1	Molecular cloning of IGF-1 and IGF-1 receptor and their expression pattern in the
2	Chilean flounder (Paralichthys adspersus)
3	
4	Sebastian Escobar ^{1a} , Eduardo Fuentes ¹ , Erika Poblete ¹ , Juan A. Valdés ¹ , Ariel E.
5	Reyes ^{2,4} , Marco Álvarez ³ , Alfredo Molina ^{1,4,*} .
6	
7	¹ Universidad Andres Bello, Facultad de Ciencias Biológicas, Laboratorio de
8	Biotecnología Molecular. Av. República 217, Santiago, Chile.
9	² Universidad Andres Bello, Facultad de Ciencias Biológicas, Laboratorio de Biología
10	del Desarrollo. Av. República 217, Santiago, Chile.
11	³ Universidad Andres Bello, Facultad de Ciencias Biológicas, Laboratorio de Biología
12	Celular y Molecular. Av. República 217, Santiago, Chile.
13	⁴ Millennium Institute for Fundamental and Applied Biology, Santiago, Chile
14	
15	^a Present address: Consejo Superior de Investigaciones Científicas (CSIC), Instituto de
16	Acuicultura de Torre de la Sal (IATS), Ribera de Cabanes 12595 Castellón, Spain
17	
18	
19	
20	
21	
22	*Corresponding author. Tel.: +56 2661 8319; fax: +56 2661 8415.
23	E-mail address: amolina@unab.cl (A. Molina).
24	
25	

27 Insulin-like growth factor-1 and insulin-like growth factor-1 receptor (IGF-1 and 28 IGF-1R) play main roles in vertebrate growth and development. In fish, beside 29 contributing to somatic growth, both molecules exhibit pleiotropic functions. We 30 isolated complete cDNAs sequences encoding for both IGF-1 and IGF-1R in the 31 Chilean flounder by using RT-PCR and rapid amplification of cDNAs ends (RACE) 32 techniques. In addition, we analyzed gene expression in pre-metamorphic larvae and 33 different organs of adult fish through whole mount in situ hybridization and RT-PCR, 34 respectively. The IGF-1 cDNA sequence displays an open reading frame of 558 35 nucleotides, encoding a 185 amino acid preproIGF-1. Moreover, IGF-1R contains an 36 open reading frame spanning 4,239 nucleotides, rendering a 702 amino acid subunit 37 alpha and a 676 amino acid subunit beta. The deduced mature IGF-1 and IGF-1R 38 exhibited high sequence identities with their corresponding orthologs in fishes, specially 39 those domains involved in biological activity. RT-PCR showed expression of IGF-1 and IGF-1R transcripts in all studied tissues, consistent with their pleiotropic functions. 40 41 Furthermore, we observed a strong IGF-1 expression in notochord in larvae of 9 days 42 post fertilization. Similarly, IGF-1R transcripts were observed in larvae of 9 days post 43 fertilization, in territories such as notochord, somites and head. Interestingly, both 44 mRNAs were detected in territories such as notochord, an embryonic midline structure 45 essential for the pattern of surrounding tissues as nervous system and mesoderm. Our 46 results suggest that IGF-1 and its receptor could have an important role in the 47 development of the nervous system, muscle and bone-related structures during larval 48 stages. The present data contributes to the knowledge of the insulin-like growth factor 49 signaling components in an emergent and new commercial important marine fish.

50 Keywords: IGF-1, IGF-1R, notochord, somites, Chilean flounder.

51 Introduction

52 The insulin-like growth factor signaling system plays an important role in 53 promoting the embryonic growth and development in vertebrates (Moriyama et al., 54 2000). This pathway involves the coordinated function of two ligands, two cell surface 55 receptors and at least six high affinity binding proteins (Moriyama et al., 2000; Wood et 56 al., 2005). The biological effects of the IGF system are mediated mainly by the 57 interaction of IGF-1 ligand with IGF-1 receptor (IGF-1R) modulated through IGF 58 binding proteins (IGFBPs) (Riedemann and Macaulay, 2006). IGF-1 is synthesized as a 59 pre-pro-hormone, which undergoes at least two processing events: cleavage of the 60 signal peptide and the C-terminal peptide (Etherton, 2004; Le Roith et al., 2001). The 61 mature IGF-1 is a single chain polypeptide composed of 70 amino acids, which contains 62 domains A and B separated by a C domain, and a D carboxy domain (Humbel, 1990). 63 The IGF-1 receptor is synthesized as a single chain pre-pro-receptor, with a 30 residues 64 signal peptides that is co-translationally cleaved and a 1,337 amino acids pro-receptor 65 that is processed at a tetrabasic cleavage site to generate alpha and beta subunits 66 (LeRoith et al., 1995). The mature IGF-1R is comprised by two alpha subunits and two beta subunits linked by disulphide bonds, forming $\alpha 2\beta 2$ heterotetramers. The alpha 67 68 subunits contain an extracellular ligand-binding domain and the beta subunits are 69 composed of a single transmembrane domain and a highly conserved intracellular TK 70 domain (LeRoith et al., 1995).

At a cellular level the IGF-1 acts in an autocrine/paracrine manner to control physiological processes such as protein synthesis, cell proliferation, differentiation, and apoptosis (Jones and Clemmons, 1995). Almost all biological actions of IGF-1 are mediated by the type 1 IGF-1 receptor (IGF-1R) (Whitehead et al., 2000). Once activated, IGF-1R undergoes a conformational change leading to autophosphorylation 76 of tyrosine residues that serve as recruiting sites for cytoplasmic proteins, including 77 insulin receptor substrate proteins (IRS). IRS molecules are associated with IGF-1R at 78 the cell surface, creating a scaffold for downstream molecules, such as phosphoinositide 79 3-kinase (PI3K) (Glass, 2005). Once IGF-1 signal transduction activates intracellular 80 PI3K activity, it results in an increased phosphorylation and activation of the 81 Akt/mTOR regulated pathways which increase protein synthesis and suppress protein 82 degradation (Rommel et al., 2001). Other described signaling transduction pathways 83 activated by IGF-1 are the MAP kinases MEK-ERK involved in cellular proliferation 84 and differentiation (Li and Johnson, 2006). In vertebrates, the insulin-like growth factor 85 system has been shown to be unique among growth factors, playing an important role in 86 the early patterning and muscle development: the mRNA microinjection of a non 87 functional IGF-1 receptor in zebrafish induced small sized embryos with the absence of 88 notochord and abnormal somites, on the other hand the over expression of IGF-1 89 resulted in a greatly expanded development of anterior structures (Eivers et al., 2004).

Over the past decade, IGF-1R and IGF-1 cDNAs partial and complete sequences
have been isolated from several vertebrates, including teleost such as coho salmon
(*Oncorhynchus kisutch*), rainbow trout (*Oncorhynchus mykiss*), turbot (*Psetta maxima*),
among others (Elies et al., 1999; Chan et al., 1997; Greene and Chen, 1999; Wood et al.,
2005). Additionally, two distinct IGF-1R genes named *igf-1ra* and *igf-1rb* were
described in zebrafish (*Danio rerio*) indicating a probable gene duplication during
teleost evolution (Maures et al., 2002).

97 Chilean flounder (*Paralichthys adspersus*) is a marine fish widely distributed 98 throughout the Chilean coast, which is raising a high economic value. However, slow 99 growth rate has been recognized as a major problem in marine fish, increasing the final 100 production cost. Thus, the viability to farm these species requires new knowledge in

101	order to develop new strategies to improve fish growth (Delgado et al., 2008). In this
102	regard, considering the relevant function of the IGF-1 signaling pathways in promoting
103	growth and skeletal muscle development in fish, we describe here as a first
104	approximation, the isolation and characterization of the full length IGF-1R and IGF-1
105	cDNAs, which include the codifying regions and the 5' and 3' untranslated regions of
106	both transcripts. Additionally, we studied theirs mRNA expression in pre-metamorphic
107	larvae and in different tissues of adult fish.
108	
109	
110	
111	
112	
113	
114	
115	
116	
117	
118	
119	
120	
121	
122	
123	
124	
125	

126 Materials and Methods:

127 Fish: Chilean flounder fish (Paralichthys adspersus) were collected from the Centro de 128 Investigaciones Marinas de Quintay (CIMARQ) (V Region, Valparaíso, Chile). The fish 129 were maintained under natural temperature and photoperiod conditions corresponding to 130 geographic localization of CIMARQ (33°13'S 71°38'W) and were feed twice daily with 131 turbot pellet (Biomar, Chile). Adult fish (36 month old) were sacrificed through an 132 overdose of anesthetic (3-aminobenzoic acid ethyl ester) (300 mg/L). The kidney, gills, 133 intestine, gonads, spleen, liver, stomach, brain, white muscle, esophagus and red muscle 134 tissues were collected, directly frozen in liquid nitrogen and stored at -80°C.

Larvae were obtained after *in vitro* fertilization of eggs by male broodstock sperm. Embryos were maintained under intensive-culture conditions in conic larval culture tanks at 19°C \pm 2°C. Larvae at pre-metamorphic stages were collected, fixed in 4% paraformaldehyde in PBS for 2h at 4°C, dehydrated in methanol and stored at -20°C.

140

141 RT-PCR and cDNA cloning: Total RNA was isolated from liver using Trizol reagent 142 following the manufacturer protocols (Invitrogen, Carlsbad, CA, USA). A total of 5 µg 143 of RNA previously treated with DNase I (1U/µL) was used for RNA first-strand cDNA 144 using M-MLV reverse transcriptase (Invitrogen, Carlsbad, CA, USA). PCR primers for 145 cloning IGF-1 receptor and IGF-1 cDNA (table 1) were designed from a consensus 146 analysis of conserved coding regions of known IGF-1 receptor and IGF-1 ligand 147 sequences from Japanese flounder, turbot and zebrafish. The PCR reaction, containing 148 the cDNA template, 10 µL of 10X PCR buffer, 200 µM of each dNTP, 1 µg of the 149 forward and reverse primers, and 2.5U of Taq DNA polymerase (Promega, Madison, 150 WI, USA), was carried out in a final volume of 50 µL. The IGF-1R and IGF-1 PCR 151 products were cloned into the pGEM-T easy vector (Promega, Madison, WI, USA) and 152 the clones were completely sequenced and assembled in only one sequence. The IGF-153 1R and IGF-1 full-length 5'-terminal region, including the transcription start site, was 154 completed using the First Choice RLM-RACE kit (Ambion, Austin, TX, USA) 155 according to the manufacturer's instructions. Briefly, a RT-PCR with an adapter primer 156 the IGF-1R (5IGF-1ROP 5'and gene specific primers 157 GACAGACAGCATCAGACCCCAAAACA-3', 5IGF-1RIP 5'-158 TGCCAGTCACAGGATACTTG-3') or the IGF-1 gene specific primers (5IGF-1OP 5'-159 AAAAGCCTCTCTCTCCACACAC-3', 5IGF-1IP 5'-160 TCTCTCCACACACACACACAGGCAG-3') using a CIP/TAP mRNA as a template in a 161 nested reaction. The IGF-1R 3'-region was obtained using the gene-specific primers 162 (3IGF-1ROP 5' - ACCCAGGTCCTACCCCACTCAAA -3', 3IGF-1RIP 5'-163 TTCTCCCTTCGGGGAAAT GAGTTT -3'). The IGF-1 3'-region was obtained using 164 the gene-specific primers (3IGF-1OP 5' -ACCTGGAGATGTACTGTGCAC-3', 3IGF-165 1IP 5'-CAAGACTAGCAAGGCAGCTC-3').

166

Sequence analysis: Amino acid sequences translated from the cDNA sequence were compared with sequences in the GeneBank public database, by using the NCBI-BLAST application (http://www.ncbi.nlm.nih.gov/blast). Multiple aminoacid sequences alignment for the IGF-1 receptor and IGF-1 were performed using clustalW (Thompson et al., 1994).

172

Tissue expression and distribution of IGF-1 receptor and IGF-1 by RT-PCR
analysis: Total RNA was extracted from different tissues (kidney, gills, intestine,
gonads, spleen, liver, stomach, brain, esophagus, white muscle and red muscle).

