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José Luis Barbero4, Enrique de Álava1,
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The cohesin complex is a ring-shaped proteinaceous struc-

ture that entraps the two sister chromatids after replica-

tion until the onset of anaphase when the ring is opened

by proteolytic cleavage of its a-kleisin subunit (RAD21 at

mitosis and REC8 at meiosis) by separase. RAD21L is a

recently identified a-kleisin that is present from fish to

mammals and biochemically interacts with the cohesin

subunits SMC1, SMC3 and STAG3. RAD21L localizes along

the axial elements of the synaptonemal complex of mouse

meiocytes. However, its existence as a bona fide cohesin

and its functional role awaits in vivo validation. Here, we

show that male mice lacking RAD21L are defective in full

synapsis of homologous chromosomes at meiotic prophase

I, which provokes an arrest at zygotene and leads to total

azoospermia and consequently infertility. In contrast,

RAD21L-deficient females are fertile but develop an age-

dependent sterility. Thus, our results provide in vivo

evidence that RAD21L is essential for male fertility

and in females for the maintenance of fertility during

natural aging.
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Introduction

Structurally, the somatic cohesin complex consists of four

subunits: two members of the family of proteins responsible

for the structural maintenance of chromosome (SMC1a and

SMC3) that heterodimerize, one kleisin subunit that closes

the ring (Scc1/RAD21) and is the substrate for the protease

separase, and a HEAT repeat domain protein (SA1/STAG1 or

SA2/STAG2). In vertebrates, during prophase, most of the

cohesins are dissociated from the chromatid arms by phos-

phorylation of the STAG1/2 subunit by PLK1 (polo-like-

kinase 1) (Losada et al, 2002; Sumara et al, 2002). The

remaining centromeric cohesins are released from chromo-

somes at the onset of anaphase by the cleavage of RAD21 by

separase (Musacchio and Salmon, 2007).

During meiosis, two rounds of chromosome segregation

follow a single round of replication to generate haploid

gametes. The first meiotic division differs from mitosis in

that homologous chromosomes pair, synapse, recombine and

segregate to opposite poles as a result of their mono-orienta-

tion. The second meiotic division is similar to mitosis since

the two recombined chromatids segregate to opposite poles

(bi-orientation). During the onset of anaphase I, loss of sister

chromatid arm cohesion occurs following separase-depen-

dent cleavage of REC8, that replaces RAD21 during meiosis

(Kudo et al, 2006, 2009). However, centromeric cohesion is

maintained by the protective action of shugoshin-like-2 pre-

venting separase-mediated cleavage of REC8 (Llano et al,

2008). This mechanism enables bi-orientation of recombined

homologues. Once chromosomes have congressed at the

metaphase II plate, separase is reactivated and centromeric

cohesin complexes are released to allow chromatid segrega-

tion. In addition to REC8 (Parisi et al, 1999), a meiotic

paralogue of RAD21, there are also meiosis-specific mamma-

lian paralogues of SMC1a, and STAG1–2, that is SMC1b and

STAG3, respectively (Prieto et al, 2001; Gruber et al, 2003).

Aside from these canonical functions, the cohesin com-

plexes also participate in somatic homologous recombination

between sister chromatids allowing the assembly of recom-

binational repair complexes, as well as recombination

between homologous chromatids by assembly of the synap-

tonemal complex (SC) in meiocytes (Klein et al, 1999;

Hartsuiker et al, 2001). The SC consists of a proteinaceous

structure, the axial element (AE), allowing the association of

each pair of sister chromatids. After pairing, the AEs are

called lateral elements (LEs) to which transverse filaments

(TFs) associate to give rise to the tripartite SCs. The SC

provides the structural framework for synapsis, double-

strand break (DSB) repair and exchange between homolo-

gues (Henderson and Keeney, 2005). During prophase I, most

if not all, cohesin subunits expressed in mammalian sperma-

tocytes colocalize with SYCP3, a structural AE/LE component

(reviewed in Suja and Barbero, 2009). In fission and budding
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yeast, the RAD21/Scc1 a-kleisin of the cohesin complex is

replaced by the meiosis-specific REC8 protein. Yeast rec8

mutants exhibit premature sister chromatid separation during

prophase I, that are defective for the assembly of the SC

(Klein et al, 1999). It has been assumed that most eukaryotes

display a dual a-kleisin system (REC8 versus RAD21) similar

to the well-studied system of Schizosaccharomyces pombe and

Saccharomyces cerevisae, aside from the notable exception of

Caenorhabditis elegans (Severson et al, 2009). Very recently,

we and two other groups have biochemically characterized a

new member of the a-kleisin family of proteins, RAD21L

(Gutiérrez-Caballero et al, 2011; Ishiguro et al, 2011; Lee

and Hirano, 2011). RAD21L, is a paralogue of RAD21 and it

is transcribed more abundantly in testis and has been postu-

lated to be a canonical cohesin subunit. RAD21L interacts

with SMC3, SMC1a/b and STAG3 (Gutiérrez-Caballero et al,

2011; Ishiguro et al, 2011; Lee and Hirano, 2011).

Consequently, the protein is localized to the AEs/LEs in

meiocytes.

From the four meiotic-specific cohesins described (REC8,

STAG3, SMC1b and RAD21L), loss of function mouse

models for REC8 (Bannister et al, 2004; Xu et al, 2005) and

SMC1b (Revenkova et al, 2004) have been developed. REC8

mutant male and female mice are sterile and show severe

defects in synapsis, and chiasma formation (Bannister et al,

2004; Xu et al, 2005). SMC1b-deficient males show a pachy-

tene arrest whereas mutant females present a premature

loss of cohesion at metaphase II that leads to sterility

(Revenkova et al, 2004).

In this work, we describe the precise localization of

RAD21L in mouse spermatocytes and its functional charac-

terization by a gene targeted mutation in the mouse. We

provide cytological and in vivo evidence showing that the

roles of RAD21L differ from those of RAD21 and REC8, and

that RAD21L is as essential as REC8 for driving the initial

steps of prophase I in male meiosis. RAD21L-deficient males

show a defect in chromosome synapsis at prophase I, which

provokes an arrest at a zygotene-like stage leading to total

azoospermia. In contrast, RAD21L-deficient females are fer-

tile but develop an age-dependent sterility. Thus, our results

demonstrate for the first time that the recently identified

RAD21L is a functionally relevant meiotic a-kleisin, which

is essential for male fertility and for the maintenance of

fertility during natural aging.

