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Abstract 

 
Shugoshin-2 (SGOL2) is one of the two mammalian orthologs of the 

Shugoshin/Mei-S322 family of proteins that regulate sister chromatid 

cohesion by protecting the integrity of the multiprotein cohesin complexes. 

This protective system is essential for faithful chromosome segregation 

during mitosis and meiosis, which is the physical basis of Mendelian 

inheritance. Regardless of its evolutionary conservation from yeast to 

mammals, little is known about the in vivo relevance and specific role that 

SGOL2 plays in mammals. Here we show that disruption of the gene 

encoding mouse SGOL2 does not cause any alteration in sister chromatid 

cohesion in embryonic cultured fibroblasts and adult somatic tissues. 

Moreover, mutant mice develop normally and survive to adulthood without 

any apparent alteration. However, both male and female Sgol2 deficient 

mice are infertile. We demonstrate that SGOL2 is necessary for protecting 

centromeric cohesion during mammalian meiosis I.  In vivo, the loss of 

SGOL2 promotes a premature release of the meiosis-specific REC8 cohesin 

complexes from anaphase I centromeres. This molecular alteration is 

manifested cytologically by the complete loss of centromere cohesion at 

metaphase II leading to single chromatids and physiologically with the 

formation of aneuploid gametes that give rise to infertility. 
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Introduction 

Loss of sister chromatid cohesion is probably one of the most dramatic events 

during eukaryotic cell division and is the pivotal process that enables the equal 

delivery of the replicated genetic material to daughter cells. Sister chromatid 

cohesion is mediated during both mammalian mitosis and meiosis by a cohesin 

complex constituted by two members of the family of structural maintenance of 

chromosome proteins (SMC1 and SMC3), one kleisin subunit (RAD21 at mitosis 

and/or REC8 at meiosis) which is the substrate of the cysteine protease separase, 

and a HEAT repeat domain protein (SA1/SA2 at mitosis or STAG3 at meiosis) 

(Watanabe 2005, Hirano et al. 2006). These proteins create a gigantic ring 

structure that is presumed to entrap the sister chromatids  (Gruber et al. 2003). 

 During mitosis, most of the cohesin complexes at the arms are released by 

the phosphorylation of its SA2 subunit by the PLK1 kinase (Waizenegger et al. 

2000, Hauf et al. 2005, Losada et al. 2005). The remaining cohesin complexes at 

centromeres and arms are lost from chromosomes during the metaphase/anaphase 

transition, once all chromosomes have bioriented and the spindle assembly 

checkpoint (SAC) is satisfied, since separase is activated by the APC (Anaphase 

Promoting Complex) (Huang and Moazed 2006) and then cleaves the cohesin 

subunit RAD21. 

 The meiotic cycle is governed by similar principles as the mitotic one but 

the existence of two consecutive rounds of segregation after a single round of 

DNA replication explains why the dissociation of cohesin must be tightly 

regulated in a spatial and time-dependent manner. During the first meiotic 

division, recombined homologs segregate to opposite poles since cohesin 

complexes at the arms are cleaved by separase. The cohesin complexes 

remaining at centromeres are then proteolyzed by separase during the metaphase 

II/anaphase II transition to allow the segregation of single chromatids (Buonomo 

et al. 2000, Petronczki et al. 2003). In this sense, the second meiotic division 

mimics mitosis in that sister chromatids segregate to opposite poles. It has been 

proposed that the protection of centromeric cohesion during meiosis I is essential 
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for chromosome mono-orientation at metaphase I and biorientation at metaphase 

II (Page and Hawley 2003, Hauf and Watanabe 2004, Kudo et al. 2006). 

