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Abstract 

 

A feasibility study of lactic bacteria as potential probiotics in larval cultures of marine fish 

was performed by investigating the survival of five strains of lactic bacteria in sea water by 

readily standardised procedures at different temperatures and salinities. These conditions 

were chosen in such a way that their combinations define a complete first order factorial 

design. Depending on the strain and the ambient conditions, the survival adhered to first order 

kinetics in some cases and to the Gompertz equation in others. The half lives (t0.5) calculated 

from these models were subsequently introduced as responses to the factorial designs, 

estimating the coefficients of empirical equations which describe the group effect of 

temperature and salinity on t0.5. Simply additive effects were found in two cases, a negative 

first order interaction in another case, whilst another two required second order models. 

 

Introduction 

 

 One of the most serious problems regarding the culture of marine fish, in particular 

turbot (Scophthalmus maximus), relates to the high mortality in the critical phases of larval 

development [1]. This mortality is associated with opportunistic bacteria [2, 3] which readily 
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develop when live food and microalgae are used [4, 5]. Moreover, in the 3-5 days following 

exogenous larval feeding, strong decreases in ingestion due to bacterial surplus are frequent, 

leading to a total rejection of food and massive mortalities. Application of antibiotics 

significantly improves survival [6], but weakens the intestinal flora and induces the selection 

of resistant micro-organisms with unpredictable long-term effects to the environment and 

human health. 

 

 Probiotics are a promising alternative to antibiotics, i.e., food supplements consisting of 

live micro-organisms with beneficial effects to the host organism by improvement of the 

intestinal microbial balance [7]. Probiotic effects have been related to increases in disease 

resistance by stimulation of natural defences or immune responses; competition with 

pathogenic micro-organisms for limiting nutrients or adhesion points to the mucous; and the 

production of inhibitory substances. Despite the fact that the evidence for these effects 

remains inconclusive, in the most clearest cases it has been shown that (1) the micro-

organisms involved are usually lactic bacteria such as Lactococcus, Lactobacillus, 

Bifidobacillus [8], Leuconostoc or Pediococcus, (2) the probiotic activity is often conserved 

in the cell-free medium of the probiont cultures, which alludes to the role of specific 

metabolites, such as anti-microbial peptides produced by the lactic bacteria (bacteriocins). 

 

 Reproducible and quantitative work with probiotics and their possible application to 

other micro-organisms requires an understanding of the survival of potential probiotics in the 

marine medium. However, in spite of studies regarding survival in sea water of bacterial 

indicators of environmental quality, such as faecal [9, 10] or, specifically, Escherichia coli 

[11, 12, 13], there are no data of this type for lactic bacteria (LAB). 
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 In this work the survival curves of different species of LAB in sea water are 

determined. The effects of salinity, temperature and their interactions on bacterial half-lives 

are studied by readily standardised procedures to evaluate feasibility as probiotics for turbot 

larval cultures.  

 

Materials and Methods 

 

Microbiological methods  

 

 The micro-organisms used included Lactococcus lactis CECT 539 (abbreviated key Lc 

1.04), Lactobacillus brevis CECT 216 (Lb 2.01), Lactobacillus casei ssp. casei CECT 4040 

(Lb 3.03), Lactobacillus casei ssp. casei CECT 4043 (Lb 3.04), and Pediococcus acidilactici 

NRRL B-5627 (Pc 1.02). Stock cultures were stored at –50ºC in powdered skimmed milk 

suspension with 25% glycerol [14]. Micro-organisms were grown in 300 ml Erlenmeyer 

flasks with 100 ml of MRS medium (DIFCO) at 30ºC with 200 rpm orbital shaking. Inocula 

(0.5% vol/vol) consisted of cellular suspensions from 20 h aged cultures on the same medium 

and under the same conditions, adjusted to an OD (700 nm) of 0.900. 

 

 For the survival tests the biomass of 10 h cultures were used, collected by 

centrifugation at 10,000 g for 10 min. From a previous calibration of the relationship between 

dry weight and optic density at 700 nm the sediments were resuspended in 0.9% KCl and the 

suspensions used (<0.5% vol/vol) to supply initial populations of 1 g l-1 to the experimental 

units. These units consisted of 300 ml Erlenmeyer flasks with 100 ml of sea water of various 

salinities maintained in orbital stirring (200 rpm) at different temperatures (Table 1). 
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 At predetermined times, viable cells were quantified by means of a plate count 

technique on MRS agar. Serial 10-fold dilutions were prepared in peptone buffered solutions 

and 0.1 ml samples were plated in quadruplicate, incubated at 30ºC overnight and manually 

counted. Results were expressed in colony forming units per ml (CFU ml-1). In tests involving 

starvation, the counting is usually performed in dilute media, although here this precaution 

can be ignored here. Accordingly, the results obtained represent the most severe operating 

conditions. 