Results and discussion

Immunolocalization of the RAD21L protein

The recently identified third member of the a-kleisin protein

family in mammals, RAD21L, is expressed in spermatocytes

throughout meiosis I (Ishiguro et al, 2011; Lee and Hirano,

2011), with some discrepancies in relation with its time of

disappearance (pachytene versus metaphase I). In order to

assess the localization of RAD21L, we carried out a detailed

analysis of mouse spermatocytes spreads using immunofluor-

escent (IF) antibodies. RAD21L was first detected at the

leptotene stage as short threads that colocalized with

SYCP3 along developing AEs (Figure 1A–D). During zygo-

tene, RAD21L colocalized with SYCP3 at both the autosomal

AEs/LEs, and the unsynapsed AEs of the sex chromosomes

(Figure 1E–H). In early pachytene, RAD21L was detected as

lines along the autosomal SCs where it colocalized with

SYCP3. Further signals for RAD21L were found at the pseu-

doautosomal region of homology between the sex chromo-

somes, where their AEs are synapsed. Furthermore, there was

some additional staining in the unsynapsed AEs of the XY

bivalent (Figure 1I and J). By late pachytene, there was an

increase in RAD21L labelling on the sex chromosomal AEs

and on the chromatin of the sex body (Figure 1K and L). This

localization contrasts with the observed weak staining of

REC8 at the AEs of the sex chromosomes at pachytene (see

asterisks in Figure 7Q and R). In early diplotene, the intensity

of the RAD21L labelling decreased along the desynapsing and

still synapsed LEs (Figure 1M–P) to finally disappear by mid-

diplotene (Figure 1Q and R). Concomitantly, RAD21L label-

ling began to accumulate at centromeres (Figure 1O–T) while

it was progressively lost from the AEs and the chromatin of

the sex chromosomes (Figure 1M–T). During diakinesis,

RAD21L was highly enriched at the centromeres of all auto-

somes and was not detected along the desynapsed LEs.

However, there was a faint RAD21L signal at the unsynapsed

AEs of the sex chromosomes (Figure 2A and B). This pattern

of RAD21L distribution remained during metaphase I (Figure

2C–F). At higher magnification, metaphase I autosomal bi-

valents show RAD21L signal at their centromeres but the

labelling did not completely colocalize with SYCP3 at the

inner centromere domain (ICD) (Figure 2G–I). With regards

to the metaphase I sex bivalent, a faint RAD21L signal was

observed along its interchromatid domain (Figure 2J).

In addition, the centromeric RAD21L signal at the Y was

larger than that at the centromere of the X chromosome

(Figure 2J). The labelling of RAD21L was similar for both

metaphase I and anaphase I (Figure 2F and K). During the

second meiotic division, RAD21L was detected as a pair of

brightly stained spots at the centromeres of metaphase II

chromosomes (Figure 2L), and as single spots in segregating

chromatids at anaphase II (Figure 2M).

Our results partially agree with those very recently re-

ported on the distribution of RAD21L in mouse spermatocytes

by Ishiguro et al (2011) and to a lesser extent with those

reported by Hirano’s group (Lee and Hirano, 2011). However,

there are some differences with respect to the distribution

pattern of RAD21L along the AEs/LEs. Besides the remark-

able divergence in the timing of disappearance of RAD21L

during meiosis I (pachytene versus metaphase I), these two

groups described that RAD21L and REC8 localize as discon-

tinuous (mutually exclusive) lines along zygotene AEs/LEs

and pachytene SCs. Based on this, Ishiguro et al (2011) have

proposed a cohesin ‘barcode’ model where meiosis-specific

cohesin complexes with either RAD21L or REC8 have intrin-

sic and alternating loading sites along the AEs/LEs, which

might facilitate homologous pairing. However, our antibodies

detected continuous lines along SCs. These discrepancies

might be due to differences in image acquisition, different

sensitivity of the antibodies used, or dilutions employed.

This aspect will need further clarification.

The three kinds of cohesin complexes comprised of

RAD21, RAD21L or REC8 might have different functions

during both meiotic divisions since their distribution and

dynamics are different not only during prophase I, but also

during metaphase I and metaphase II. For instance, in

metaphase II chromosomes, RAD21L appears as two separate

signals at each centromere (Figure 2L), which is in contrast to

RAD21 that has not been detected at centromeres (Parra et al,
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2004), while REC8 appears at the ICD as one spot between

sister kinetochores consistent with its role in centromere

cohesion (Kudo et al, 2006). While the distribution of

REC8 is consistent with its function in maintaining both

arm and centromere cohesion during the two meiotic divi-

sions (Kudo et al, 2006, 2009; Tachibana-Konwalski et al,

2010), the localization of RAD21 and RAD21L suggests

that they might have different roles. In this regard, the

accumulation of RAD21L at centromeres during diplotene,

its enrichment at the centromere of the Y chromosome

during metaphase I, and its distribution at metaphase II

centromeres is strikingly similar to the distribution of the

shugoshin-like-2 (Gómez et al, 2007; Llano et al, 2008) and

MCAK (Parra et al, 2006) during male mouse meiosis. Thus,

the enrichment of RAD21L at centromeres during diplotene

might contribute to the assembly of the ICD (Parra et al,

2009).

Gene disruption of Rad21l

To address the function of RAD21L and to validate genetically

that it constitutes a functional subunit of a novel meiotic

cohesin, we created a targeted mutation of the murine Rad21l

locus by an insertional strategy that disrupts the open reading

frame (ORF) of the locus (Supplementary Figure S1A and B;

Adams et al, 2004). Heterozygous targeted mice transmitted

the mutation to the offspring at Mendelian frequencies

(1:2:1). RT–PCR was used to evaluate the interruption of

the ORF of the Rad21l gene in the homozygous targeted mice

(Supplementary Figure S1C; see Materials and methods). The

absence of the protein in these homozygous targeted mice

was also validated using two different antibodies, which

were specific against RAD21L (Supplementary Figures S1E

and S2; Gutiérrez-Caballero et al, 2011). Consequently, sper-

matocytes from homozygous targeted mice did not show

RAD21L immunofluorescence (Supplementary Figure S1D).