 In yeast, flies, and vertebrates a family of centromeric proteins identified 

as key regulators of chromosome segregation named Shugoshins (Sgo1 and 

Sgo2/Mei-S322), are responsible for the effective protection of the centromeric 

RAD21/REC8 cohesin complexes from removal by PLK1 during mitosis and 

cleavage by separase during meiosis I by recruiting the phosphatase PP2A. This 

enzyme in turns neutralizes the phosphorylation ability of PLK1 onto SA2 during 

mitosis (Kitajima et al. 2004, McGuinness et al. 2005, Kitajima et al. 2006). The 

shugoshin family of proteins is composed of a single gene in Saccharomyces 

cerevisiae and Drosophila melanogaster, and two paralogues in the fission yeast 

Schizosaccharomyces pombe and mammals (Shugoshin-1 or SGOL1 and 

Shugoshin-2 or SGOL2) (Kitajima et al. 2004). In S. pombe, Sgo1 is only 

required for meiosis completion and its lack generates random segregation at 

meiosis II, whereas Sgo2 depleted cells show both mitotic and meiotic 

alterations, like chromosome biorientation defects and alterations in the mono-

orientation of sister chromatids, respectively (Rabitsch et al. 2004, Vaur et al. 

2005, Vanoosthuyse et al. 2007). 

 The role of SGOL1 and SGOL2 in mammals is still poorly understood and 

their function in chromatid cohesion has been only functionally analyzed by 

means of RNAi-mediated repression in HeLa cells, giving rise to controversial 

reports. (Kitajima et al. 2006, Huang et al. 2007). In addition, the presence of two 

members has added a new level of difficulty in the course of their functional 

characterization. Despite the implication of human SGOL1 in maintaining 

centromeric cohesion in mitosis, a similar function has also been proposed for 

SGOL2 in HeLa cells. Moreover, both SGOL1 and SGOL2 cooperate with PP2A 

at the centromere where they antagonize the kinase activity of PLK1 onto the 

cohesin complex (McGuinness et al. 2005, Kitajima et al. 2006). Yet, little is 

known about the functional contribution of SGOL2 in chromatid cohesion in a 

somatic cell lineage, even less about its role in embryogenesis, organogenesis 

and tissue homeostasis. In the present work, we demonstrate that SGOL2 is not 
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essential for mouse embryogenesis and adult somatic development. Accordingly, 

SGOL2 deficiency does not promote any mitotic defect in primary cultured 

somatic cells. However, both adult male and female mice despite not showing 

any overt phenotype are infertile. We provide evidences that such infertility is 

caused by the premature loss of centromeric cohesion at meiosis that leads to the 

formation of gametes with an aberrant number of chromatids. 
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Results  
Generation of Sgol2 mutants 

To address the in vivo role of SGOL2 we searched the gene trap database 

(http://www.knockoutmouse.org/) for insertional mutations that could disrupt the 

transcription of the mouse Sgol2 gene. We selected the line D025B05 (GGTC) in 

which the cassette rFlpROSA-ßgeo (Schnütgen et al. 2005) was inserted in the 

first intron of the Sgol2 gene. This mutation was further characterized and 

confirmed by cloning the insertion of the retrovirus into intron 1 (Fig. 1a). We 

generated founder mice from this ES cell line and following heterozygote 

intercrossing, Sgol2 deficient (KO, -/-), heterozygous (+/-), and wild-type (WT, 

+/+) mice were obtained in the expected Mendelian ratio. Homozygosity for the 

mutation was demonstrated by Southern-blot, and the lack of both transcript and 

protein was verified by Northern blot, RT-PCR and immunofluorescence (Fig. 

1b-d and Supplemental Fig. S1a-b), indicating that the insertional mutation is a 

null allele. In addition, since it has been recently reported that SGOL2 is needed 

for the loading of the mitotic centromere-associated kinesin (MCAK) at 

centromeres (Huang et al. 2007), we analyzed the localization of MCAK in 

MEFs of both genotypes. Our results showed that MCAK was present at the 

inner centromere domain in wild-type dividing MEFs. By contrast, and as  

expected from a loss-of-function Sgol2 allele, MCAK was not detected at the 

centromeres of Sgol2-/- mitotic chromosomes (Supplemental Fig. S2a). 

 Unexpectedly, and despite of the Sgol2 widespread expression 

(http://symatlas.gnf.org and Supplemental Fig. S1a-b), the mutant mice 

developed normally and displayed no overt phenotype. Moreover, observation of 

cohorts of mice (n=25) for 12 months revealed similar adult survival rate for 

these mice (100%) and their wild type controls (96%). 
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Mouse SGOL2  is not essential for mitosis 

During the prophase pathway, most of the cohesin complexes at chromosome 

arms are released by PLK1-dependent phosphorylation of their SA2 subunit, 

whereas centromeric cohesin complexes remain intact until they are proteolysed 

at their RAD21 subunit by separase at anaphase (Waizenegger et al. 2000, Hauf 

et al. 2005). Because it has been reported that human SGOL2 is essential for 

protecting centromeric cohesin complexes and/or for correcting defective 

kinetochore-microtubule attachments in mitotic mammalian cells (Kitajima et al. 