176 Reverse transcription reaction was performed using 1µg of total RNA previously treated 177 with DNase I. For IGF-1R and IGF-1, gene-specific primers were designed to amplify a 178 5'-GCGGGAATTCGATTGCCTTT 5'-320 (forward: -3', reverse: 179 ATCACGAGGGCGTAGTTGTA-3') and 454 (forward: 5'pb 180 GTCTAGCGCTCTTTCCTTTCAGTG-3', 5'reverse: 181 TTTTGTCTTGTCTGGTCGCTGTGC-3') fragments respectively. For normalization 182 purposes, gene-specific primers (forward: 5'-AGGGAAATCGTGCGTGACAT-3', 183 reverse: 5'-TCAGGCAGCTCATAGCTCTT-3') were used to amplify a β -actin 116 bp 184 fragment as constitutive gene expression control.

185

186 Whole-mount in situ hybridization: A 1,604 bp fragment corresponding to the IGF-187 1R coding sequence was amplified by PCR using gene-specific primers (5'-188 GCCTTTCCAGAACATCACAGAG-3', 5'-TTGAACTCCTTCATGACGGAGG-3') 189 and the same cDNA described before as a template. This fragments were cloned into 190 pGEM-T Easy Vector System (Promega, Madison, WI, USA) originating the 191 pL3F4R1604, which was linearized with NdeI or SpHI restriction enzymes to 192 synthesized sense (control) and antisense riboprobes DIG-UTP-labeled (Roche 193 Diagnostics, Mannheim, Germany) using SP6 and T7 RNA polymerases (Promega, 194 Madison, WI, USA) respectively. A 454 bp fragment corresponding to the IGF-1 coding 195 amplified by PCR sequence was using gene-specific primers (5'-196 CCTCTCCACTACTGCTGTGTGTGTC-3', 5'-ATGTCTGTGTGGCGTTGTGCAC-3') 197 and the same cDNA described before as a template. This fragments were cloned into 198 pGEM-T Easy Vector System (Promega, Madison, WI, USA) originating the 199 pLeigfI454, which was linearized with NdeI or NcoI restriction enzymes to synthesized 200 sense (control) and antisense riboprobes DIG-UTP-labeled (Roche Diagnostics,

201 Mannheim, Germany) using SP6 and T7 RNA polymerases (Promega, Madison, WI, 202 USA) respectively. The riboprobes were purified using mini Quick Spin Columns 203 (Roche Diagnostics, Mannheim, Germany) to eliminate unincorporated labeled nucleotides. Whole mount in situ hybridization were performed according to Fuentes et 204 205 al., (2008). Briefly, after bleaching treatment, embryos and larvae were pre-hybridized 206 overnight at 60°C in hybridization buffer and then incubated overnight at 65°C in 207 hybridization buffer including 50 ng of sense or antisense IGF-1R and IGF-1 208 riboprobes. After hybridization, embryos and larvae were washed in a solution with 209 decreasing formamide concentration in 2X SSC, followed by two wash-steps with SSC 210 0.2X for 30 min at 65 °C. Larvae were incubated for 4 h in a blocking buffer at room 211 temperature. For immunodetection, samples were incubated overnight at 4°C with anti-212 digoxigenin-AP antibody (Roche Diagnostics, Mannheim, Germany). After washes with 213 PBT to eliminate non-bounded antibodies and three additional washes with AP-buffer, 214 stains were performed with NBT/BCIP (75 mg/mL and 50 mg/mL, respectively) 215 (Promega, Madison, WI, USA) for 6 h at 37 °C. The experiment was performed four 216 times using n=15 individuals from each developmental stages. After in situ 217 hybridization, observed in a Leica MZ12.5 stereomicroscope and photographed with a 218 Leica DF300 camera.

- 219
- 220
- 221
- 222
- 223
- 224
- 225

226 **Results**

227 Cloning and characterization of the IGF-1R and IGF-1 cDNA: The complete
228 Chilean flounder IGF-1R and IGF-1 cDNA sequences (cfIGF-1R and cfIGF-1) were
229 obtained using RT-PCR coupled to RACE method.

The length of the complete IGF-1R cDNA sequence was 5,033 bp, which includes a 622 bp 5'-untranslated region (UTR), an open reading frame (ORF) of 4,239 bp and a 172 bp 3'-UTR. The ORF encodes a putative protein of 1,412 amino acid residues (Fig. 1A). The sequence analysis reveals that the Chilean flounder cDNA IGF-1 receptor is organized into several major domains including a signal peptide sequence of 30 amino acids, an extracellular alpha subunit of 702 amino acids and an intracellular beta subunit of 676 amino acids (Fig. 1A).

237 The length of the complete IGF-1 cDNA sequence is 980 bp, which includes a 238 152 bp 5'-untranslated region (UTR), an open reading frame (ORF) of 558 bp and a 270 239 bp 3'-UTR, encoding a putative protein of 185 amino acid residues (Fig. 1B). The 240 comparative IGF-1 sequence analysis with other species reveals that the ligand deduced 241 protein is subdivided into six structural domains, including a signal peptide sequence of 242 44 amino acids, the B domain of 29 amino acids, the C domain of 10 amino acids, the A 243 domain of 21 amino acids, the D domain of 8 amino acids and the E domain of 73 244 amino acids (Fig. 1B).

Amino acid sequence alignment of cfIGF-1R (FJ438475.1) with different vertebrates orthologs, including mammalian (human, X04434.1 and rat, AF056187.1), birds (chicken, AJ223164.1), amphibians (*Xenopus*, AF055980.1) and fish (zebrafish, AF400275.1 and Japanese flounder, AB065098.1) was performed. The cfIGF-1R sequence was found to have 61%, 61%, 63%, 62% of identity with IGF-1R of human, rat, chicken and *Xenopus*, respectively. Higher degrees of identity were found with

other fish IGF-1R sequences, including a 74% with zebrafish and as much as 97% with
another fish belonging to the *Paralichthys* genus, the Japanese flounder (Fig. 2A, Fig.
3A).

254 A potential proteolytic cleavage sequence R-X-R-R was conserved in all the 255 species compared. The cysteine-rich domain, into the alpha subunit of the cfIGF-1R, 256 contains 24 cysteine residues, which were also observed in all vertebrates IGF-1Rs. In 257 the beta subunit, an IRS-1 and IRS-2 binding site (NPEY and GVLY), a potential ATP 258 binding site (G-X-G-X-X-G-21-X-K), an autophosphorylation motif (YETDYY) and 259 seven tyrosine residues in the tyrosine kinase domain, were highly conserved in all the 260 studied species. A lesser conserved region was found in the carboxyl-terminal, where 261 large insertions were observed in the teleosts IGF-1R compared with those from higher 262 vertebrates (Fig. 2A, Fig. 3A).

Amino acid sequence alignment of the cfIGF-1 (EU017533.1) with those from several other species, including human (M27544.1), rat (NM_001082479.1), chicken (M32791.1), *Xenopus* (M29857.1), zebrafish (BC114262.1) and Japanese flounder (AJ010602.1) was performed. The cfIGF-1 sequence was found to be 60%, 65%, 69%, 66%, 73%, 97% homologous to the IGF-1 of human, rat, chicken, *Xenopus*, zebrafish and Japanese flounder, respectively (Fig. 2B, Fig 3B).

The comparison between the known IGF-1 sequences, reveal higher conserved regions at both B and A domains while the C, D and E domains differ significantly (Fig. 3B). The predicted IGF-1 protein is highly rich in charged amino acid residues and conserves the cysteine residues responsible for maintenance of tertiary structure. Moreover, Chilean flounder IGF-1 contains conserved residues involved in the interaction between IGF-1 with IGF-1 receptor and IGF-1 binding protein (Fig. 2B).

275 Tissue distribution of IGF-1R and IGF-1 mRNA: IGF-1R and IGF-1 mRNA 276 RT-PCR experiments were performed to study the expression of mRNA in different 277 tissues of adult fish using β -actin as a constitutive expression control (Fig. 4). The IGF-278 1R and IGF-1 transcripts were detected in all investigated tissues. High levels of IGF-279 1R mRNA expression were observed in the testis, intestine, liver, stomach, brain, 280 muscle and oesophagus. The IGF-1R mRNA expression detected in the kidney, gills 281 and spleen was at low levels. Moreover, high IGF-1 mRNA expression was observed in 282 the gills, liver, testis, intestine, spleen, white muscle and brain. Lower IGF-1 mRNA 283 expression levels were detected in the kidney, stomach, oesophagus and red muscle.

In addition, we studied the expression pattern of IGF-1R and IGF-1 mRNA in embryos using whole mount *in situ* hybridization in Chilean flounder larvae from 9.0 days post-fertilization (dpf) (Fig. 5). The cfIGF-1R mRNA was detected at 9 dpf, larvae exhibited IGF-1R mRNA expression in the somites, notochord and cartilaginous tissues in the head. Additionally, cfIGF-1 mRNA was detected only in the notochord. Sense probe was included as a negative control in all *in situ* hybridization experiments. No signal was detected, showing than RNA hybridization was specific.

- 291
- 292
- 293
- 294
- 295
- 296
- 297

299 In this work we reported the complete cDNA sequence of the IGF-1 and IGF-1 300 receptor from the flat fish the Chilean flounder (Paralichthys adspersus), an emergent 301 species for aquaculture. These results complement reported data of myostatin and the 302 growth hormone receptor (GHR) (Fuentes et al., 2008; Delgado et al., 2008), all 303 important genes for growth and development in vertebrates (Dayton and White, 2008). 304 The Chilean flounder pre-pro-IGF-1 consists of 185 amino acid residues, which 305 contains a signal peptide and B, C, A, D, and E domains. The cfIGF-1R cDNA consists 306 of 1412 amino acid residues, and like other vertebrates contains a signal peptide and 307 cysteine, trans membrane, juxtamembrane, tyrosine kinase and carboxy domains (Jones 308 and Clemmons, 1995; LeRoith et al., 1995). A multiple alignment of the deduced amino 309 acid sequence of cfIGF-1 and cfIGF-1R with other vertebrate sequences was performed 310 indicating a high degree of conservation of these proteins during vertebrate evolution 311 (Elies et al., 1999; Nakao et al., 2002).

312 The deduced protein sequence of cfIGF-1 shares an overall identity of 60 to 65% 313 with mammalian IGF-1 sequences, and 73 to 97% with other teleost IGF-1 sequences. 314 Among mature IGF-1, the B and A domains of the peptides are well conserved, while 315 the C, D and E domains differ significantly (Moriyama, 2000). The importance of this 316 high sequence identity of B and A domains in different species can be attributed to the 317 functional roles of these regions, which are involved in the binding of IGF-1 with its 318 receptor such as Arg21 and the Phe23-Tyr24-Phe25 motif in the B domain and Tyr58 319 (cf_Tyr56) in the A domain (Bayne et al., 1990; Zhang et al., 1994). The amino acidic 320 residues involved in IGF binding with IGFBP: Glu3, Thr4, Glu9, Gln15, and Phe16 in 321 the B domain and Phe47 (cf_Phe45) and Ser49 (cf_Ser47) in the A domain are highly 322 conserved (Clemmons et al., 1992; Magee et al., 1999). The C domain also contains some conserved residues important in IGF-1R and/or IGFBP binding, such as Tyr31,
Arg36 and Arg37. Additionally, the cfIGF-1 sequence showed six conserved cysteine
residues CysB6, CysB18, CysA6, CysA7, CysA11, and CysA20 which are also located
at the same positions as mammals IGF-1 which is responsible for maintenance of
tertiary structure (Hober et al., 1992).

328 The deduced protein sequence of cfIGF-1R shares an overall identity of 61% 329 with mammalian IGF-1R sequences, and 68 to 97% with other teleost IGF-1 sequences. 330 Among mature IGF-1R, the cysteine, juxtamembrane and tyrosine kinase domains are 331 well conserved, while the C terminal domain differs significantly. Most of the 332 conserved regions are known to be critical for IGF-1R biological activity, such as the 333 ligand-binding motif, tirosine kinase domain, ATP-binding site, and IRS binding site. 334 The ligand binding motif is located between the amino acidic residues Cys148 and 335 Cys302, showing a variable conservation, however, 24 cystein residues have a high 336 conservation degree in number and position (Jones and Clemmons, 1995). The tyrosine 337 kinase domain located between the amino acids residues Arg1003 (Cf_Lys1002) and 338 Phe1259 (Cf_Phe1256) contain the tyrosine cluster (Tyr1131, Tyr1135 and Tyr1136) 339 required for the receptor autophosphorilation and the ATP binding sequences (G-X-G-340 X-X-G-21-X-K) (Gronborg et al., 1993). This domain is absolutely necessary for the 341 biological receptor activity in vertebrates. The juxtamembrane domain contains the 342 Insulin Receptor Substrate (IRS) binding site (NPEY and GVLY) with a high degree of 343 conservation (Moriyama et al., 2000). In contrast, the carboxy-terminus of the receptors 344 is the most divergent region; teleosts allocate insertions in the carboxyl-terminus and 345 this suggests that the function played by this region may differ between mammalians 346 and fishes (Kuang et al., 2005). Moreover, isoforms of IGF-1R in teleost fish have been 347 reported: two subtypes of IGF-1R cDNAs were found to be coded by distinct genes in

348 zebrafish and the Japanese flounder (Maures et al., 2002; Nakao et al., 2002).
349 Additionally two partial cDNAs have been identified in coho salmon (*Oncorhynchus kisutch*) and rainbow trout (*Oncorhynchus mykiss*), and it has been suggested that the
351 IGF-1Rs are encoded by two genes in these species (Chan et al., 1997; Greene and Chen 1999). Sequence comparison analysis revealed that the IGF-1R cDNA obtained in this
353 study belongs to the IGF-1Ra. Until now we have been unable to isolate the cDNA sequence of the IGF-1Rb in Chilean flounder.