Figure 1 Distribution of RAD21L during prophase I. Double immunolabelling of RAD21L (green) and SYCP3 (red) in spread spermatocytes.
(A–D) During leptotene, RAD21L appears as a succession of small dots that colocalize with SYCP3 along developing AEs. (E–H) During
zygotene, RAD21L and SYCP3 colocalize along AEs/LEs. Sex chromosomes (X, Y) have still not synapsed. (I–L) RAD21L colocalizes with
SYCP3 along autosomal SCs and sex chromosomes (XY) AEs. In late pachytene (K, L), RAD21L appears enriched at the chromatin of the
sex body (XY) and at their AEs. (M–P) In early diplotene, RAD21L vanishes along desynapsing autosomal LEs, but is still enriched at the sex
AEs and at the sex body (XY). (Q–T) In mid and late diplotene, RAD21L appears at the centromeres and along the sex AEs, and faintly at the sex
body (XY).

RAD21L exhibits sexual dimorphism in fertility
Y Herrán et al

&2011 European Molecular Biology Organization The EMBO Journal VOL 30 | NO 15 | 2011 3093



Heterozygous targeted mice showed neither cellular nor

aberrant organismal phenotypes (indicative of the lack of a

gain of function). Thus, we concluded that the mutation is

functionally a null allele of Rad21l.

Histological analysis and male infertility in Rad21l�/�

mice

Rad21l�/� mice developed normally and displayed no overt

phenotype. However, while female mice lacking RAD21L

were fertile, males were sterile since they failed to produce

offspring. Testes from Rad21l�/� mice were on average

70% smaller than those from wild-type mice, and their

epididymides lacked spermatozoa (Figure 3A and B).

Histopathological analysis revealed an absence of postmeio-

tic cell types despite of the presence of spermatogonia, and

Sertoli and Leydig cells (Figure 3A). Within a mouse testis,

the seminiferous epithelium contains a mixture of germ cells

at various developmental stages. Staging of each tubule

section is defined (from I to XII) according to the group of

associated germ cell types that are present (Russell, 1990).

Following this criteria, mutant mice appeared to be arrested

at stage IVof the epithelial cycle (Figure 3A). FACS analysis of

whole cells from seminiferous tubules was carried out and

sustained the prophase I arrest by the absence of the haploid

compartment in Rad21l�/� testes (Figure 3B). In order to rule

out proliferation defects in spermatogonia, PCNA immuno-

staining of wild-type and Rad21l�/� tubules was performed

and no differences in the basal layer of PCNA-positive cells

were found (Figure 3C). Given the lack of spermatozoa, we

carried out TUNEL staining and showed that the prevalence

of apoptotic cells in Rad21l�/� tubules was higher than in

wild type (Figure 3C). Finally, studying the histology of the

testis, it became clear that spermatogenesis proceeds appar-

ently normal up to prophase I. Then, in stage IV, there is a

massive apoptosis of spermatocytes. Extensive apoptosis was

also observed at 19 days of age (Figure 3D), indicating that

spermatocytes of the first wave of spermatogenesis were

already affected. Thus, we conclude that RAD21L is essential

for spermatogenesis in the mouse and its deficiency provokes

total azoospermia that leads to infertility.

SC morphology and synapsis in mutant spermatocytes

To functionally analyse the infertility in the mutant mice and

to more precisely characterize the meiotic arrest, we first

studied the assembly of the SC. Spermatocytes spreads were

studied and staged by staining for SYCP3. It appeared that in

Figure 2 Distribution of RAD21L during diakinesis and meiotic divisions. Double immunolabelling of RAD21L (green) and SYCP3 (red) and
counterstaining of chromatin with DAPI (blue) in spread spermatocytes. (A–F) During early diakinesis (A, B) and metaphase I (C–F), RAD21L
is present at the centromeres of all chromosomes and at the interchromatid domain of the sex bivalent (XY). Arrowheads mark the
enlargements of SYCP3 along the X chromosome in diakinesis, and the large agglomerates of SYCP3 in the cytoplasm of metaphase I
spermatocytes. (G–I) Enlargements of three selected metaphase I bivalents. RAD21L is enriched at the centromeres but does not completely
localize with SYCP3, and is not present at the interchromatid domain where SYCP3 is detected. (J) Selected metaphase I sex bivalent. RAD21L
appears as a faint signal along the interchromatid domain and as bright signals at the centromeres. The RAD21L signal at the centromere of the
Y chromosome (Y) is larger than that present at the X chromosome (X). (K) RAD21L partially colocalizes with SYCP3 at anaphase I
centromeres. Arrowhead marks an SYCP3 agglomerate. (L, M) RAD21L appears as a pair of signals at metaphase II centromeres (L) and as
single signals at anaphase II centromeres (M).
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the absence of RAD21L, synapsis between homologues was

not completed (Figure 4A and B). To determine the extent of

the disruption of synapsis, we monitored the distribution of

the TF protein SYCP1 as colabelling of SYCP3 and SYCP1

highlights regions of synapsis in wild types. Mutant sperma-

tocytes did not proceed beyond zygotene-like stage

(Figure 4A). This blockade was further supported by the

absence of immunolabelling for the mid-pachytene-specific

histone variant H1T (Supplementary Figure S3), supporting

the observed arrest at epithelial stage IV as determined by

histological analysis (Figure 3A). Using SYCP3 staining of the

zygotene-like spermatocytes from Rad21l�/� mice, we ob-

served discontinuous/fragmented stretches of AEs that did

not progress to the expected 19 fully synapsed autosomal

bivalent chromosomes (Figure 4A and B). Furthermore, a

fraction of the arrested spermatocytes displayed ring-like

structures (Figure 4B, arrowhead) and synapsis between

non-homologous chromosomes occurred (Figure 4A and B,

arrows). To further analyse the synaptic defects, we investi-

gated the centromere distribution by immunolabelling with a

human anti-centromere antibody (ACA) (Figure 4B). In wild-

type leptotene spermatocytes, the number of centromere

signals never exceeded 40. As synapsis progressed, these

centromeric foci diminished to 21 (19 signals from synapsed

autosomes þ 2 signals of the XY bivalent) at pachytene

when homologous pairing of autosomes is complete and their

centromeres are very closely juxtaposed (Figure 4B).

