, as 

indicated by the high atomic displacement parameters, and the need for split sites for 

O3, as well as displacement of the O2 and O4 oxide ions off-site. The presence of W 

on the Ge site is also likely to be contributing to the local disorder.  

An interesting further feature to explain is why the presence of a higher valent dopant, 

W, stabilises the hexagonal lattice, since it is known that high oxygen excess leads to 

triclinic cells. Calculation of the metaprism twist angle gives a value of 24.9○, which 

is on the borderline of what would be expected for a hexagonal cell, indicating that 
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the composition is at the hexagonal-triclinic barrier limit, consistent with lower W 

dopant levels giving triclinic cells, as well as the large local disorder implied by the 

neutron diffraction study.  

The origin of this triclinic distortion has been shown to be a result of lattice mismatch 

between the framework and the channels, with the presence of interstitial oxide ions 

within the framework increasing this mismatch leading to a tilting of the tetrahedra 

and hence a triclinic cell. In this case, W6+ is not only slightly larger than Ge4+, but it 

also increases the oxygen content, both features expected to enhance the triclinic 

distortion, not to reduce it. A similar stabilisation of the hexagonal lattice has been 

observed after doping with Ti, or Nb [44], whereas work on doping with lower valent 

ions, e.g. Co or Ga, has shown that increasing the size of the tetrahedral cation leads 

to a greater triclinic distortion [13, 19]. Thus La10Ge4Ga2O26 is triclinic, even though 

it has nominally no oxygen excess [19].  This anomaly clearly needs more study, 

although it is suggested that it may be related to interstitial defect trapping by the 

dopant leading to the formation of MO5 units and consequent local relief of lattice 

strain by the dopant. The Raman studies, reported here, show clear evidence for this 

defect trapping in the case of W, while such defect trapping has also been inferred 

from conductivity studies for the series La10Ge6-xTixO27 [44].     

 

4. Conclusions 

In summary, we have successfully doped W into the apatite system La10Ge6O27 

leading to an increase in symmetry from triclinic (undoped phase) to hexagonal for 

La10Ge5.5W0.5O27.5, and a corresponding increase in the low temperature conductivity. 

The interstitial oxide ion sites are confirmed to be located within the framework in 

between two isolated tetrahedra, leading to the formation of five coordinate Ge/W. 
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Moreover Raman spectroscopy suggests that some of the interstitial oxide ions are 

trapped as WO5 and do no participate significantly in the conduction process. 
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Table 1. Refined crystal structure data for La10Ge5.5W0.5O27.5 from neutron TOF data. 

 
S.G. P63/m a = 9.9302(2) 

Å 
c = 7.3159(2) 

Å 
wRp = 0.0304 RP = 0.0404  

    wRexp = 
0.0079 

RF = 0.084 

Site x y z 100 × UIso Occ. 
La(1) 1/3 2/3 0.0023(5) 2.42 (6) 1.0 
La(2) 0.2316(3) -0.0100(3) 0.25 1.38(4) 1.0 
Ge/W 0.4007(2) 0.3764(2) 0.25 0.92(3) 0.9167/0.0833
O(1) 0.3062(4) 0.4838(3) 0.25 2.95* 1.0 
O(2) 0.6038(3) 0.4695(3) 0.2789(5) 0.67(7) 0.5 
O(3a) 0.3587(4) 0.2566(3) 0.0633(4) 1.92(6) 0.672(4) 
O(3b) 0.2731(6) 0.2338(7) 0.0942(7) 1.91(5) 0.328(4) 
O(4) 0 0 0.207 (1) 4.5(3) 0.5 
O(5) 0.034(1) 0.496(2) 0.519(2) 3.6(2) 0.125 

 

*  U11 U22 U33 U12 U13 U23
O(1) 4.7(2) 2.3(2) 2.7(2) 2.4(2) 0 0 

 
 
 

Table 2. Selected interatomic distances and angles  

 
Bond Distance (Å) 
La(1)-O(1) 2.483(3) 
La(1)-O(2) 2.394(4), 2.701(5)
La(1)-O(3a) 2.799(4) 
La(1)-O(5) 2.59(1) 
La(2)-O(1) 2.714(4) 
La(2)-O(2) 2.580(3) 
La(2)-O(3a) 2.526(3), 2.669(3)
La(2)-O(3b) 2.516(7), 2.536(5)
La(2)-O(4) 2.372(2) 
B-O(1) 1.738(3) 
B-O(2) 1.765(3) 
B-O(3a) 1.720(3) 
B-O(3b) 
B-O(5) 

1.765(5) 
1.92(2) 

(a) 

(b) 
 

Bond Distance (Å) 
O(5) – O(1) 2.620(15), 2.639(14) 
O(5) – O(2) 2.165(14), 2.281(14), 2.621(12), 1.805(15) 
O(5) – O(3a) 1.829(13), 2.494(13),  
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O(5) – O(3b) 2.307(13), 2.853(11) 
 
 
 

Angle ° 
O(1)-B-O(3a) 113.9(2) 
O(1)-B-O(2) 120.4(2) 
O(2)-B-O(3a) 106.1(2), 

95.0(2) 
O(3a)-B-O(3a) 105.1(2) 

(c) 

 
Angle ° 
O(1)-B-O(3b) 95.8(2) 
O(1)-B-O(5) 91.6(4) 
O(1)-B-O(2) 120.4(2) 
O(2)-B-O(3b) 121.2(2), 

132.3(3) 
O(2)-B-O(5) 58.5(4), 

71.9(4) 
O(3b)-B-O(3b) 80.4(4) 
O(3b)-B-O(5)  157.4(4) 

(d) 

B = Ge/W 
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Figure Captions 

Figure 1. The Apatite structure A10M6O24X2, in terms of an A4(MO4)6 framework 

composed of face sharing AO6 trigonal meta-prismatic columns, that are corner 

connected to the MO4 tetrahedra. The remaining A6X2 units occupy the “cavities”. 

Figure 2. X-ray diffraction patterns for La10Ge5.9W0.1O27.1 (bottom, triclinic cell) and 

La10Ge5.5W0.5O27.5 (top, hexagonal cell). The former shows peak broadening/splitting 

arising from the lower symmetry cell.  

Figure 3. Bulk conductivity data for La10Ge5.9W0.1O27.1 and La10Ge5.5W0.5O27.5 

showing an enhancement in the conductivities at temperatures <700○C for the latter. 

Figure 4. Raman spectra of La10Ge5.7W0.3O27.3 and La10Ge5.5W0.5O27.5.  

Figure 5. High temperature Raman spectra of La10Ge5.5W0.5O27.5. The spectra are 

divided by the Bose factor (n+1) 

Figure 6. Grain Boundary conductivity data for La10Ge5.5W0.5O27.5 under dry and wet 

N2 showing a small enhancement for the latter.  
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Figure 2.  
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6.  
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