355 Insulin-like growth factor-1 is a mitogenic peptide that circulates in plasma and 356 acts in many tissues through the endocrine, paracrine and autocrine mechanisms 357 (Humbel, 1990). Although IGF-1 is secreted predominantly in the liver in response to 358 growth hormone, it is also produced in essentially all tissues. The biological responses 359 of IGF-1 are mainly mediated by the binding and activation the IGF-1 receptor. The 360 IGF-1R and IGF-1 mRNA expression were found in a wide variety of tissues; the tissue 361 mRNA expression patterns reported in this study are consistent with previous reported 362 data from other teleosts and the known pleiotropic role of the receptor and ligand (Duan 363 et al., 1993; Reinecke et al., 1997; Maures et al., 2002; Tse et al., 2002; Queenie et al., 364 2003; Radaelli et al., 2003a; Radaelli et al., 2003b; Duval et al., 2002; Clay et al., 2005; 365 Patruno et al., 2006). RT-PCR revealed expression of IGF-1R and IGF-1 mRNA in the 366 kidney, gills, intestine, testis, spleen, liver, stomach, brain, oesophagus and skeletal 367 muscle. The expression of IGF-1 and IGF-1R in the brain suggests the IGF-1 368 involvement in central nervous system development (Kuang et al., 2005; Greene et al., 369 1999; Ayaso et al., 2002). The presence of high levels of IGF-1R and IGF-1 mRNA in 370 the gonad supports their important roles such as regulators in hormone synthesis and 371 secretion, germ cell proliferation and differentiation (Weber et al., 2000; Hammond et 372 al., 1991). The presence of IGF-1R and IGF-1 in the gills and intestine is according to their described roles in osmoregulation in fishes, and seawater adaptability (Sakamoto and Hirano., 1991; Datuin et al., 2001; Ng et al., 2001). Moreover, the high expression levels of IGF-1R and IGF-1 detected in skeletal muscle agree with their participation in skeletal muscle satellite cell proliferation and differentiation mediated by the signaling pathways Ras-MEK-ERK (Li and Johnson, 2006; Castillo et al., 2006) and their hypertrophic role mediated by the signaling pathways PI3K-Akt-mTOR during fish growth (Rommel et al., 2001; Castillo et al., 2006).

380 The spatial expression of IGF-1R and/or IGF-1 in the notochord and somites has 381 been described in other fish such as zebrafish, tilapia (Oreochromis niloticus), gilthead 382 seabream (Sparus aurata) and rainbow trout (Oncorhynchus mykiss) (Devoto et al., 383 1996; Rescan et al., 2001; Radaelli et al., 2003b; Funkenstein et al., 1997; Maures et al., 384 2002; Eivers et al., 2004; Berishvili et al., 2006). In zebrafish it has been shown that 385 IGF-1R and its ligand IGF-1 mRNA are expressed during early development, from 386 blastula (2 hpf) to the larval stage (96 hpf) showing that IGF-1R is maternally expressed 387 (Ayaso et al., 2002; Maures et al., 2002). We examined the mRNA expression pattern of 388 Chilean flounder IGF-1R and IGF-1 in larvae at pre-metamorphic stage through whole 389 mount in situ hybridization. We observed that Chilean flounder of 9 dpf, where larvae 390 begins to feed themselves, showed IGF-1R expression in the somites, head and 391 notochord, whereas IGF-1 expression was found in the notochord. We previously 392 described the expression pattern of the growth hormone receptor (GHR) and myostatin 393 genes during larvae development of Chilean flounder (Fuentes et al., 2008; Delgado et 394 al., 2008). Interestingly, we showed that GHR was expressed in similar territories as 395 IGF-1R, such as the somites, which give rise to muscle and the axial skeleton, and the 396 notochord, an essential structure for the proper formation of the nervous system and 397 mesoderm, the last of which gives rise to the somites later in embryo development

398 (Richardson et al., 1998; Stemple et al., 1996). Furthermore, ligands just as myostatin 399 and IGF-1 mRNAs, were mostly found in the notochord. Taken together, these 400 observations suggest there could be a synchronization between positive and negative 401 growth signals originated in the notochord that plays a crucial role in the control of 402 somite development.

In summary, the complete cDNA sequence of the IGF-1R and IGF-1 were cloned from the Chilean flounder fish. The protein sequence includes all the structural domains and motifs responsible for the interaction between ligand- receptor and IGF-1 mediated signal transduction. Indeed, our results contribute to the knowledge of the IGF-1 system in the larvae and juvenile stages, both of which are crucial periods for developing successful farming of the Chilean flounder.

- 409
- 410
- 411
- 412
- 413
- 414

415

416

417

- 418
- 419

420

421

423 Acknowledgements

425	This work was supported by Grants Nº 1090416 from FONDECYT and 15-03/28-
426	04/13-06I from UNAB Research Fund to A.M., FONDECYT N°1095128 to A.E.R., and
427	the Millennium Institute for Fundamental and Basic Biology (MIFAB). We thank Juan
428	Manuel Estrada for technical assistance and animal care in the Centro de Investigación
429	Marina de Quintay (CIMARQ) and Ashley VanCott from The University of Nevada,
430	Reno (USA) for improving and correcting the English of the manuscript
431	
432	
433	
434	
435	
436	
437	
438	
439	
440	
441	
442	
443	
444	
445	
446	
447	

450 Ayaso, E., Nolan, C.M., Byrnes, L., 2002. Zebrafish insulin-like growth factor-I
451 receptor: molecular cloning and developmental expression. Mol. Cell. Endocrinol.
452 191, 137-148.

453

Bayne, M.L., Applebaum, J., Chicchi, G.G., Miller, R.E., Cascieri, M.A., 1990. The
roles of tyrosines 24, 31, and 60 in the high affinity binding of insulin-like growth
factor-I to the type 1 insulin-like growth factor receptor. J. Biol. Chem. 265, 1564815652.

458

Berishvili, G., Shved, N., Eppler, E., Clota, F., Baroiller, J.F., Reinecke, M., 2006.
Organ-specific expression of IGF-I during early development of bony fish as
revealed in the tilapia, *Oreochromis niloticus*, by *in situ* hybridization and
immunohistochemistry: indication for the particular importance of local IGF-I. Cell
Tissue Res. 325, 287-301.

464

465 Castillo, J., Johnsen-Ammendrup, I., Codina, M., Navarro, I., Gutierrez, J., 2006.
466 IGF-I and insulin receptor signal transduction in trout muscle cells. Am. J. Physiol.
467 Regul. Integr. Comp. Physiol. 290, R1683-1690.

468

Chan, S.J., Plisetskaya, E.M., Urbinati, E., Jin, Y., Steiner, D.F., 1997. Expression
of multiple insulin and insulin-like growth factor receptor genes in salmon gill
cartilage. Proc. Natl. Acad. Sci. U.S.A. 94, 12446-12451.

472

473	Clay, L.A., Wang, S.Y., Wolters, W.R, Peterson, B.C., Waldbieser, G.C., 2005.
474	Molecular characterization of the insulin-like growth factor-I (IGF-I) gene in
475	channel catfish (Ictalurus punctatus). Biochim. Biophys. Acta 1731, 139-148.
476	
477	Clemmons, D.R., Dehoff, M.L., Busby, W.H., Bayne, M.L., Cascieri, M.A., 1992.
478	Competition for binding to insulin-like growth factor (IGF) binding protein-2, 3, 4,
479	and 5 by the IGFs and IGF analogs. Endocrinology 131, 890-895.
480	
481	Datuin, J.P., Ng, K.P., Hayes, T.B., Bern, H.A., 2001. Effects of glucocorticoids on
482	cartilage growth and response to IGF-I in the tilapia (O. mossambicus). Gen.Comp.
483	Endocrinol. 121, 289-294.
484	
485	Dayton, W.R., White, M.E., 2008. Cellular and molecular regulation of muscle
486	growth and development in meat animals. J. Anim. Sci. 86, E217-E225.
487	
488	Delgado, I., Fuentes, E., Escobar, S., Navarro, C., Corbeaux, T., Reyes, A.E., Vera,
489	M.I., Alvarez, M., Molina, A., 2008. Temporal and spatial expression pattern of the
490	myostatin gene during larval and juvenile stages of the Chilean flounder
491	(Paralichthys adspersus). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 151,
492	197-202.
493	
494	Devoto, S.H., Melancon, E., Eisen, J.S., Westerfield, M., 1996. Identification of
495	separate slow and fast muscle precursor cell in vivo, prior to somite formation.
496	Development 122, 3371-3380.
497	

498	Duan, C., Duguay, S., Plisetskaya, E., 1993. Insulin-like growth factor I (IGF-I)
499	mRNA expression in coho salmon, Oncorhynchus kisutch: tissue distribution and
500	effects of growth hormone/prolactin family peptides. Fish Physiol. Biochem. 11,
501	371–379.
502	
503	Duval, H., Rousseau, K., Elies, G., Le Bail, P., Dufour, S., Boeuf, G., Boujard, D.,
504	2002. Cloning, characterization, and comparative activity of turbot. IGF-I and IGF-
505	II. Gen.Comp. Endocrinol. 126, 269–278.
506	
507	Eivers, E., McCarthy, K., Glynn, C., Nolan, C.M., Byrnes, L., 2004. Insulin-like
508	growth factor (IGF) signalling is required for early dorso-anterior development of
509	the zebrafish embryo. Int. J. Dev. Biol. 48, 1131-1140.
510	
511	Elies, G., Duval, H., Bonnec, G., Wolff, J., Boeuf, G., Boujard, D., 1999. Insulin
512	and insulin-like growth factor-1 receptors in an evoluted fish, the turbot: cDNA
513	cloning and mRNA expression. Mol. Cell. Endocrinol. 158, 173-185.
514	
515	Etherton, T.D., 2004. Somatotropic function: the somatomedin hypothesis revisited.
516	J. Anim. Sci. 82, E239–E244.
517	
518	Fuentes, E., Poblete, E., Reyes, A.E., Vera, M.I., Alvarez, M., Molina, A., 2008.
519	Dynamic expression pattern of the growth hormone receptor during early
520	development of the Chilean flounder. Comp. Biochem. Physiol. B Biochem. Mol.
521	Biol. 150, 93-102.
522	

523	Funkenstein, B., Almuly, R., Chan, S.J., 1997. Localization of IGF-I and IGF-I
524	receptor mRNA in Sparus aurata larvae. Gen. Comp. Endocrinol. 107, 291-303.
525	
526	Glass, D.J., 2005. Skeletal muscle hypertrophy and atrophy signaling pathways. Int.
527	J. Biochem. Cell Biol. 37, 1974–1984.
528	
529	Greene, M.W., Chen, T.T., 1999. Characterization of teleost insulin receptor family
530	members. II. Developmental expression of insulin-like growth factor type I receptor
531	messenger RNAs in rainbow trout. Gen. Comp. Endocrinol. 115, 270-281.
532	
533	Gronborg, M., Wulff, B. S., Rasmussen, J. S., Kjeldsen, T., Gammeltoft, S., 1993.
534	Structure-function relationship of the insulin-like growth factor-I receptor tyrosine
535	kinase. J. Biol. Chem. 258, 23435-23440.
536	
537	Hammond, J.M., Mondschein, S.E., Samaras, S.E., Canning, S.F., 1991. The
538	ovarian insulin-like growth factors, a local amplification mechanism for
539	steroidogenesis and hormone action. J. Steroid Biochem. Mol. Biol. 40, 411-416.
540	
541	Hober, S., Forsberg, G., Palm, G., Hartmanis, M., Nilsson B., 1992. Disulfide
542	exchange folding of insulin-like growth factor-I. Biochemistry 31, 1749-1756.
543	
544	Humbel, R.E., 1990. Insulin-like growth factors I and II. Eur. J. Biochem. 190, 445-
545	462.
546	