In Rad21l�/� zygotene-like spermatocytes, we scored on

average 30±3.5 foci (30 nuclei analysed). This result also

points to a deficient synapsis between homologues, at least at

Figure 3 The absence of RAD21L provokes azoospermia. (A) The deficiency of RAD21L promotes a complete block of mouse spermatogenesis.
Genetic ablation of Rad21l leads to a reduction of the testis size, and an arrest of spermatogenesis in epithelial stage IV, identified by the
presence of intermediate spermatogonia (arrows) about to divide into B spermatogonia. Massive apoptosis of spermatocytes (asterisks) can be
seen. The spermatogenic arrest leads to empty epididymides and azoospermia. Bar in upper panels, 100 mm and in lower panels, 25mm. (St)
Seminiferous tubules. (Ep) Epididymides. (B) Abnormal ploidy of Rad21l�/� spermatocytes. FACS analysis of cells from seminiferous tubules
showing the absence of the haploid compartment in Rad21l�/� testes. (C) Immunohistochemical detection of proliferating cells with anti-PCNA
and apoptotic cells by TUNEL staining show the absence of proliferative defects and an increase of apoptotic cells in Rad21l�/� seminiferous
tubules, respectively. Bar in both panels, 25mm. (D) Tubule degeneration in juvenile mice (13 days postpartum (d.p.p.) and 19 d.p.p.) lacking
RAD21L and spermatogenic arrest prior to pachytene studied by histology of testes from Rad21lþ /þ and Rad21l�/� males. At 13 d.p.p.,
spermatogenesis has reached to late zygotene and at 19 d.p.p. to late pachytene. Spermatocyte apoptosis (asterisks) was first seen in 19 d.p.p.
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their centromeric regions (Figure 4B). In order to further

study this failure of synapsis, we stained spermatocytes for

the kinase ATR and the DNA-binding protein TOPBP1 as these

reliably stain the unsynapsed AEs/LEs at leptotene–zygotene

and the unsynapsed AEs and the chromatin of the sex body at

pachytene (Perera et al, 2004). Moreover, TOPBP1 and ATR

also accumulate at the unsynapsed AEs of mutant spermato-

cytes with a meiotic arrest such as Dmc1�/� and Msh5�/�

spermatocytes (Barchi et al, 2005). Our immunolabelling

results on wild-type spermatocytes revealed that ATR and

TOPBP1 appeared as foci along the unsynapsed leptotene and

zygotene AEs/LEs, whereas at mid-pachytene both proteins

were restricted to the sex body (Figure 4C and D). RAD21L-

deficient and wild-type spermatocytes showed a similar

number of ATR and TOPBP1 foci at leptotene and zygotene

AEs. However, as meiosis arrested at a zygotene-like stage in

Rad21l�/�, these foci also persisted and were not eliminated

(Figure 4C and D). In summary, RAD21L deficiency in mouse

spermatocytes leads to abnormal AEs/LEs, which are frag-

mented and poorly aligned/synapsed (a large number of AEs

are kept individually), some stretches of AEs and LEs are

decorated with SYCP1 and synapsis between non-homolo-

gous chromosomes occurs.

Defective DSB processing in the mutant spermatocytes

The absence of REC8 leads to severe defects in DSB proces-

sing in yeast and to a lesser extent in mouse meiosis (Klein

et al, 1999; Xu et al, 2005). Taking into account these data

Figure 4 Rad21l�/� spermatocytes show defects in synapsis. (A) Double labelling of SYCP3 (red) and SYCP1 (green) showing
fragmented AEs/LEs with aberrant synapsis and with patches of SYCP1 in mutant spermatocytes (arrow) as compared with their wild-type
control. (B) Double immunolabelling of SYCP3 (red) and kinetochores (anti-centromere autoantibody, ACA (green)) in Rad21lþ /þ and
Rad21l�/� spermatocytes. In wild-type spermatocytes, the number of ACA signals is reduced from 40 to 21 between zygotene to pachytene
stage. These signals localize at one end of the AEs/SCs. In Rad21l�/� spermatocytes, synapsis is incomplete and the number of ACA signals is
always higher than 21. The presence of some centromeres along the same synapsed region (blue arrow), some unsynapsed AEs between
synapsed regions (arrow) and the presence of ring structures formed by chromosomes with two neighbouring centromeres (arrowhead) are
indicatives of non-homologous synapsis. (C, D) Double immunolabelling of SYCP3 (red) and ATR or TOPBP1 (green) in wild-type or Rad21l�/�

spermatocytes. In wild-type spermatocytes, ATR (C) and TOPBP1 (D) proteins localize to unsynapsed AEs. At pachytene, these proteins only
appear at the sex body. In Rad21l�/� zygotene-like spermatocytes, these proteins remain accumulated at AEs. *Sex body (XY).
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and the arrest observed in the Rad21l mutant, we studied

whether RAD21L deficiency promotes a deficit in the repair of

the programmed DSBs generated by the nuclease SPO11 at

early leptotene, a frequent cause of meiotic arrest (Viera et al,

2009). Thus, we first monitored the formation of DSBs and

analysed the presence of g-H2AX histone variant, which is

phosphorylated at prophase I in response to the SPO11-

induced DSBs in an ATM-dependent manner. At zygotene,

g-H2AX labelling was equally strong in both Rad21l�/� and

Rad21lþ /þ spermatocytes (Figure 5A). As pairing proceeds,

g-H2AX staining diminished in wild-type pachytene sperma-

tocytes and appeared mainly at the chromatin of the sex body

(Figure 5A). However, in Rad21l�/� spermatocytes arrested at

a zygotene-like stage, the g-H2AX labelling remained in the

chromatin of synapsed and unsynapsed chromosomes,

although this staining was reduced when compared with an

earlier zygotene-like stage (Figure 5A). This result suggests

an accumulation of unrepaired DSBs and/or asynapsis in

Rad21l�/�-arrested spermatocytes.

We next analysed the kinetics of proteins involved in this

DSB-induced signalling cascade. After DSBs are induced,

RAD51 is recruited to these early recombination nodules,

which promotes homologous strand invasion (Mimitou and

Symington, 2009). In wild-type zygotene spermatocytes,

RAD51 assembles on the AEs/LEs of bivalents and disappears

towards pachytene, with the exception of the unsynapsed sex

AEs (Figure 5B). In Rad21l�/� zygotene-like spermatocytes,

RAD51 immunolabelling was similar to wild-type zygotene

controls (Figure 5B). These results suggest that RAD51 no-

dules are sustained in mutant spermatocytes either because

RAD21L is required for their resolution or because meiotic

progression arrests before the stage at which this process take

place because of the synapsis defects.

Subsequently, we determined the distribution of the repli-

cation protein A (RPA) in RAD21L-deficient spermatocytes.