 

Experimental design and statistics 

 

 The experimental plan was organised to permit two approximations. Firstly, the 

temporal variation of the population was adjusted to adequate functional forms for 

determining the half-life of the micro-organisms. Secondly, the combinations of salinity and 

temperature were chosen to define a complete first order orthogonal design [15] in which 

half-lives can be introduced as responses. In the first case, the calculation was carried out by 

means of a non-linear least squares test (quasi-Newton). Results of the factorial designs 

(orthogonal least-squares calculation) were used to obtain empirical equations which describe 

half-lives as a function of temperature and salinity. Statistical significance of the coefficients 

was verified by means of the student t-test (=0.05), and model consistency by means of the 

Fisher F test (=0.05) applied to following means squares ratios: 

 

 Model / Total error 

 (Model + Lack of fitting) / Model 

 Total error / Experimental error 

 Lack of fitting / Experimental error. 
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Results and Discussion 

 

Survival kinetic analysis 

 

 To describe the kinetics of survival the experimental data were normalised (the number 

of cfu/ml corresponding to the initial load of 1 g l-1) and adjusted to two equations from 

which the times necessary for the population to be reduced to 50% (t0.5 or half life, parameter 

affected by the minimal error) and 10% of the initial (t0.1 which may be a more intuitive 

vision of survival) were deduced.  

 

 The first of the equations corresponded to a first order decay process: 

 

 N
dt

dN   

 

which, resolved for initial conditions t=0 and N=N0, produces the explicit form: 

 

 )exp(0 tNN   ,  where: (1) 

 

 N: number (normalized) of CFU, with N0 as initial value 

 : specific mortality (dimensions t–1) 

 

and where t0.5 and t0.1 values can be obtained by replacing in (2) N by N0/2 and N0/10: 

 

 )exp(
2 5.00

0 tN
N

  ;  


)2ln(
5.0 t  (2) 

 )exp(
10 1.00

0 tN
N

  ;  


)10ln(
1.0 t  (3) 

5 



 The second equation applied was that of Gompertz (1825): 

 

 )ln(ln NacN
dt

dN
  

 

which, similarly resolved for initial conditions t=0 and N=N0 : 

 

  ,  where: (4)  )exp(exp ctbaN 

 

 N: number (normalized) of CFU 

 a: fitting parameter (dimensions: N) 

 b: fitting parameter (dimensionless), related with N0 through: b= ln(a/No) 

 c: fitting parameter (dimensions: t–1) 

 

 The constants t0.5 and t0.1 are obtained as in the preceding case, but adjusting N0/2 and 

N0/10 to the limit of the function when time tends to zero: 
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 Similarly, when N=N0/10 :  



 

bc
t

10ln
1ln

1
1.0  (6) 

 

 The fits of the experimental series to these two equations are shown in Figures 1 to 2 

(Pc 1.02 and Lb 3.04 like example), and the corresponding values of t0.5 and t0.1 are shown in 

Table 2. It is clear that the most adequate model for describing the results depends on the 
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strain and test conditions, with no other meaning than that directly obtained from the curves. 

For certain species or conditions mortality can be assimilated to a first order kinetic process, 

similar to sterilisation at high temperatures [17, 18]. In other cases, however, the decrease of 

the bacterial population demonstrates an initial period of reduced mortality and suggests 

resistance mechanisms. In these cases the survival profile is better adjusted to the equation of 

Gompertz and is readily paralleled to those found from sterilisation by gentle thermal process 

[19, 20, 21, 22, 23]. 

 

Temperature-salinity interactions 

 

 Introducing the half lives as responses (Y), the temperature (T) and salinity (S) 

combinations which define the orthogonal design specified in Table 1 were determined (see 

Methods), and fitting each group to a model of the type: 

 

 Y = b0 + b1 S + b2 T + b12 ST (7)  

 

 For the species Lb 3.04, Lc 1.04 and Pc 1.02 all the significant criteria specified above 

validated the half-life descriptions as a function of T and S with equation (7) with the 

coefficients given in Table 3 (Table 4 shows, for example, the statistical analyses 

corresponding to Lb 3.04). In the other two species tested (Lb 2.01 and Lb 3.03) the Fisher 

test applied to the relationship between experimental error and lack of model fitting 

demonstrated that the functional form (7) was not adequate for the description of the results. 

In addition, the distribution of the deviations suggested the need for second order terms. In 

routine applications, it is advisable to change the orthogonal for the rotatable design for 

deriving quantitative empirical models in these cases of complex response [15]. 
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 The response surfaces corresponding to the three first order cases are shown in Figure 

3. Survival increases with temperature and decreases with salinity. In addition, within the 

experimental domain both effects are simply additive in Lc 1.04 and Pc 1.02, whereas in Lb 

3.04 a negative interaction (shortening of the half-life) is demonstrated. 
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Table 1: Experimental domain of the orthogonal design and 
codification of the independent variables. 