547	Jones, J.I., Clemmons, D.R., 1995. Insulin-like growth factors and their binding
548	proteins: biological actions. Endocr. Rev. 16, 3-34.
549	
550	Kuang, Y.M., Li, W.S., Lin, H.R., 2005. Molecular cloning and mRNA Profile of
551	Insulin-like Growth Factor Type 1 receptor in orange-spotted Grouper, Epinephelus
552	coioides. Acta Biochim. Biophys. Sin. 37, 327-334.
553	
554	LeRoith, D., Werner, H., Beitner-Johnson, D., Roberts, C.T., 1995. Molecular and
555	cellular aspects of the insulin-like growth factor I receptor. Endocr. Rev. 16, 143-
556	163.
557	
558	LeRoith, D., Scavo, L., Butler, A., 2001. What is the role of circulating IGF-1?
559	Trends Endocrinol. Metab. 12, 48–52.
560	
561	Li, J., Johnson, S.E., 2006. ERK2 is required for efficient terminal differentiation of
562	skeletal myoblasts. Biochem. Biophys. Res. Commun. 345, 1425-1433.
563	
564	Magee, B.A., Shooter, G.K., Wallace, J.C., Francis, G.L., 1999. Insulin-like growth
565	factor I and its binding proteins: a study of the binding interface using B-domain
566	analogues. Biochemistry 38, 15863-15870.
567	
568	Maures, T., Chan, S.J., Xu, B., Sun, H., Ding, J., Duan, C., 2002. Structural,
569	biochemical, and expression analysis of two distinct insulin-like growth factor I
570	receptors and their ligands in zebrafish. Endocrinology 143, 1858-1871.
571	

572	Moriyama, S., Ayson, F.G., Kawauchi, H., 2000. Growth regulation by insulin-like
573	growth factor-I in fish. Biosci. Biotechnol. Biochem. 64, 1553-1562.
574	
575	Nakao, N., Tanaka, M., Higashimoto, Y., Nakashima, K., 2002. Molecular cloning,
576	identification and characterization of four distinct receptor subtypes for insulin and
577	IGF-I in Japanese flounder, Paralichthys olivaceus. J. Endocrinol. 173, 365-375.
578	
579	Ng, K.P., Datuin, J.P., Bern, H.A., 2001. Effects of estrogens in vitro and in vivo on
580	cartilage growth in the tilapia (O. mossambicus). Gen.Comp. Endocrinol. 121, 295-
581	304.
582	
583	Patruno, M., Maccatrozzo, L., Funkenstein, B., Radaelli G., 2006. Cloning and
584	expression of insulin-like growth factors I and II in the shi drum (Umbrina cirrosa).
585	Comp. Biochem. Physiol., B. 144, 137–151.
586	
587	Queenie, P., Vonga, K., Chana, M., Leungb, K., Cheng C., 2003. Common carp
588	insulin-like growth factor-I gene: complete nucleotide sequence and functional
589	characterization of the 5V-flanking region. Gene 322, 145–156.
590	
591	Radaelli, G., Patruno, M., Maccatrozzo, L., Funkenstein B., 2003a. Expression and
592	cellular localization of insulin-like growth factor-II protein and mRNA in Sparus
593	aurata during development. J. Endocrinol. 178, 285-299.
594	

595	Radaelli, G., Domeneghini, C., Arrighi, S., Bosi, G., Patruno, M., Funkenstein B.,
596	2003b. Localization of IGF-I, IGF-I receptor, and IGFBP-2 in developing Umbrina
597	cirrosa (Pisces: Osteichthyes). Gen. Comp. Endocrinol. 130, 232-244.
598	
599	Reinecke, M., Schmid, A., Ermatinger, R., Loffing-Cueni D., 1997. Insulin-Like
600	Growth Factor I in the Teleost Oreochromis mossambicus, the Tilapia: Gene
601	Sequence, Tissue Expression, and Cellular Localization. Endocrinology 138, 3613-
602	3619.
603	
604	Rescan, P.Y., Collet, B., Ralliere, C., Cauty, C., Delalande, J.M., Goldspink, G.,
605	Fauconneau, B., 2001. Red and White Muscle development in the trout (O.mykiss)
606	as shown by <i>in situ</i> hybridization of fast and slow myosin heavy chain transcripts. J.
607	Exp. Biol. 204, 2097-2101.
608	
609	Richardson, M.K., Allen, S.P., Wright, G.M., Raynaud, A., Hanken J., 1998. Somite
610	number and vertebrate evolution. Development 125, 151-160.
611	
612	Riedemann, J., Macaulay, V.M., 2006. IGF1R signalling and its inhibition. Endocr.
613	Relat. Cancer 13, S33-S43.
614	
615	Rommel, C., Bodine, S.C., Clarke, B.A., Rossman, R., Nunez, L., Stitt, T.N.,
616	Yancopoulos, G.D., Glass, D.J., 2001. Mediation of IGF-1-induced skeletal
617	myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat.
618	Cell Biol. 3, 1009–1013.
619	

620	Sakamoto, T., Hirano, T., 1991. Growth hormone receptors in the liver and
621	osmoregulatory organs of rainbow trout: characterization and dynamics during
622	adaptation to seawater. J. Endocrinol. 130, 425-433.
623	
624	Stemple, D., Solnica-Krezel, L., Zwartkruis, F., Neuhauss, C.F., Schier, A.F.,
625	Malicki, J., Stainier, D.Y.R., Abdelilah, S., Rangini, Z., Mountcastle-Shah, E.,
626	Driever, W., 1996. Mutations affecting development of the notochord in zebrafish.
627	Development 123, 117-128.
628	
629	Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the
630	sensitivity of progressive 416 multiple sequence alignment through sequence
631	weighting, position-specific gap penalties and weight 417 matrix choice. Nucleic
632	Acids Res. 22, 4673-4680.
633	
634	Tse, M.C.L., Vong, Q.P., Cheng, C.H.K., Chan K.M., 2002. PCR-cloning and gene
635	expression studies in common carp (Cyprinus carpio) insulin-like growth factor-II.
636	Biochim. Biophys. Acta 1575, 63–74.
637	
638	Weber, G.M., Sullivan, C.V., 2000. Effects of insulin-like growth factor-I on in
639	vitro final oocyte maturation and ovarian steroidogenesis in striped bass, Morone
640	saxatilis. Biol. Reprod. 63, 1049–1057
641	
642	Wood, A.W., Duan, C., Bern, H.A., 2005. Insulin-like growth factor signaling in
643	fish. Int. Rev. Cytol. 243, 215-285.
644	

645	Whitehead, J. P., Clark, S.F., Urso, B., James, D. E., 2000. Signalling through the
646	insulin receptor. Curr. Opin. Cell. Biol. 12, 222-228.
647	
648	Zhang, W., Gustafson, T.A., Rutter, W.J., Johnson, J.D., 1994. Positively charged
649	side chains in the insulin-like growth factor-1 Cand D-regions determine receptor
650	binding specificity. J. Biol. Chem. 269, 10609-10613.
651	
652	
653	
654	
655	
656	
657	
658	
659	
660	
661	
662	
663	
664	
665	
666	
667	
668	
669	

670 **Figure legends**

671 Table 1. Primer sequences used in IGF-1R and IGF-1 cDNA cloning. W = A/T, R = G/A, Y = T/C, S = G/C, K = G/T.

673

674 Figure 1.A) Chilean flounder IGF-1R cDNA complete sequence (GenBank number 675 FJ438475). Deduced amino acid sequence is indicated below the nucleotide sequence. 676 Start and stop codon are underlined. 5' and 3' UTR are indicated in small letters. The 677 signal peptide sequence is indicated by cursive letters. Alfa subunit and beta subunit are 678 underlined and boxed respectively. Transmembrane domain is indicated in bold 679 character. B) Chilean flounder IGF-1 cDNA complete sequence (GenBank number 680 EU017533). Deduced aminoacidic sequence is indicated below the nucleotide sequence. 681 Start and stop codon are underlined. 5' and 3' UTR are indicated in small letters. The 682 signal sequence is indicated by cursive letters. B and C domains are underlined and 683 bolded respectively. A, D and E domains are shown by the boxed, gray boxed and black 684 boxed areas respectively.

685

686 Figure 2. Amino acid multiple sequence alignments of IGF-1R and IGF-1 in different 687 vertebrates species: A) GenBank numbers: human (Homo sapiens) GenBank: 688 X04434.1; rat (Rattus norvegicus) GenBank: AF056187.1; chicken (Gallus gallus) 689 GenBank: AJ223164.1; African clawed frog (Xenopus laevis) GenBank: AF055980.1; 690 zebrafish (Danio rerio) GenBank: AF400275.1; Japanese flounder (Paralichthys 691 olivaceus) GenBank: AB065098.1, Chilean flounder (Paralichthys adspersus) 692 GenBank: FJ438475.1. Conserved cysteine and tyrosine residues are indicated in black 693 boxed areas. The proteolytic cleavage sequence and potential ATP binding sites are 694 shaded. Potential IRS-2 and IRS-1 binding sites are in bold characters. Cystein,

695 transmembrane, juxtamembrane, tyrosine kinase and carboxy domains area indicated in 696 open boxed areas .B) GenBank accession numbers: human (Homo sapiens) GenBank: 697 M27544.1; rat (Rattus norvegicus) GenBank: NM_001082479.1; chicken (Gallus 698 gallus) GenBank: M32791.1; African clawed frog (Xenopus laevis) GenBank: 699 M29857.1; zebrafish (Danio rerio) GenBank: BC114262.1; Japanese flounder 700 (Paralichthys olivaceus) GenBank: AJ010602.1; Chilean flounder (Paralichthys 701 adspersus) GenBank: EU017533.1. Conserved cysteine residues are indicated by black 702 boxed areas. Conserved residues implicated in IGF-1R binding are indicated in a grey 703 boxed area. IGFBP binding is indicated in bold characters. B, C, A, D and E domains 704 are indicated in open boxed areas.

705

706 Fig.3. Comparison of the Chilean flounder IGF-1 and IGF-1R deduced domains with 707 Japanese flounder, turbot, carp, zebrafish, xenopus, chicken, rat and human IGF-1R and 708 IGF-1. A) GenBank accession numbers: human (Homo sapiens) GenBank: X04434.1; 709 rat (Rattus norvegicus) GenBank: AF056187.1; chicken (Gallus gallus) GenBank: 710 AJ223164.1; African clawed frog (Xenopus laevis) GenBank: AF055980.1; zebrafish 711 (Danio rerio) GenBank: AF400275.1 and BC163723.1; Carp (Cyprinus carpio) 712 GenBank: AY144591.1; turbot (Psetta maxima) GenBank: AJ224993.1; Japanese 713 (Paralichthys olivaceus) GenBank: AB065098.1, Chilean flounder flounder 714 (Paralichthys adspersus) GenBank: FJ438475.1. The top line drawing represents the 715 cDNA structure of human IGF-1R. The comparison between Chilean flounder and other 716 species were performed using 170, 43, 253 and 155 amino acid corresponding to the 717 cystein domain, juxtamembrane domain, tyrosine kinase domain and c-terminal domain, 718 respectively. B) GenBank accession numbers: human (Homo sapiens) GenBank: 719 M27544.1; rat (Rattus norvegicus) GenBank: NM_001082479.1; chicken (Gallus

720 gallus) GenBank: M32791.1; African clawed frog (Xenopus laevis) GenBank: 721 M29857.1; zebrafish (Danio rerio) GenBank: BC114262.1; Carp (Cyprinus carpio) 722 GenBank: BAA11878.1; turbot (Psetta maxima) GenBank: ACL14947.1; Japanese 723 flounder (Paralichthys olivaceus) GenBank: AJ010602.1; Chilean flounder 724 (Paralichthys adspersus) GenBank: EU017533.1. The top line drawing represents the 725 cDNA structure of human IGF-1. The comparison between Chilean flounder and other 726 species were performed using 29, 10, 21, 8 and 73 amino acid corresponding to B, C, A, 727 D and E domains, respectively.

728

Fig. 4. Qualitative mRNA distribution of the Chilean flounder IGF-1R and IGF-1 in different tissues assessed by RT-PCR. β -actin was used as constitutive expression control. (figure is representative of four independent experiments).