RPA is a single-strand DNA-binding protein that interacts with

RAD51 during the strand exchange and appears after RAD51

at the AEs/LEs (Moens et al, 2007). We observed a large

number of RPA foci in both Rad21l�/� and wild-type zygotene

spermatocytes (Supplementary Figure S4A). In wild-type

pachytene spermatocytes, RPA foci were present mainly

over the synapsed LEs of the autosomes and more abun-

dantly along the pseudoautosomal region of the sex chromo-

somes. In RAD21L-deficient zygotene-like spermatocytes, the

RPA foci were mainly present at the LEs similar to wild-type

zygotene controls (Supplementary Figure S4A).

Finally, we analysed the presence of MLH1 foci in mutant

spermatocytes. MLH1 is a component of the postreplicative

mismatch repair system and the number of its foci during

pachytene matches those of chiasmata (Moens et al, 2007).

MLH1 foci were absent in Rad21l�/� zygotene-like nuclei

(Figure 6A), while one/two MLH1 foci per bivalent were

observed in wild-type pachytene nuclei. Based on these

results, we studied the recombination intermediary protein

MSH4 since it mediates the transition from the initial recom-

bination proteins RPA to MLH1 (Santucci-Darmanin et al,

2000). In Rad21l�/� zygotene-like spermatocytes, MSH4 sig-

nal was slightly decreased to that found in wild-type controls

(Supplementary Figure S4B), suggesting that early/intermedi-

ate steps of recombination might be already altered in

RAD21L null spermatocytes.

Okadaic acid-induced metaphase I-like spermatocytes

We further investigated whether crossing over (CO) and

chiasmata could be formed in the absence of the meiotic

arrest that precludes the Rad21l�/� spermatocytes to enter

into pachytene, as well as the involvement of RAD21L in

centromeric cohesion. To this end, we exposed the mutant

spermatocytes to the PP2A inhibitor okadaic acid (OA), to

allow in vitro transition from pachytene to metaphase I

(Wiltshire et al, 1995). After OA treatment of wild-type

spermatocytes, there was a rapid induction of SC disassem-

bly, bivalent separation and chiasmata formation, which does

not affect centromere cohesion. Treated wild-type spermato-

cytes revealed 20 bivalents, positive for SYCP3 immunolabel-

ling at the interchromatid and centromeric domain, with two

pairs of unseparated sister kinetochores, which were stained

with ACA serum, and at least one chiasma (Figure 6Ba–c).

In contrast, OA-treated Rad21l�/� spermatocytes displayed 40

unattached univalents with a characteristic labelling for

Figure 5 DSB-associated proteins in Rad21l�/� spermatocytes. (A, B) Double immunolabelling of SYCP3 (red) with g-H2AX (blue) and
RAD51 (green) in wild-type and Rad21l�/� spermatocytes. In wild-type zygotenes, g-H2AX (A) labels the chromatin and RAD51 (B) labels
multiple foci on the AEs/LEs. At wild-type pachytene, g-H2AX labelling is reduced to the sex body and RAD51 foci are restricted to the XY
bivalent. In RAD21L-deficient spermatocytes, g-H2AX (A) and RAD51 (B) labelling is sustained in the zygotene-like-arrested spermatocytes.
*Sex body (XY).
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Figure 6 The deficiency of RAD21L prevents CO and does not affect centromeric cohesion. (A) Double immunolabelling of SYCP3 (red) with
MLH1 (green). MLH1 foci are absent at the AEs/LEs of Rad21l�/� spermatocytes whereas at least one focus is present along each autosomal SC
in wild-type pachytene spermatocytes. (B) Double immunolabelling of SYCP3 or REC8 (red) with ACA (green) and DAPI (blue) in wild-type and
Rad21l�/� spermatocytes. OA-induced metaphase I plates of wild-type spermatocytes give rise to 20 bivalents each with two opposed
centromere signals (Ba–Bc, Bg–Bi), whereas Rad21l�/� spermatocytes lead to 40 separated centromere signals (Bd–Bf, Bj–Bl). The absence of
spermatocytes with 440 independent signals of ACA (Bd–Bf) and REC8 (Bj–Bl) revealed the preservation of the centromeric cohesion in the
absence of RAD21L. Islets represent magnification of one wild-type bivalent and some Rad21l�/� unjoined chromosomes.
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SYCP3 only at the centromeric domain (Figure 6Bd–f) (20

cells per individual; 3 individuals from each genotype).

To further demonstrate that centromeric cohesion was not

affected by the absence of RAD21L, we stained these pseu-

dometaphases with REC8 and ACA and showed that REC8

staining persisted at centromeres in metaphase I-like sperma-

tocytes from Rad21l�/� mice (Figure 6Bj–l). Altogether, these

results reveal that the DSBs can start as part of the meiotic

recombination programme in the absence of RAD21L, but

they are not processed appropriately and accumulate in an

intermediate unrepaired state before reciprocal recombina-

tion and CO take place. The observation of 40 rather than 80

centromere signals associated with separated chromatids is

indicative of the persistence of centromeric cohesion. These

results are in agreement with the apparent release of RAD21L

from the desynapsed LEs at diplotene, whereas RAD21 and

REC8 persist and do not relocate to centromeres (Eijpe et al,

2003; Parra et al, 2004), suggesting that RAD21L-containing

cohesin complexes are not required for maintaining sister

chromatid arm cohesion from diplotene up to the metaphase

I/anaphase I transition. These results, together with the

preferential localization of RAD21L at the sex chromosomal

AEs at the expense of REC8 (Figure 7Q and R), make it

tempting to speculate that RAD21L is involved in the arrange-

ment of specific cohesin complexes that despite not partici-

pating in arm chromosome cohesion have important roles in

the assembly of the SC, progression of synapsis and recom-

bination and in sex body formation in spermatocytes.

In Smc1b�/� mice, metaphase II chromosomes from oo-

cytes and metaphase I OA-induced chromosomes from sper-

matocytes are defective in centromere cohesion (Revenkova

et al, 2004). This chromosomal phenotype has not been

analysed in Rec8 mutant mice since males (in the absence

of OA experiments) and females show a premature arrest

prior to pachytene due to a lack of full homologous synapsis.