    
Natural values Codified 

values T: Temperature (ºC)  S: Salinity (g.l–1) 
1 ; 1 30  35 
1; -1 30  18 
-1 ; 1 20  35 
-1; -1 20  18 

0;0 (4 replicates) 25  26.5 
 
 
 
 
 
 

        
Table 2: Values of t0.5 (half life) and t0.1 obtained by means the negative exponential and Gompertz models in 
all the species and conditions assayed.                 

   Negative exponential 
N = N0 exp (– t) 

t 0.5 = ln (2)/ 
t 0.1 = ln (10)/ 

 Gompertz 
N = a exp [–b exp(c t)] 

t 0.5 = 1/c {ln[(1 + ln 2)/b]} 
t 0.1 = 1/c {ln[(1 + ln10)/b]} 

                
 S (g l-1) T ( C) º t 0.5 (h)  t 0.1 (h)  t 0.5 (h)  t 0.1 (h)                  

Lb 2.01 18 20 16.1 53.3  16.7 36.4 
 18 30 19.9 66.2    
 35 20 13.9 46.1  17.6 22.9 
 35 30 14.0 46.5    
 26.5 25 22.7 75.5    

Lb 3.03 18 20 10.8 35.9    
 18 30 15.2 50.4    
 35 20 16.9 56.2    
 35 30 13.9 46.2    
 26.5 25 18.9 62.9    

Lb 3.04 18 20 3.4 11.3    
 18 30 8.4 27.9    
 35 20 2.7 8.9    
 35 30 3.3 11.0    
 26.5 25 3.8 12.5    

Lc 1.04 18 20    21.7 43.2 
 18 30    23.5 34.8 
 35 20    10.8 15.9 
 35 30    16.6 23.4 
 26.5 25 16.6 55.2  22.6 64.2 

Pc 1.02 18 20    15.4 26.8 
 18 30    22.1 35.3 
 35 20    12.2 14.8 
 35 30    20.5 34.6 
 26.5 25 18.5 61.6  21.3 60.2 
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Table 3: Parameters fitted to the equation 7 
       
  Lb 3.04  Lc 1.04  Pc 1.02 
b0  4.18  17.25  18.52 
b1 (T)  1.41  1.90  3.74 T 
b2 (S)  –1.44  –4.49  –1.19 S 
b12 (TS)  –1.09  NS  NOT TS 
r2  0.972  0.878  0.870 
r2 (corrected for number of variables)  0.961  0.851  0.841 

 
 
 
 
 
 
 
 
 

        
Table 4: Results of factorial design for Lb 3.04 and significance analysis for model (7). Y: response (t0.5 in hours); 

: expected response; NS: non significant coefficient; SS: sum of squares; : degrees of freedom; MS: mean 
squares; MSE: mean squares for total error; MSEe: mean squares for experimental error; MSLF: mean squares for 
lack of fitting; MSM: mean squares for model; MSMLF: mean squares for (model + lack of fitting). 

Ŷ

                
T S Y Ŷ  Coefficients t Model 

-1 -1 3.40 3.13 4.18 103.98 4.18 
1 -1 8.39 8.12 1.41 24.76 1.41 T 
-1 1 2.69 2.42 -1.44 25.41 -1.44 S 
1 1 3.32 3.05 -1.09 19.17 -1.09 TS 
0 0 3.78 4.18 Average value = 4.18 
0 0 4.05 4.18 Expected average value = 3.91 
0 0 3.91 4.18 Var (Ee) = 0.0129 
0 0 3. 1 9 4. 8 1 t(<0.05; =3) = 3.1824 
      
 SS  MS MSM / MSE = 91.4 3

8F (=0,05) = 4.066 

Model 21.02 3 7.007 MSMLF / MSM = 0.385 8

3F (=0,05) = 8.845 

Error 0.61 8 0.077 MSE / MSEe = 5.927 8

3F (=0,05) = 8.845 

Experim. error 0.04 3 0.013 MSLF / MSEe = 8.883 5

3F (=0,05) = 9.013 

Lack of fitting 0.57 5 0.115 r2 =  0.972 
Total 21.63 11  corrected r2 =  0.961 
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FIGURE CAPTIONS 
 
Figure 1: Survival of Pediococcus acidilactici (Pc 1.02) under temperature (T) and salinity (S) 
conditions required by the orthogonal design. Experimental values (points) were adjusted to 
the negative exponential (solid line) and Gompertz equations (dotted line). 
 
Figure 2: Survival of Lactobacillus casei (Lb 3.04). Conditions and keys as in figure 1. 
  
Figure 3: Response surfaces corresponding to the joint effect of temperature (T) and salinity 
(S) on the half life (t0.5) of Lb 3.04, Lc 1.04 and Pc 1.02. Independent variables in codified 
values.  
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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