732

733 Fig. 5. Expression pattern of IGF-1 and IGF-1R mRNAs in Chilean flounder larvae. 734 Expression of IGF-1 and IGF-1R mRNA were analyzed at 9 dpf in Chilean flounder 735 larvae, through whole-mount in situ hybridization using sense and antisense probes. A, 736 larvae at 9 dpf show strong IGF-1 expression in the notochord (nc). B, higher 737 magnification shows the expression in the notochord (nc), but not in somites (s). C, 738 larvae at 9 dpf show IGF-1R expression in the notochord, somites and the head (h). D, 739 higher magnification shows expression in the notochord and somites. We did not detect 740 positive signals using the sense probe (insets in A and B, respectively). Pictures are 741 representative of four independent experiments. Abbreviations: h, head; nc, notochord; 742 s, somites.

primer name	sequence	nucleotide position
1F(sense)	5'-TGAGWTRACCAGCCTGAAGGAC-3'	1000-1021 igf1r
1R(antisense)	5'-CTTTRAGCAGTAGTTGTGYTG-3'	2582-2603 igf1r
2F(sense)	5'-CTTGTTTTGGRTCTGATGCTG-3'	654- 676 igf1r
2R(antisense)	5'-AGCAGAGCTCAGGGTTCTTCTC-3'	1070- 1091 igf1r
3F(sense)	5'-GCCWTTCCAGAACATCACAGAG-3'	2200- 2221 igf1r
3R(antisense)	5'-ATCAGYTCRAACAGCATGTCAG-3'	4326- 4347 igf1r
4F(sense)	5'-AGCCTCCGTCATGAAGGAGTTC-3'	3796- 3790 igf1r
4R(antisense)	5'-TTGAACTCCTTCATGACGGAGG-3'	3770- 3792 igf1r
5F(sense)	5'-GACCTTGCTCTCAAGTGCAC-3'	1476- 1495 igf1r
5R(antisense)	5'-TGTGACTCGTTGTCTCGTTAG-3'	2100- 2120 igf1r
6F(sense)	5'-AGACATGGATGACAACACCAAG-3'	2644-2665 igf1r
6R(antisense)	5'-TGAACTGAGCTTGGTCAGAC-3'	3291-3310 igf1r
7F(sense)	5'-GGATGTCACCAGAGTCTCTGA-3'	4146- 4166 igf1r
7R(antisense)	5'-TTGATGCTGTGATGATCTCCA-3'	4392- 4413 igf1r
1F(sense)	5'-CCTCTCCACTRCTGCTGVGTGTC-3'	233-254 igf1
1R(antisense)	5'-ATRTCTGTGTGSCGTTGTGCWC-3'	499-520 igf1

Α

1	-	${\tt cagectegcagccaccccctgtggatctggacgttattttctgccgccaccctaacctctctct$
91	_	ccctqqqcttactcaccatqttctqtqqqqqtctqctqqtqaaataaaaccttcacqttatctttqacatatatat
181	_	caccaggeccggatcgcaccgtgtaacgcgcactcgctgttttcaagagatggagactgaagatggggattaccatcatgtatccagtca
271	_	
361	_	
451		
4 J L E 4 1	_	
541	-	Clotallilleecagaggallilleactilggleectillgeettallilaattielgageggagaalgalgalgalgaggaee <u>ArGAGAT</u>
1	-	M R S
631	-	TGGCTCACTGATGGGTAGCACGACCTTGTTTTGGGGTCTGATGCTGTCTGCCACTATCTGCATATGGCCCCACGTATGGAGAGATTTG
4	-	G S L M G S T T L F W G L M L S V S T I C I W P T Y G <u>E I C</u>
721	-	${\tt TGGTCCGGGTATTGACATCCGAAATGACATCAGTGAGTTCAAGCGGCTGGAGAACTGCACGGTGGTGGAGGGCTACCTGCAGATCCTCCT$
34	-	G P G I D I R N D I S E F K R L E N C T V V E G Y L Q I L L
811	-	CATCAATGACAAGACCAACAACCATCCATCAAGAGGTTTTCCGCTCCCTCAGCTTCCCCAAGCTGACCATCATCACGGACTACCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG
64	_	I N D K T N N I H O E V F R S L S F P K L T I I T D Y L L L
901	_	GTTTCGCGTCTCTGGCTTGGACAGCCTCAGCATGCTCTTCCCCCAACCTGAGCATCATCCGTGGGCGGCAGCTCTTCTACAACTACGCCCT
94	_	F R V S G L D S L S M L F P N L S I I R G R O L F Y N Y A L
991	_	CGTGATCTATGAGATGACCAGCCTGAAGGACATTGGCCTGTACAACCTGAAGAACATCACCCGGGGAGCCACGAGGATTGAGAAGAACCC
124	_	V T Y E M T S L K D T G L Y N L K N T T R G A T R T E K N P
1081	_	
154	_	
1171		
104	_	
104	_	
1201	-	CTCTACCCAGTGCCAGAAAGTTTGCCCAGAACACTGCAAAATGCCTGTACCGACAAGGGGGGGG
214	-	
1351	-	CTGCACTGAACCCAACAACGACATGGCCTGTTCCACCTGCCTCCACTACTTCCACGAGGACCGCTGCGTGCCAGACTGTCCCTCGGGCAC
244	-	C T E P N N D M A C S T C L H Y F H E D R C V P D C P S G T
1441	-	TTACAAGTTCGAGAGCTGGCGCTGCATCACCATGGGACCTTGCTCTCAAGTGCACCTGCCGGCCCTCAGTTTGTCATCCACGGGGG
274	-	YKFESWRCITMGPCSQVHLPVDPQFVIHGG
1531	-	${\tt AGAATGTATGCATGAATGCCCCTCTGGCTTCACACGAAACGAGACTAATCGAATGTTTTGCAGCGCCTGCAACGGACTGTGCGACAAGGT$
304	-	E C M H E C P S G F T R N E T N R M F C S A C N G L C D K V
1621	-	${\tt CTGCACACCCAACATCATCGACTCTGTGGATGCTGCTCAGTCTCTGAAGGACTGCACCGTCATCGAGGGCAATCTGGACATCAACATTCG$
334	_	C T P N I I D S V D A A O S L K D C T V I E G N L D I N I R
1711	_	TCGCCGGAAATAACATAGCGTCTGAGCTGGAGAGCTTCATGGGATTGATCCAGACAGTGAAGGGCTATGTGAAGATTCGACACTCCCACGC
364	_	R G N N T A S E I, E S F M G I, T O T V K G Y V K T R H S H A
1801	_	GCTTGGCTGTCCTTCCTTCCTCCGCGTTACATCAACAGCAGCAGCAGCACACATGTATCCTTCCT
301	_	
1901	_	
121	_	
1001	-	
1981	-	CATGICIGAGGAICCACCATGIGGGGAAAAAGACGAAGAICACCGCGAAGGCGGGGGGGG
454	-	
2071	-	CTGTGAAAGTCACACCCTGACGTTCAAGACTAACGAGACAACGAGTCACATGATCAAGCTGACGTGGGAGCGCTACCAGCCACCAGACTT
484	-	<u>CESHTLTFKTNETTSHMIKLTWERYQPPDF</u>
2161	-	CGGAGACCTCATCAGCTTCATCGTCTACTTCAAGGAGTCGCCTTTCCAGAACATCACAGAGTTCGACGGACAGGACGGCTGCGGCTCAAA
514	-	<u>G D L I S F I V Y F K E S P F Q N I T E F D G Q D G C G S N</u>
2251	-	CAGCTGGCACATGGTGGACGTGGATCTACCTCAGGATAAAACCAGTGAACCAAATGTCAGTCTTCCGCACCTGAAGCCCTGGACCCAGTA
544	-	<u>S W H M V D V D L P Q D K T S E P N V S L P H L K P W T Q Y</u>
2341	-	${\tt TGCCATCTTCGTGAAGGCCATCACCCTGCAGGTGGAGGAGAAAACACATCACTGGGGCCAAGAGTGACATCATCTACATCCGCACACGCCC$
574	-	<u>A I F V K A I T L Q V E D K H I T G A K S D I I Y I R T R P</u>
2431	-	${\tt ATCGTCTCCTTCTGTGCCTAAAGACGCCCGCGCTTTTGCCAACTCCTCAACCAAGCTGGTGAAGTGGTCGCCCCCCGTGTTTCCCAA}$
604	-	S
2521	-	CGGCAACCTGACCTACTACCTGGTCCGCTGGCAGCAGCAGCAGCAGGAGGAGGCAGCAGCAACAACAAC
634	-	G N L T Y Y L V R W Q Q Q P E D R E L Y Q H N Y C S K E L K
2611	-	GATCCCGATCAGGATTTCAGCGACAGGGCTCACAGACATGGATGACAACACCAAGCCCCACCAAGTCAAACTTGGGGGGGG
664	-	I P I R I S A T G L T D M D D N T K P H Q V K L G G G R E G
2701	_	GCCCATGTGCCTTGCAGAAGACGCAGAGGAGAAGGACCGGGGAGAAGGACGAC
694	_	P M C L A E D A E E K D R E K D D R V F L K I F E N F L H N
2791	_	TGCCATCTTTCTGCCGAGACCTCCAGACCGTCGACGCAGAGATGTGTTCGGCCTGGCCAACGACACGCTGTTTCACGACAGCGCCGGGAA
724	_	ATEL PRPPDRRR DVFGVANDTIFHDSAGK
2881	_	
754	_	
2071		
2911	-	
/84	-	Y L D I P N L Q P F T V Y R L D I H A C N E E V G R C S A G
3061	-	AGCATTCGTCTTCTCCCCAGACCAAACCTGCGGTCAAAGCAGACGACGACATCCCTGGAAAAGTGATCTATGAGCGCAGTGACAAGGTTGAGGG
814	-	A F V F S Q T K P A V K A D D I P G K V I Y E R S D K V E G
3151	-	${\tt TTCTGTGGTGCTGCACTGGCCAGAGCCCATCATGCCCAACGGACTCATCCTGATGTATGAGATCAAGTTCCGTTTGGGGACTGAGCCTGA$
844	-	S V V L H W P E P I M P N G L I L M Y E I K F R L G T E P E
3241	_	GAAACACGAGTGTGTCGCGGCAGCACCACCGTGAGCACCAGAGGAGCTCGTCTGACCAACCTCAGGTCAGGAAACTACTCTGCCCGTGT
874	_	KHECVSROHVREHRGARI, TNI. SSGNVSARV
3331	_	
1004	-	
904	-	KATSLAGNGSWTESVFFIVPPKKDDG VAF
3421	-	TTATTTGTCATCATAATTCCCATCACAGCGCCCCCCATGCCACCCCCCCATTCTCTTTGTGAACAAAAAGAGGAACAA
934	-	Y L V I I I P I I A T L L I A S L T T I L F F V N K K R N S
3511	-	$\texttt{C} \underline{\texttt{GACAGACTGGGAAATGGAGTCCTTTATGCCTCTGTCAATCCAGAATACTTCAGCGCTGGTGAGATGTACGTCCCGGATGAGTGGGAGGT}$
964	-	D R L G N G V L Y A S V N P E Y F S A A E M Y V P D E W E V
3601	-	AGCGAGGGAGAAGATCACTATGCACAAGGAGCTGGGCCAGGGTTCCTTCGGCATGGTGTATGAAGGTTTAGCCAAGAGTGTGGTCAAGGA
994	_	A R E K I T M H K E L G O G S F G M V Y E G L A K S V V K D
3691		Τα στο στο στο στο μαριά τη τη το μαριά το το το μαριά το το μαριά το το μαριά το
	_	
1024	_	
1024	-	E P E T R V A I K T V N E S A S M R E R I E F L D E A S V M
1024 3781	-	E P E T R V A I K T V N E S A S M R E R I E F L D E A S V M GAAGGAGTTCAACTGTCACCATGTGCGCGCTCTCGGGGTGGGGGTCTCTCAGGGCCAGCCCACTCTGGTCATCATGGAGCTGATGAGCGAGC
1024 3781 1054		E P E T R V A I K T V N E S A S M R E R I E F L D E A S V M GAAGGAGTTCAACTGTCACCATGTGGTCCGGCTTCTGGGTGGG
1024 3781 1054 3871	- - -	E P E T R V N E S A S M R E R I E F L D E A S V M GAAGGAGTTCAACTGTCACCATGTGGTCCGGCTTCTGGGTGTGGTCTCTCAGGGTCAGCCCACTCTGGTCATCATGGAGCTGATGACACG K E F N C H H V V R L G V V S Q G Q P T L V I M E L M T R TGGAGATCTCAAGAGCCACCTGCGCTGCGCTGCGCGCGCG
1024 3781 1054 3871 1084		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1024 3781 1054 3871 1084 3961		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