However, it is widely assumed that REC8 is the essential

kleisin involved in chromosome cohesion in meiosis I and II

based on the phenotype of Rec8 null mutant models in several

species (Klein et al, 1999; Bannister et al, 2004; Xu et al, 2005;

Severson et al, 2009). This is also confirmed using genetically

modified mice with mutations in the Rec8 gene (Kudo et al,

2009; Tachibana-Konwalski et al, 2010). Although the OA-

induced chromosomes from Rad21l�/� spermatocytes do not

fully resemble metaphase I stage with a functional meiotic

spindle, the maintenance of centromeric cohesion under

these experimental conditions in Rad21l mutant spermato-

cytes (Figure 6Bd–f and Bj–l), together with the cytological

localization of RAD21L in metaphase I and II (Figure 2D, F

and L), indicates that RAD21L is not involved in chromosome

cohesion in males. Thus, and although not strictly demon-

strated in all of these experimental models, it is very likely

that the only a-kleisin supporting chromosome cohesion in

mammalian meiosis is REC8 by forming a cohesin complex

with SMC3, SMC1b and STAG3.

Cohesion complexes in mutant spermatocytes

RAD21L has recently shown to be a component of the cohesin

complex together with SMC1a/b, SMC3 and STAG3

(Gutiérrez-Caballero et al, 2011; Ishiguro et al, 2011;

Lee and Hirano, 2011). Therefore, also considering the

stoichiometric relationship of each subunit within a cohesin

complex, the genetic ablation of RAD21L could alter the

loading at the cohesin axis of other subunits. We thus under-

took a direct analysis of the presence of different cohesin

subunits in the absence of RAD21L. There was no substantial

variation in the loading of REC8, SMC1b, RAD21 or SMC3

along the cohesin axis at the AEs/LEs in mutant zygotene-like

spermatocytes (Figure 7F, N, P and V). However, the exis-

tence of STAG3, and to a lesser extent SMC1a, was partially

reduced from leptotene to zygotene-like arrest when

compared with wild-type spermatocytes (Supplementary

Figures S5 and S6; Figure 7H and X). In mouse testis extracts,

it has been shown by immunoprecipitation analysis that

STAG3 associates with the three a-kleisins (Ishiguro et al,

2011; Lee and Hirano, 2011). We now provide in vivo evidence

that lack of RAD21L is sufficient to promote a partial loss of

STAG3 from the AEs/LEs. Overall, these data show that

RAD21L is interacting in vivo with STAG3, leading to a

functional and meiosis-specific cohesin complex, together

with SMC3 and SMC1, that is essential for the synapsis of

homologous chromosomes.

From a more functional point of view, STAG3 is normally

assembled in the AEs/LEs of REC8-deficient spermatocytes

(Bannister et al, 2004). Taken together, and given the impos-

sibility to analyse spermatocytes in Rad21�/� mice due to

their embryonic lethality (Xu et al, 2010), these results

strongly suggest that RAD21L is quantitatively an important

a-kleisin involved in STAG3 complexing.

Telomere behaviour in mutant spermatocytes

The formation of a cluster of telomeres very early during

meiotic prophase is important for accurate pairing and re-

combination (Scherthan, 2001). Mice deficient for the cohesin

SMC1b show an incomplete attachment of telomeres to the

nuclear envelope (Adelfalk et al, 2009). We therefore inves-

tigated telomere distribution in RAD21L-deficient spermato-

cytes. We analysed this feature on squashed spermatocytes to

preserve the separation of peripheral and internal nuclear

domains. While in wild-type pachytene spermatocytes, all

telomeric signals were close to the nuclear envelope

(Supplementary Figure S7Aa), in Rad21l�/� zygotene-like

spermatocytes some telomeric signals (from 1 to 6) appeared

within the nucleus (Supplementary Figure S7Ab and c

and B). These results indicate that in the absence of

RAD21L, the attachment of telomeres to the nuclear envelope

is partially misregulated.

The function of SMC1b in telomere protection rather than

its role in AE assembly may be responsible for defective

bouquet formation (Adelfalk et al, 2009). It is unclear

whether the mild telomere disorganization observed is due

to the general reduction of functional cohesin complexes

caused by the loss of the subset of cohesin complexes

containing RAD21L or due to the lack of RAD21L, specifically.

Meiosis in mutant female mice

In contrast to RAD21L-deficient males, Rad21l�/� females

were fertile up to 6 months of age and generated healthy

offspring with litter sizes similar to wild-type females.

However, the mutant females exhibited premature onset of

subfertility around this age, showing on average 5.2 pups per

litter compared with 8.9 in wild-type females. Around 10

months of age, Rad21l�/� females became sterile, whereas

their wild-type counterparts remained fertile. To analyse the

underlying loss of fertility with age, we conducted IF and
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Figure 7 Immunolabelling of the cohesin subunits SMC3, SMC1a, SMC1b, RAD21, REC8 and STAG3 in Rad21lþ /þ and Rad21l�/�

spermatocytes. Double immunofluorescence of SYCP3 (red) with either SMC3, SMC1a, SMC1b, RAD21, REC8 or STAG3 (green) in wild-
type or Rad21l�/� spermatocytes. In wild-type pachytene spermatocytes, the cohesins SMC3 (B), SMC1a (D), SMC1b (J), RAD21 (L), REC8 (R)
and STAG3 (T) colocalize with SYCP3 (A, C, I, K, Q, S) along the autosomal SCs and sex AEs with the exception of REC8 labelling at the XY
bivalent, which is weaker in comparison with SYCP3. In Rad21l�/�-arrested spermatocytes, the intensity and localization of the fluorescent
signal corresponding to SMC3 (F), SMC1b (N), RAD21 (P) and REC8 (V) along the AE/LEs of the zygotene-like chromosomes is comparable to
their wild-type controls and coincident with SYCP3 (E, G, M, O, U). However, the fluorescent signal of STAG3 (X) is notably decreased and
absent in some regions where SYCP3 (W) labelling is present (arrows), whereas the intensity of the SMC1a (H) labelling is only partially
reduced and delocalized. *Sex body (XY).
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histological analysis of oocytes and ovarian sections. RAD21L

has been localized to the AEs/LEs of the SC from early

leptotene to pachytene, with loss of staining at later stages

such as dictyate and metaphase I (Ishiguro et al, 2011).

However, despite the fact that in oocytes the lack of

RAD21L did not fully abolish synapsis as observed in sper-

matocytes and that fully synapsed bivalents were observed

with a normal loading of STAG3 and SMC1a at their AE/LEs

(Supplementary Figure S8A), a high proportion of the pachy-

tene oocytes showed a slight defect in synapsis as determined

by discontinuities in the labelling of SYCP3/SYCP1 at the

synapsed LEs of the pachytene chromosomes (69±4.3% of

cells in Rad21l�/� versus 12±3.6% in wild type, N¼ 30,

at 17.5 d.p.c. of age; Figure 8A). Chiasmata maintenance

requires meiotic cohesion from yeast to mammals

(Buonomo et al, 2000; Hodges et al, 2005). The cohesin-

dependent mechanism for stabilizing sites of CO and centro-

meric cohesion is altered in an age-dependent manner

Figure 8 Female meiosis. (A) Double immunolabelling of SYCP3 (red) and SYCP1 (green) in pachytene oocytes from wild-type and mutant
females showing normal (middle) and abnormal pairing (right). (B) Ovaries from RAD21L-deficient mice show atrophy with fibrosis and
depletion of follicles. Comparative histological analysis of ovaries from Rad21l�/� and wild-type mice at 6 days (P6), 4 months (4 m) and 12
months (12 m) of age. Arrows indicate follicles and asterisks corpora lutea. Bar represents 500 mm in 4 m and 12 m, and 100 mm in P6.
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leading to chromosome missegregation and aneuploidy

(Hodges et al, 2005; Revenkova et al, 2010). Diakinesis/

metaphase I chromosomes from RAD21L-deficient oocytes

were normal and 20 bivalents were always observed

(Supplementary Figure S8B), indicating that RAD21L is not

involved in chromosome cohesion during female meiosis.

Taken together, these results suggest that a cohesion defect

was not the underlying cause of the age-dependent infertility

(Hodges et al, 2005; Chiang et al, 2010; Lister et al, 2010). Next,

we comparatively studied the histology of ovaries from 12-

month-old wild-type and mutant female mice and observed

remarkable differences. While control ovaries showed more

than five follicles at different stages of folliculogenesis and

several corpora lutea, mutant ovaries displayed atrophy with a

complete loss of primordial follicles (Figure 8B). In 4-month-

old mice, the mutant ovaries presented a reduced number of

follicles but a similar number of corpora lutea as wild-type

littermates (Figure 8B). Thus, the ratio between the numbers

of follicles and the numbers of corpora lutea is reduced in the

Rad21l�/� when compared with controls. To further delineate

at which stage during development this reduction is achieved,

we histologically analysed ovaries from 6-day-old females

(P6), a time point at which all oocytes are already arrested

in dictyate (Peters, 1969). A four-fold decrease (4.1±0.6,

N¼ 4) in the number of small oocytes in the outer cortex

where primordial follicles occur was found in Rad21l�/�

compared with Rad21lþ /þ . However, no substantial differ-

ences in the numbers of growing oocytes in the preantral stage

of follicle development, which occupy the inner part of the

cortex, were observed (Figure 8B; Peters, 1969). This demon-

strates that young mutant females are able to ovulate physio-

logically in a similar way as the controls, and predicts that

females will exhaust their pool of oocytes earlier than their

wild-type counterparts leading to premature infertility.

In terms of human disease, this pathology resembles

premature ovarian failure and its aetiology includes a strong

genetic component (Shelling, 2010). In addition, women who

suffer from ovarian failure after cancer chemotherapy or

older healthy women also demonstrate a strikingly similar

atrophy of the ovaries as we here observed in Rad21l�/�

female mice (Meirow et al, 2007).

Sexual dimorphism in fertility in mouse mutants

Defects in early stages of the meiotic prophase I are common

in several mouse mutants where meiotic genes have been

ablated, these include Spo11, Sycp3, Sycp2, Fkbp6 and Trip13

(Baudat et al, 2000; Yuan et al, 2000; Crackower et al, 2003;

Yang et al, 2006; Li and Schimenti, 2007). Smc1b and Rec8

null mice are the only cohesin-deficient mice analysed meio-

tically and are infertile, while Rad21 null mice are not viable

(Xu et al, 2010). REC8-deficient mice fail to maintain inter-

homologous synapsis, which leads to meiotic arrest in both

genders (Bannister et al, 2004; Xu et al, 2005). Smc1b mutant

mice show an arrest in pachytene stage in males, whereas

females have weaker synapsis defect allowing progression up

to the second division but they show unjoined chromatids

due to a loss of centromeric cohesion (Revenkova et al,

2004). The RAD21L-deficient males generated and analysed

in the present study reveal a phenotype as severe as the one

observed in the Rec8 mutant male mice, which also show a

zygotene-like arrest. However, the subfertility of the RAD21L-

deficient females is much milder than in SMC1b and REC8

female mice (Bannister et al, 2004; Revenkova et al, 2004;

Xu et al, 2005).

Sexual dimorphism in meiotic genes has been previously

observed in SYCP3 and SYCP2 mutant mice, where males are

infertile whereas females are only subfertile (Yuan et al, 2000,

2002; Yang et al, 2006). This dimorphism has been attributed

to a very weak synapsis surveillance mechanism and a

reduced stringency of the spindle assemble checkpoint in

oocytes in comparison to spermatocytes (Hunt and Hassold,

2002; Nagaoka et al, 2011), but this can also be explained by

the prolonged prophase arrest following bivalent formation,

which lasts from birth until ovulation. After this long-term

arrest of oocytes at dictyate, most of the components of the

former AEs/LEs of the disassembled SC do not remain/

relocate to the centromere or to the interchromatid domain

of the bivalents at the next metaphase I. For instance, SYCP3,

SYCP2 and RAD21 have been localized at the AEs/LEs of the

SC during both male and female mouse meiosis, and also at

the centromeres of metaphase I bivalents in spermatocytes

(Offenberg et al, 1998; Parra et al, 2004; Ishiguro et al, 2011)

but not in oocytes (Hodges et al, 2001; Tachibana-Konwalski

et al, 2010). Likewise, RAD21L disappears from the AEs/LEs

at dictyate and never labels the centromeres of metaphase I

bivalents in oocytes (Ishiguro et al, 2011). In agreement with

this, RAD21L-deficient females do not show premature loss of

cohesion at metaphase I (20 bivalents are observed;

Supplementary Figure S8B) and are therefore fertile. Thus,

it can be speculated that mutations in this set of proteins

(SYCP2, Yang et al, 2006; SYCP3, Yuan et al, 2000; Yuan et al,

2002; and RAD21L, this study), yield male infertility and

female subfertility not only because of differences in the

checkpoints between genders, but also because these pro-

teins are not part of the segregation machinery of the

chromosomes during female meiosis. This difference be-

tween male and female meiosis might contribute to the

vulnerability of the female meiotic process by increasing

the likelihood of premature sister chromatid separation.