4051 - CTTCATCGTGAAG	ATTGGAGATTTTGGCATGACCAGAGACATAT	FATGAGACAGATTACTAC	CGCAAAGGTGGTAAGGGTCTGCTCCCTGT
1144 - F I V K	IGDFGMTRDIY	УЕТ РУҮ	R K G G K G L L P V
4141 - CCGCTGGATGTCA	CAGAGTCTCTGAAGGATGGAGTCTTTACTA	ACTAACTCTGATGTTTGG	TCGTTTGGGGTTGTACTGTGGGAGATTTC
1174 - R W M S 3	PESLKDGVFTI	IN SDVW	SFGVVLWEIS
4231 - CACCCTGGCTGAG	CAGCCGTACCAGGGTCTGTCCAATGAGCAGG	STGCTCCGCTTTGTCATG	GAGGGAGGACTGCTGGAGAAACCACAAAA
1204 - T L A E 0	2 P Y Q G L S N E Q V	VLRFVM	EGGLLEKPQN
4321 - CTGTCCTGACATG	TGTTTGAGCTGATGCGAATGTGTTGGCAGI	FACAATCCTAAAATGCGT	CCATCCTTTGTGGAGATCATCAGCAGCAT
1234 - C P D M 3	LFELMRMCWQY	YNPKMR	PSFVEIISSI
4411 - CAAAGATGAACTG	GATTCTCCCTTCAGGGAAATGGGTTTCTTCT	FACAGTGAGAAGAACAAG	CCGCCTGACACCGAGGAGCTGGACATGGA
1264 - K D E L 1	O S P F R E M G F F Y	Y S E K N K	PPDTEELDME
4501 - GGTAGAAAACATG	GAGAACATTCCACTGGACCCTGCATCCACCA	AGGCAGCCCTCTGCTGCC	CCCCCCCCCCCGGGGGGGCACGGAGG
1294 - V E N M 1	ENIPLDPASTF	RQPSAA	AAPSSGCTGG
4591 - AACGCCGCCCCCC	ICTGCGCAGCAGTTATCCCCCATGCAAGGCC	CCGAGTACTCCTTTACTG	GGACCTGTGTCTCCCTCCTCCCCGGGCCC
1324 - Т Р Р Р	3 A Q Q L S P M Q G F	PSTPLL	G P V S P S S P G P
4681 - GGTTGCCTCAGCC	ITGGCGTCTCCGGGCCAAGCTTTGGACAAGC	CACTCAGGACATGTCTCG	GCCAACGGGCCTGTGGTGGTGCTGCGGCC
1354 - V A S A 3	LASPGQALDKH	HSGHVS	A N G P V V V L R P
4771 - CAACCTTGATGAG	ATGCAACCTTATGCACACATGAACGGGGGCA	AGAAAGGACGAACGGGCA	TTACCACTGCCCCAGTCGTCGGCCTGCTG
1384 - N L D E I	4 O P Y A H M N G G F	RKDERA	L P L P Q S S A C *
	-		

В

1	-	tcgc	gga	tcc	gaad	cac	tgc	gtt	tgc	tgg	ctt	tga	tga	aaa	itga	aat	gaa	ata	gtg	tgt	tgt	ata	tat	gag	cat	gag	ctg	ctg	ctg	gtgc	t
91	-	gctg	ctg	ctg	rctg	ctg	ctg	ctg	ttc	ctt	ttc	gcc	ggg	ctt	tga	ctt	gcc	gag	acc	cgt	ggg	gAT	GTC	TAG	CGC	TCT	TTC	CTT	TCA	GTGG	С
1	-																					М	S	S	А	L	S	F	Q	W.	Η
181	-	ATTT	ATG	TGA	TGT	СТТ	CAA	GAG	TGC	GAT	GTG	CTG	TAT	СТС	CTTG	TAG	CCA	CAC	CCT	CTC	ACT.	ACT	GCT	GTG	TGT	CCT	CAC	ССТ	GAC	ICCG.	A
11	-	L	С	D	V	F	Κ	S	А	М	С	С	I	S	С	S	Η	T	L	S	L	L	L	С	V	L	T	L	T	Ρ	Т
271	-	CGGC	AAC	AGG	GGC	GGG	ACC	GGA	GAC	ССТ	GTG	CGG	GGC	GGA	AGCT	GGT	CGA	CAC	GCT	GCA	GTT	TGT	GTG	TGG	AGA	GAG	AGG	CTT	TTA	TTTC	A
41	-	А	Τ	G	А	G	Ρ	Е	Т	L	С	G	A	Ε	L	V	D	Т	L	Q	F	V	С	G	Е	R	G	F	Y	F	S
361	-	GTAA	ACC	AAC	AGG	ГTА	TGG	CCC	CAA	TGC	ACG	GCG	GTC.	ACG	GCGG	CAT	TGT	GGA	CGA	GTG	CTG	CTT	CCA	AAG	CTG	TGA	GCT	GCG	GCA	CCTG	G
71	-	K	Ρ	Т	G	Y	G	Ρ	N	А	R	R	s	R	G	I	V	D	Е	С	С	F	Q	S	С	Е	L	R	Η	L	E
451	-	AGAT	GTA	CTG	TGC	ACC	TGC	CAA	GAC	TAG	CAA	TGC	CGC	TCG	CTC	TGT	GCG	TGC	ACA	ACG	CCA	CAC	AGA	CAT	GCC	GAG	AGC	ACC	TAA	GGTT.	A
101	-	М	Y	С	A	Ρ	A	K	Т	S	Ν	A	A	R	S	V	R	А	Q	R	H	Т	D	М	Ρ	R	А	Ρ	K	V	S
541	_	GTAC	CGC	AGG	GCA	CAA	AGT	GGA	САА	GGG	CAC	AGA	GCG	TAG	GAC	AGC.	ACA	GCA	GCC	AGA	CAA	GAC	AAA	AAA	CAA	GAA	GAG	ACC	TTT.	ACCG	G
131	-	т	А	G	Η	Κ	V	D	K	G	Т	Е	R	R	Т	А	Q	Q	Ρ	D	K	Т	K	Ν	K	K	R	Ρ	L	P	G
631	-	GACA	TAG	TCA	CTC	ACA	AGC'	TTT	GCT	TTT	CAT	GCG	CCA.	AAG	GCCA	GCT	GCT	TAC	ATT	TTG	TGT.	AGG	AAT	TGT	ATG	TGA	ATG	Atg	tta	acct	g
161	-	Ĥ	S	H	S	Q	А	L	L	F	М	R	Q	S	Q	L	L	Т	F	С	V	G	I	V	С	E	*				
721	-	ttca	gag	gat	tgat	tac	cac	tca	cat	atc	tgt	tca	ttt	agt	ata	aaa	cta	caa	сса	gca	aaa	cat	gta	tgt	tat	cat	tca	ctc	gga	ttga	t
811	-	gcac	atg	ttt	ttt	tag	tat	ctc	ata	gta	tct	atg	agt	tgg	gtca	gac	taa	atc	tgg	ttg	ttg	tgt	- gga	taa	agc	aga	tca	aat	act	gagc	t
901	-	tcaa	cac	att	atg	tct	tta	atc	aaa	caa	aac	tta	aaa	aaa	aaaa	aaa	cct	ata	gtt	gga	gtc	gta	tta	att	cġg	atc	cgc	g		-	