From the spermatogenic point of view, it has been claimed

that the meiotic sex chromosome inactivation (MSCI) that

takes place in the sex bivalent in mid-pachytene spermato-

cytes can underlie the dimorphic infertility of several mouse

mutants with a common type IV meiotic arrest (Barchi et al,

2005; Mahadevaiah et al, 2008). Recently, it has been eluci-

dated that when MSCI fails at mid-pachytene, two pro-

apoptotic transcription factors located at the Y chromosome

(ZFY1/2) drive pachytene-arrested spermatocytes into a pro-

grammed cell death (Royo et al, 2010). We postulate that

these same genes could also lead to the apoptosis observed in

other mouse mutants with a developmental stage IV arrest,

which are blocked well before MSCI take place at mid-

pachytene. For instance, both DMC1- and SPO11-deficient

spermatocytes arrest at developmental stage IV and their

spermatocytes show similar level of apoptosis; however,

their arrest corresponds to zygotene and to a mid-pachytene

prophase, respectively (Yoshida et al, 1998; Baudat et al,

2000). Thus, we believe that the activation of the apoptotic

programme in zygotene-like-arrested mutants, such as

Rad21l�/� spermatocytes, can be caused by the expression

of these and/or other unidentified pro-apoptotic genes for an

indefinite lapse of time during the zygotene-like arrest.

Finally, it has been highlighted that the sexual dimorphism

in fertility is dependent on those proteins that affect the
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organization of the AEs/chromatin of the male XY bivalent

(Kolas et al, 2005). This observation is also consistent with

RAD21L playing a specific role in the pairing and the devel-

opment of the sex body.

In yeast and vertebrates, a dual model of the ring closure of

the cohesin complex by the kleisins REC8/RAD21 has long

been accepted (Klein et al, 1999; Sonoda et al, 2001; Kudo

et al, 2006; Tachibana-Konwalski et al, 2010). This model has

been challenged by the existence of three meiosis-specific

paralogues of the a-kleisins family of proteins in C. elegans

(REC8, COH3, COH4). Similarly in mammals, the observed

severity and penetrance of the phenotype in mice lacking

RAD21L is comparable to the genetic ablation of the canoni-

cal meiotic kleisin REC8 in mouse spermatogenesis

(Bannister et al, 2004; Xu et al, 2005), further demonstrating

that these kleisins are not redundant and are similarly

important in male meiotic prophase. Overall, these results

provide in vivo evidence for the functional relevance of the

a-kleisin RAD21L in SC assembly, homologous recombina-

tion, and synapsis during mammalian meiosis and suggest a

re-examination of the contribution of the a-kleisin paralogues

in mammalian meiosis.

Materials and methods

Immunocytology
Testes were detunicated and processed for spreading using a
conventional ‘dry-down’ technique or squashing (Parra et al, 2004).
Oocytes from fetal ovaries (E17.5 embryos) were digested with
collagenase, incubated in hypotonic buffer, disaggregated, fixed in
paraformaldehyde and incubated with the indicated antibodies for
immunofluorescence (see Supplementary data). Both polyclonal
antibodies against RAD21L (Gutiérrez-Caballero et al, 2011) were
used indistinctly for the IF and western blot data presented
throughout this work. In all the cases, the results were validated
with both antibodies.

Mice
We developed a non-conditional mutant mouse by standard gene
targeting methods using an insertional strategy. Briefly, two
homology arms separated apart by a gap were PCR amplified from
a BAC clone enclosing RAD21L and cloned into the plasmid
p5’HPRT (Adams et al, 2004). The targeting vector was linearized at
a new restriction site generated between both ends flanking the gap,
and electroporated in ES cells following standard procedures (see
Supplementary data). The genetic background under which the
mutation was analysed is a mixed BL6/129. The handling,
maintenance and care of the animals, as well as all procedures
performed in this study, were in accordance with the institutional
guidelines (CSIC and USAL). Rad21lþ /� and Rad21lþ /þ were used
as controls in all the experiments throughout the study. To simplify,
we only show the Rad21lþ /þ and Rad21l�/� results.

FACS analysis
Wild-type, Rad21lþ /� and Rad21l�/� testicular cells preparation
and their DNA content measurement were performed by a standard
procedure (Kudo et al, 2009).

OA assay
Testes from wild-type and Rad21l�/� were detunicated and cultured
as previously described (Revenkova et al, 2004). Briefly,
5�106 cell/ml were plated in 35�10 mm2 culture dishes containing
complete culture medium supplemented with 25 mM HEPES. Cells
were cultured at 32 1C for 5–6 h with 5 mM OA (Sigma-Aldrich).
Spreading and immunofluorescence were performed as previously
mentioned.

Telomeric analysis
Squashed tubules were double immunolabelled with SYCP3 and
RAP1. For each nucleus, partial Z projections of the top, equator
and bottom portions were captured using an Olympus DP70 digital
camera controlled by AnalySIS software (Soft Imaging System). All
projections result from the superimposition of 15 focal planes
throughout a certain nuclear region.

Histology
For adult male histological analysis, mice were perfused and their
testes/ovaries were processed into serial paraffin sections and
stained with haematoxylin–eosin. For TUNEL assay, sections were
deparaffinized and apoptotic cells were detected with the In Situ
Cell Death Detection Kit (Roche) and counterstained with DAPI.
Apoptotic cells were pseudocoloured in green. Immunohistochem-
ical detection of proliferating cells with a-PCNA ab29 (1:200,
Abcam) involved antigen retrieval with citrate buffer at pH 6.0. For
histological studies of 13 and 19 days mice, testes were fixed in
Bouin’s fixative.

Giemsa staining of diakinesis-stage mouse oocytes
To analyse crossovers at diakinesis, we did chromosome prepara-
tions of oocytes (nX15 per female) from three females of 18 weeks
of age from each genotype following the method described
previously (Kan et al, 2008).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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Parra MT, Gómez R, Viera A, Page J, Calvente A, Wordeman L,
Rufas JS, Suja JA (2006) A perikinetochoric ring defined by
MCAK and Aurora-B as a novel centromere domain. PLoS Genet
2: e84
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