Α		
human rat chicken xenopus zebrafish J_flounder Ch_flounder	MKSGSGGGSPTSLWGLLFLSAALSLWPTSGEI GPGIDIRNDYQQLKRLEN TVIEGYLH MKSGSGGGSPTSLWGLVFLSAALSLWPTSGEI GPGIDIRNDYQQLKRLEN TVIEGYLH MKSGAGGGTLAVFCGLLHERAALSLWPTSGEI GPNDIRDNDIELKRLEN TVVGGFUG MKAELVPVCTAWILGLLLCLGPAAKV GPNMDIRNDVSELKQLRDGVVIEGYLQ MRSGTARDVWTLFWGPALFLSTICLRCARGEV GPHIDIRNDIEEKKLEN TVVGGVLQ MRSGSLMSSTILFWSLMSVSTICIWFYGEI GPGIDIRNDISEFKRLEN TVVGGVLQ KRSGSLMSSTILFWSLMSVSTICIWFYGEI GPGIDIRNDISEFKRLEN TVVGGVLQ *:	60 60 55 60 60
human rat chicken xenopus zebrafish J_flounder Ch_flounder	ILLISKAEDYRSYRFPKLTVITEYLLLFRVAGLESLGDLFPNLTVIRGWKLFYN ILLISKAEDYRSYRFPKLTVITEYLLLFRVAGLESLGDLFPNLTVIRGWKLFYN ILLISAKAEDFRNLFPKLTVITDYLLLFRVSGLVSLSNLFPNLTVIRGRULFYN ILLIGDKNNLNQEHFRTLSFPKLTTVTDYLLFRVSGLDSLSVLFPNLNVIRGRULFYN ILLINDKTNNIHQEVFRSLSPFKLTITDYLLLFRVSGLDSLSMLFPNLSIIRGRQLFYN ILLINDKTNNIHQEVFRSLSFPKLTITDYLLLFRVSGLDSLSMLFPNLSIIRGRQLFYN :***	114 114 114 111 120 120 120
human rat chicken xenopus zebrafish J_flounder Ch_flounder	YALVIFEMTNIKDIGLYNLRNITRGAIRIEKNADLYLSTVDWSLILDAVSNNYIVGNKP YALVIFEMTNIKDIGLYNLRNITRGAIRIEKNADLYLSTIDWSLILDAVSNNYIVGNKP YALVIFEMTNIKEIGLHNLENITRGARIEKNSELYLSTVDWSLILDAVSNNYIVGNKP YALVIFEMTSLKDIGLYNLRNITRGARIEKNSELYLSTVDWSLILDAVSNNYIVGNKP YALVIFEMTSLKDIGLYNLKNITRGARIEKNSELYLSVDWSLIMDAEFNNIINGNKK YALVIYEMTSLKDIGLYNLKNITRGARIEKNPELYLDSVDWSLIMDAEFNNIINGNKK	174 174 174 171 180 180 180
human rat chicken xenopus zebrafish J_flounder Ch_flounder	Cysteine domain PKEGGDL®PGTMEEKPMGEKTIINEYNYENYTTMR©KMCPSTGKRACTENNECCHPE PKEGGDL®PGTMEEKPMGEKTIINEYNYENYTTMR©KMCPSYGKRACTENNECCHPE PKEGGDL®PGTMEEKPLGEKTSINNEYNYENYTTMH©KMCPSSGKRACTDONECCHPE PKEGVDL®PGTMEEKPLGEKTSINNEYNENYTTNH®CKUCPSYGKRACTDAGCCHPG TKEGGVM@PGINKDAPHGIKTSFNDNYSYENTSNH®CKUCPEKGKF-ACTDAGCCHPG AKECONV®PGIMEDNPLGKRTLFNDNYDYRNTSTO©CKUCPERGKF-ACTDAGCCHGG AKECONV®PGIMEDNPLGKRTLFNDNYDYRNTSTO©CKUCPERGKF-ACTDAGCCHGG AKECONV®PGIMEDNPLGKRTLFNDNYDYRNTSTO©CKUCPERGKF-ACTDAGCCHGG AKECONV®PGIMEDNPLGKRTLFNDNYDYRNTSTO©CKUCPERGKF-ACTDAGCCHGG	234 234 231 240 239 239
human rat chicken xenopus zebrafish J_flounder Ch_flounder	Cysteine domain CLGS SAPDNDTASVASHYYAGGVVPAGPPNTYRFEGMR VDRDF ANILSAESSDS LGS HTPDDNTTGVASHYYKGVVPA PPGTYRFEGMR VDRDF ANIFNAESSDS LGS TAPDNNTAGVASHYYYEGVVPT PPNTYKFEGMR VTKEFGKVPATETSDYE CLGS TEADNDKAGAAHYYFEGRVPT OPSNTYKFEGMR ITKEFGKRARHIESE	294 294 291 297 296 296
human rat chicken xenopus zebrafish J_flounder Ch_flounder	Cysteine domain GFVIHDGEDMQEPSGFIRNGSQSMY IPBGCPBrKVG=DEKKTKTIDSVTSAQMLQG GFVIHDGEDMQEPSGFIRNSQSMY IPBCCPBrKVG=DEKKTKTIDSVTSAQMLQG RFVIHNDEMAREPSGFIRNGSQSMFSPECCPBrKIDEDGKTKTIDSVTSAQMLQG FVIHNGEOMPDOPGGFIRNETISMFSADOLGDKVGESKTIDSVDAAQSLKQ QFVIHGGEOMHDEPSGFTRNETISMFSADOLGDKVGTPNIIDSVDAAQSLKQ QFVIHGGEOMHEPSGFTRNETISMFSADOLGDKVGTPNIIDSVDAAQSLKQ	353 354 352 347 352 351 351
human rat chicken xenopus zebrafish J_flounder Ch_flounder	TIFKGNLLINIRRGNNIASELENFMGLIEVVTGYVKIRHSHALVSLSFLKNLRLILGEQ TILKGNLLINIRRGNNIASELENFMGLIEVVTGYVKIRHSHALVSLSFLKNLRJILGEQ TILKGNLLINIRRGNNIASELENFMGLIETVTGYVKIRHSHALVSLSFLKNLRVILGEQ TVLKGNLGINIRGGNIASELENFIGLIETVTGYVKIRHSHALVSLSFLKSLRVIVGEEL TVIEGNLDINIRRGNNIASELESFMGLIQTVKGYVKIRHSHALGSLSFLKSLRVINGQEL TVIEGNLDINIRRGNNIASELESFMGLIQTVKGYVKIRHSHALGSLSFLKSLRVINGQEL	413 414 412 407 412 411 411
human rat chicken xenopus zebrafish J_flounder Ch_flounder	LEGNYSFYULDNQNLQQLWDWDHRNLTIKAGKMYFAFNPKLWSEIYRMEEVTGTKGRQS LEGNYSFYULDNQNLQQLWDWNHRNLTVRSGRMYFAFNPKLWSEIYRMEEVTGTKGRQS VDGNYSFYUDNNLQQLWDWNHHNLTIKGGRMYFAFNPKLWSEIYRMEEVSGTKGRQS WCNYSFYUDNNLQQLWDWSKHNLTIKGKIYFAFNSKLWSEIFXWWEEVTGTKGRQ VDMYSFSAINNQHLQYLWDWSQHNLTIRGKLYFRPNFKLMSEIFKWWEKTSVRSEKA IDMMYSFSAINNQHLQYLWDWSQHNLTIRAGRLFFRNPKLMSEIFKWWEKTKITAFFE	473 474 472 467 472 471 471
human rat chicken xenopus zebrafish J_flounder Ch_flounder	KGDINTRNNGERAS SSDVLHFTSTTTSKNRIIITWHRYRPPDYRDLISFTVYYKEAPFK KGDINTRNNGERAS SSDVLRFTSTTTWKNRIIITWHRYRPPDYRDLISFTVYYKEAPFK KGDINFRNNGERAS SSNILRFVSNTTLKNRIKITWBRYRPPDYRDLISFTVYYKEAPFK EDISLSTNGNMAS SSNILNFTSSNIKNRIKLTWBRYRPPDYRDLISFTVYYKEAPFQ EDDFRNNGERAS SSILFFKNHTSTSTIKLTWBRYRPPDFDCDLISFTVYKEAPFQ EGDFRNNGERAS SSHLFFKTNETTSHMIKLTWBRYRPPDFDCDLISFTVYKESPFQ EGDFRNNGERAS SSHLFFKTNETTSHMIKLTWBRYQPPDFDCLISFTVYKESPFQ	533 534 532 527 530 529 529
human rat chicken xenopus zebrafish J_flounder Ch_flounder	NVTEYDGQDAGSSNSWNWDVDLDPPNKDVEPGILLHGLKPWTQYAVVVKAVTLTMVENDH NVTEYDGQDAGSSNSWNWDVDLPPNKEGEPGILLHGLKPWTQYAVVVKAVTLTMVENDH NVTEYDGQDAGSNSWNWDVDLPPNKENDPGILLQGLKPWTQYAIYVKAVTLTMMENHH NVTEYDGQDAGSNSWNWDVDLPPKSEDFGILLQGLKPWTQYAIYVKATTLTMLENH NTEFPGQDGSSNSWNHVDVDLPQESTBFVSLPHLKPWTQYAIVKAVTL-VVEDKH NTEFPGQDGSSNSWHWDVDLPQESTBFVSLPHLKPWTQYAIVKATTL-QVEDKH NTEFPGQDGSSNSWHWDVDLPQDKTSEPVVSLPHLKPWTQYAIVKATTL-QVEDKH	593 594 592 587 589 588 588
human rat chicken xenopus zebrafish J_flounder Ch_flounder	IRGAKSEILYIRTNASVPSIPLDVLSASNSSSQLIVKWNPPSLPNGNLSYYIVRWQRQPQ IRGAKSEILYIRTNASVPSIPLDVLSASNSSSQLIVKWNPPSLPNGNLSYYIVRWQRQPQ IHGAKSIVYIRTNAAVPSIPLDVISASNSSSQLIVKWNPPSLPNGNLSYYIVRWQQQPQ IHGAKSKIVYIRTNAAVPSIPDOMISASNSSSQLVVKWNPPSLPNGNLSYYIVRWQQQPE UGAKSEVVYIRTNASAPSWPLDARAYANSSSILWVKWSPPIPAPNGNKTFYVLBWQQQPE ITGAKSDIYIRTRSPSSPVRDARAFANSSTKLVVKWSPPVPPNGNLTYYLVRWQQQPE	653 654 652 647 649 648 648
human rat chicken xenopus zebrafish J_flounder Ch_flounder	DGYLYRHNY SKD-KIPIRKYADGTIDIEEVTENFKTEVCGGEKGPCCACFKTEAEKQAE DGYLFRHNY SKD-KIPIRKYADGTIDVEEVTENPKTEVCGGDKGPCCACFKTEAEKQAE DSYLYRHNY SKD-KVPIRKYADGTIDTEEATEFTKFEGCGGEKGPCCACFKTEAEKQAE DRLIQYNY SKD-KVPIRKYANGTIDTEEGTEFTKFEGSVGEKGHCACKFKTEAEKQAE DGELYQHNY SKELKIPIRISATSISDMEGETKFTKSDVAGEKG-CCFCFKTEAELXAE DRELYQHNY SKELKIPIRISATGITDMONTKFHQVRLGGGREG-FMCUAEDAEKKDRE DRELYQHNY SKELKIPIRISATGITDMONTKFHQVRLGGGREG-FMCLAEDAEEKDRE	712 713 711 706 708 707 707

human rat chicken xenopus zebrafish J_flounder Ch_flounder	KEEAEYRKVFENFLHNSIFVPRP-ERKRRDVMQVANTMSSRSRNTTAADTYN-ITDP KEEAEYRKVFENFLHNSIFVPRP-ERKRRDVLQVANTMSSRSRNTTVADTYN-ITDP KEEAEYRKVFENFLHNSIFVPRP-DRKRRDVLQVORTINATATATNRN-ITGADHFTNASDA KDEAEYRKVFENFLHNSIFVPRP-NRRRDVLAVONSTVTSVEN-STEDFSN-FSDS AEDRSYRKVFENFLHNSIFTPRPPDRKRDVLGVONSTVTSVEN-STEDFSN-FSDS KDDRVFLKIFENFLHNAIVLPRPPDRRRDVFGVANDTLFHDSAGKGNTTLGPGN-STDG KDDRVFLKIFENFLHNAIFLPRPPDRRRDVFGVANDTLFHDSAGKGNTTLGPGN-STDG :: :**********	768 769 768 762 765 766 766
human rat chicken xenopus zebrafish J_flounder Ch_flounder	EELETEYPFFESRVDNK-ERTVISNLRPFTLYRIDIHSCNHEAEKLGCSASNFVFARTMP EEFETEYPFFESRVDNK-ERTVISNLRPFTLYRIDIHSCNHEAEKLGCSASNFVFARTMP EESEVEYPFFETRVDGK-ERTVISNLQPFTLYRIDIHSCNHEAEKLGCSASNFVFARTMP ERDDIEYPFYETRVDYKWERTVISNLQPFTLYRIDIHSCNHEAEKLGCSASNFVFARTMP ELPEKEYPFSEGKUHTEPMEIHNLRPFTVYRIDIHACNEEVGRCSAGAFVFSRTKP VPPIKEYPFMEDKSSAEYLDIPNLQPFTVYRLDIHACNEEVGRCSAGAFVFSRTKP *****	827 828 827 822 821 822 822 822
human rat chicken xenopus zebrafish J_flounder Ch_flounder	AEGADDIPGPVTWEPRPENSIFLKWPEPENPNGLILMYEIKYGSQVE-DQRECVSRQE AEGADDIPGPVTWEPRPENSIFLKWPEPENPNGLILMYEIKYGSQVE-DQRECVSRQE SEGADNIPGTVAWEREENTVYLKWLEPTNPNGLILMYEIKYGSQHGE-EKRECVSRQE AGADDIPGVTVWREDGOVIFLGWPEPLRPNGLIMYEIKYRGE-HRRCVSRQD ADKADDIPGSVTQERDEKGGIVLLMWEPELMPNGLILMYEIKYRLGTERKHECVSRQH AVKADDIPGKVIYERSDKVEGSVVLHWPEPIMPNGLILMYEIKFRLGTEPEKHECVSRQH	884 885 884 879 881 882 882 882
human rat chicken xenopus zebrafish J_flounder Ch_flounder	YRKYGGAKLNRLNPGNYTARIQATSLSGNGSWTDPVFFYQAKTG-YENFIHLIIALPYA YRKYGGAKLNRLNPGNYTARIQATSLSGNGSWTDPVFFYVPAKTT-YENFMHLIIALPYA YKKLGGAKLTHLNPGNYSARVQATSLAGNGSWTEVSFYVDFKSNYDNFLHLIVLPIA YKKLGGALKUNLPGNYSARVQATSLAGNGSWTEWSFYVVKLKPVTRNILGVVAIPLA YKVLGAQLSNLASGNYSARVRATSLAGNGSWTESVFYVPPKRNVDNALVYAIIIPVI YREHRGARLTNLSSGNYSARVRATSLAGNGSWTESVFFYVPPKRDUGYAFYLVIIIPII **	943 944 949 939 941 942 942
human rat chicken xenopus zebrafish J_flounder Ch_flounder	<pre>transmembrane domain Juxtamembrane domain VLLUGGLVIMLVYFRKRNNSRLGNGVLYASVNPEYFSAADVYVPDEWEVAREKITMSR ILLIVGGLVIMLYVFRKRNNSRLGNGVLYASVNPEYFSAADVYVPDEWEVAREKITMCR ESELUGISTUVCFVKKRNSDRLGNGVLYASVNPEYFSAADWYVPDEWEVPREKITMCR ULLLFVIVAVIIVTKKRNSDRLGNGVLYASVNPEYFSAADWYVPDEWEVAREKITMCR ATLLIASLTTILFFVKKRNSDRLGNGVLYASVNPEYFSAADWYVPDEWEVAREKITMCR ATLLIASLTTILFFVKKRNSDRLGNGVLYASVNPEYFSAADWYVPDEWEVAREKITMCR ::::::::::::::::::::::::::::::::::::</pre>	1003 1004 1004 999 1001 1002 1002
human rat chicken xenopus zebrafish J_flounder Ch_flounder	TITOSINE kinase domain ELGQGSFGMVYEGVAKGVVKDEPETRVAIKTVNEAASMRERIEFLNEASVMKEFNCHHVV ELGQGSFGMVYEGVAKGVVKDEPETRVAIKTVNEASAMRERIEFLNEASVMKEFNCHHVV ELGQGSFGMVYEGIAKGVVKDEPETRVAIKTVNEASAMRERIEFLNEASVMKEFNCHHVV ELGQGSFGMVYEGIAKGVVKDEPETRVAIKTVNEASAMRERIEFLNEASVMKEFNCHHVV ELGQGSFGMVYEGLAKGVVKDEPETRVAIKTVNEASAMRERIEFLENEASVMKEFNCHHVV ELGQGSFGMVYEGLAKGVKDEPETRVAIKTVNEASAMRERIEFLENEASVMKEFNCHHVV	1063 1064 1064 1059 1061 1062 1062
human rat chicken xenopus zebrafish J_flounder Ch_flounder	Tirosine kinase domain RLLGVVSQCQPTLVIMELMTRGDLKSYLRSLRPEMENNPVLAPSLSKMIQMAGEIADGM RLLGVVSQCQPTLVIMELMTRGDLKSYLRSLRPENENNVLIPPSLSKMIQMAGEIADGM RLLGVVSQCQPTLVIMELMTRGDLKSYLRSLRPDTESNSCQAPPTSLKKMIQMAGEIADGM RLLGVVSQCQPTLVIMELMTRGDLKSHLRSLRPTESNSCQPTPSLKKMIQMAGEIADGM RLLGVVSQCQPTLVIMELMTRGDLKSHLRSLRKENSTTQVLPPLKKMIQMAGEIADGM RLLGVVSQCQPTLVIMELMTRGDLKSHLRSLRKENSTTQVLPPLKKMIQMAGEIADGM	1123 1124 1124 1119 1121 1120 1120
human rat chicken xenopus zebrafish J_flounder Ch_flounder	Tirosine kinase domain ALINANKFVHRDLAARNCWAAEDFTVKIGDFGMTRDIETDWRKGGKGLLPVRWMSPES ALINANKFVHRDLAARNCWAEDFTVKIGDFGMTRDIETDWRKGGKGLLPVRWMSPES SULNANKFVHRDLAARNCWAEDFTVKIGDFGMTRDIETDWRKGGKGLLPVRWMSPES ALINANKFVHRDLAARNCWAEDFTVKIGDFGMTRDIETDWRKGGKGLLPVRWMSPES ALINANKFVHRDLAARNCWAEDFTVKIGDFGMTRDIETDWRKGGKGLLPVRWMSPES ALINANKFVHRDLAARNCWAEDFIVKIGDFGMTRDIETDWRKGGKGLLPVRWMSPES	1183 1184 1184 1179 1181 1180 1180
human rat chicken xenopus zebrafish J_flounder Ch_flounder	Tirosine kinase domain LKDGVFTYSDVWSFGVVLWEIATLAGOFOGLSNEQVLRFVMEGGLLDKPDNCPDMLFE LKDGVFTTHSDVWSFGVVLWEIATLAGOFOGLSNEQVLRFVMEGGLLEKPDNCPDMLFE LKDGVFTTHSDVWSFGVVLWEIATLAGOFOGNNEQVLRFVMEGGLLEKPDNCPDMLFE LKDGVFTTNSDVWSFGVVLWEIATLAGOFOGNSNEQVLRFVMEGGLLEKPDNCPDMLFE LKDGVFTTNSDVWSFGVVLWEIATLAGOFOGLSNEQVLRFVMEGGLLEKPONCPDMLFE LKDGVFTTNSDVWSFGVVLWEIATLAGOFOGLSNEQVLRFVMEGGLLEKPONCPDMLFE	1243 1244 1244 1239 1241 1240 1240
human rat chicken xenopus zebrafish J_flounder Ch_flounder	Tirosine kinase domain carboxy domain LMRACKQENFRMRPSLEIISSIKEEMEPGFREVSFYYSEENKPEPFEELDLEPEN LMRACKQENFRMRPSLEIISSIKDELDPAFKEVSFYYSEENKPPDTEELDLETEN LMRACKQENFRMRPSLEIISSIKDELDPAFKEVSFYSEENKPPDTEELDLETEN LMRACKQENFRMRPSLEIINSIKEELEPFREVSFYSEENKPPDTEELDLEVEN LMRACKQENFRMRPSLEIINSIKELESFFREVSFYSEENKPPDTEELDMEVEN LMRACKQENFRMRPSLEIINSIKDELDSFFREMSFYSEENKPPDTEELDMEVEN LMRACKQENFRMRPSLEIISSIKDELDSFFREMSFYSEENKPPTEELDMEVEN	1299 1304 1300 1295 1297 1296 1296
human rat chicken xenopus zebrafish J flounder Ch_flounder	Carboxy domain MESVPLDPSAS	1310 1315 1308 1303 1351 1356 1356
human rat chicken xenopus zebrafish J_flounder Ch_flounder	Carboxy.domain SSSLPLPDRHSGHKAENGPGPGVLVLRASFDERQPYAHMNGGRKNERALPLPQSSTC1 SSSLPLPERHSGHKAENGPGVLVLRASFDERQPYAHMNGGRKNERALPLPQSSTC1 SSTLQPTDKHSGHKAENGPGVVVLRASFDERQPYAHMNGGRKNERALPLPQSSAC1 SSCALQNSEHHAGHKSENGPGVVVLRASFDERQPYAHMNGGRKNERALPLPQSSAC1 SSCALDCHSGQVAANCPVVLLGPAFDETQPYAHMNGGRKNERALPLPQSSAC1 ALASFGQALDCHHSGHVSANGPVVVLRPNTDEMQPYAHMNGGRKNERALPLPQSSAC1 ALASFGQALDCHHSGHVSANGPVVVLRPNLDEMQPYAHMNGGRKNERALPLPQSSAC1 ::*:*: : *** ::**********	1367 1370 1363 1358 1405 1412 1412

huma rat chic zebr J_fl Ch_f

_	
	<u>B</u> domain
human	MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSAT-AGPETLCGAELV 59
rat	MGKISSLPTQLFKICLCDFLKIKIHIMSSSHLFYLALCLLTFTSSAT-AGPETLCGAELV 59
chicken	MEKINSLSTQLVKCCFCDFLKVKMHTVSYIHFFYLGLCLLTLTSSAA-AGPETLCGAELV 59
xenopus	METNNNLSTQLFKCYFCDILKLKMHKMSCIHLLYLVLCFLTLTHSAA-AGPETLCGAELV 59
zebrafish	MSSGHFFQGHWCDVFKCTMRCLPSTHTLSLVLCVLALTPATLEAGPETLCGAELV 55
J flounder	MSSALSFQWHLCDVFKSAMCCISCSHTLSLLLCVLTLTPTATGAGPETLCGAELV 55
Ch flounder	MSSALSFQWHLCDVFKSAMCCISCSHTLSLLLCVLTLTPTATGAGPETLCGAELV 55
-	*: **.:* : :. * : * **.*:* :: *
	B domain C domain A domain D domain
human	DALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKS7R 119
rat	DALOFVCGPRGFYFNKPTGYGSSIRRAPOTGIVDECCFRSCDLRRLEMYCAPLKPTKSAR 119
chicken	DALOFVCGDRGFYFSKPTGYGSSSRRLHHKGIVDECCFOSCDLRRLEMYCAPIKPPKSAR 119
xenopus	DTLOFVCGDRGFYFSKPTGYGSNNRRSHHRGIVDECCFOSCDFRRLEMYCAPAKPAKSAR 119
zebrafish	DTLOFVCGDRGFYFSKPTGYGPSSRRSHNRGIVDECCFOSCELRRLEMYCAPVKTGKSFR 115
J flounder	DTPOFVCGERGFYFSKPTGYGPNARRSRGIVDECCFOSCELRRLEMYCAPAKTSKAAR 113
Ch flounder	DTLOFVCGERGFYFSKPTGYGPNARRSRGIVDECCFOSCELRHLEMYCAPAKTSNAAR 113
-	

	*: ***** ******************************
	E domain
human	*: ***** *****************************
human rat	E domain SVRAQRHTDMPKTQKEVHLKN 140 SIRAQRHTDMPKTQKEVHLKN 140
human rat chicken	E domain SVRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKTQKEVHLKN 140
human rat chicken xenopus	E domain SVRAQRHTDMPKTQKEVHLKN 140 SIRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKAQK
human rat chicken xenopus zebrafish	E domain SVRAQRHTDMPKTQKEVHLKN 140 SIRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKAQK
human rat chicken xenopus zebrafish J flounder	E domain SVRAQRHTDMPKTQKEVHLKN 140 SIRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKAQKEVHLKN 140 SVRAQRHTDMPKAQKEVHFKN 140 SLRAQRHTDIPRTP
human rat chicken xenopus zebrafish J_flounder Ch flounder	E domain SVRAQRHTOMPKTQKEVHLKN 140 SIRAQRHTOMPKTQKEVHLKN 140 SVRAQRHTOMPKTQKEVHLKN 140 SVRAQRHTOMPKAQK
human rat chicken xenopus zebrafish J_flounder Ch_flounder	E domain SVRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKAQKEVHLKN 140 SVRAQRHTDMPKAQKEVHLKN 140 SVRAQRHTDMPKAQK
human rat chicken xenopus zebrafish J_flounder Ch_flounder	E domain SVRAQRHTDMPKTQKEVHLKN 140 SIRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKAQKEVHLKN 140 SVRAQRHTDMPKAQK
human rat chicken xenopus zebrafish J_flounder Ch_flounder	E domain SVRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKTQK
human rat chicken xenopus zebrafish J_flounder Ch_flounder human	E domain SVRAQRHTDMPRKTQKEVHLKN 140 SIRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKAQKEVHLKN 140 SVRAQRHTDMPKAQKEVHLKN 140 SURAQRHTDMPKAQK
human rat chicken xenopus zebrafish J_flounder Ch_flounder human rat	E domain SVRAQRHTDMPKTQKEVHLKN 140 SIRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKAQKEVHLKN 140 SURAQRHTDMPKAQKEVHLKN 140 SURAQRHTDMPKAQKEVHLKN 140 SURAQRHTDMPKACK
human rat chicken xenopus zebrafish J_flounder Ch_flounder human rat chicken	E domain SVRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKAQKEVHLKN 140 SVRAQRHTDMPKAQKEVHLKN 140 SVRAQRHTDMPKAQK
human rat chicken xenopus zebrafish J_flounder Ch_flounder human rat chicken xenopus	E domain SVRAQRHITOMPKTQKEVHLKN 140 SVRAQRHITOMPKTQK
human rat chicken xenopus zebrafish J_flounder Ch_flounder human rat chicken xenopus zebrafish	E domain SVRAQRHTDMPKTQKEVHLKN 140 SIRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKAQKEVHLKN 140 SVRAQRHTDMPKAQKEVHLKN 140 SIRAQRHTDIPRTPKKPISGHSSCKEVHQKN 140 SIRAQRHTDMPKAPKVSTAGHKVDKGTERTAQQPDKTKNKKRPLPGHSHSQALLFMRQS 173 *********: E domain ASRGSAGKNYTMN 153 TSRGNTGNRYTM 153 TSRGNTGSRGFKM 153 TSRGNTGSRGFKM 153 SSRGNTGSRMYMM 153
human rat chicken xenopus zebrafish J_flounder Ch_flounder human rat chicken xenopus zebrafish J_flounder	E domain SVRAQRHTDMPKTQKEVHLKN 140 SIRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKAQKEVHLKN 140 SVRAQRHTDMPKAQKEVHLKN 140 SVRAQRHTDMPAPKVSTAGHKVDKGTERTAQQPDKTKNKKRPLPGHSHSSFKEVHQKN 148 SVRAQRHTDMPAPKVSTAGHKVDKGTERTAQQPDKTKNKKRPLPGHSHSSFKEVHQKN 173 ************************************
human rat chicken xenopus zebrafish J_flounder Ch_flounder chicken xenopus zebrafish J_flounder Ch_flounder	E domain SVRAQRHTDMPKTQKEVHLKN 140 SIRAQRHTDMPKTQKEVHLKN 140 SVRAQRHTDMPKAQKEVHLKN 140 SVRAQRHTDMPKAQKEVHLKN 140 SIRAQRHTDMPKAQKEVHLKN 140 SIRAQRHTDMPKAQK

	cysteine domain	juxtamembrane domain	Tirosine_kinase domain	C_terminal domain	Whole protein
Ch_flounder/j_flounder	95	97	96	94	97
Ch_flounder/turbot	63	95	91	38	67
Ch_flounder/carp	72	95	92	63	76
Ch_flounder/zebrafish IGFR1a	69	92	92	66	74
Ch_flounder/zebrafish IGFR1b	58	92	92	50	68
Ch_flounder/xenopus	50	93	90	48	62
Ch_flounder/chicken	52	90	91	47	63
Ch_flounder/rat	48	86	91	42	61
Ch_flounder/human	49	88	91	41	61

В

	-					סדו ויכ
SUIK						3016
	B domain	C domain	A domain	D domain	E domain	

	В	С	Α	D	E	Whole
	domain	domain	domain	domain	domain	protein
Ch_flounder/j_flounder	97	100	95	88	73	97
Ch_flounder/turbot	100	100	91	88	49	96
Ch_flounder/carp	97	58	95	25	27	74
Ch_flounder/zebrafish	83	67	95	38	27	73
Ch_flounder/xenopus	97	67	86	50	26	66
Ch_flounder/chicken	93	42	91	38	26	69
Ch_flounder/rat	93	42	86	38	25	65
Ch_flounder/human	86	42	86	38	23	60