2006, Huang et al. 2007), we sought to study several mitotic parameters of MEFs 

lacking SGOL2. Firstly, we studied cell proliferation and transformation and we 

found no essential difference either in cellular proliferation rates, mitotic index or 

proliferative arrest induced by culture stress in Sgol2-/- MEFs compared to wild-

type MEFs (Fig. 2a-c). Partial loss of cohesion in mitosis causes loss of tension 

across centromeres which leads to anaphase lagging, chromosome 

missegregation and finally aneuploidy (Nasmyth et al. 2002, Weaver et al. 2003). 

We have extensively analyzed the karyotypes of MEFs and adult somatic cells 

(cultured thymocytes) lacking SGOL2 and we have not observed significant 

differences between wild-type and Sgol2-/- in chromatid cohesion defects or any 

other of those aberrations (Fig. 2e and Supplemental Fig. S1c-d). In addition, and 

supporting this notion, the karyotype distribution is similar between Sgol2-/- and 

wild-type MEFs and thymocytes (Fig. 2e and Supplemental Fig. S1c). 

 To further analyze the role of SGOL2 in mitosis under stressed conditions, 

we treated the cell cultures with two antagonistic microtubule poisons such as 

nocodazole (a microtubule depolimerizing agent) and taxol (a microtubule-

stabilizing drug) in order to trigger the activation of the SAC. Similar to their 

wild-type counterparts, Sgol2-null MEFs have intact their ability to arrest at 

metaphase (Supplemental Fig. S3d). This result, suggests that the fidelity of the 

SAC is not affected by the absence of SGOL2 under these experimental 

conditions. 

 Given the overlapping functions between the SAC and the DNA damage 

checkpoint, and the recent report describing the activation of the SAC in 
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response to DNA damage in an ATM/ATR-dependent manner (Kim and Burke 

2008), we determined whether the lack of Sgol2 could be affecting this pathway. 

For this purpose, we γ-irradiated wild-type and Sgol2-/- MEFs and measured their 

ability to enter mitosis and to repair their radiation-induced DNA double-strand 

breaks by looking at the resolution of the γ-H2AX foci after irradiation. We did 

not observe significant differences at these parameters between cells of both 

genotypes (Supplemental Fig. S3a-c). Altogether, these findings provide the first 

in vivo evidence that SGOL2 is dispensable for mitotic chromatid cohesion, cell 

cycle progression, and proliferation in somatic cells.  

 

Male and female Sgol2 deficient mice are infertile 

Although adult mice were apparently normal and showed no overt phenotype, 

they were infertile since they failed to produce offspring when a male or female 

Sgol2 deficient mouse was mated with a wild-type. As controls, these same wild-

type males and females were always able to produce offspring when crossed with 

Sgol2 heterozygotes (data not shown). In order to discard sexual behavior 

dysfunction as the cause of the observed infertility, we monitored daily for the 

presence of the vaginal plug in reciprocal crosses between wild-type and knock-

out mice. In both instances, we observed a similar ratio of vaginal plugs 

independently of the genotypes. The histopathological analysis of multiple 

tissues from mutant mice revealed no observable differences with wild-type 

tissues with the exception of testes, which were about 35% smaller than their 

wild-type littermates (Fig. 3a). Although the organization and number of germ 

cells within the seminiferous tubules appeared normal in the infertile KO mice, 

and no abnormalities were observed in the number and distribution of Sertoli and 

Leydig cells (Fig. 3b), the number of mature spermatids was reduced, a possible 

indication of a deficient meiosis. To dissect more precisely the expression pattern 

of Sgol2 in spermatogenesis, we took advantage of the β-galactosidase-neomycin 

fusion gene expressed under the control of the Sgol2 promoter. Extensive X-gal 

staining was observed with the strongest activity corresponding to the 
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spermatocytes (Fig. 3c), supporting the specific role of SGOL2 in 

spermatogenesis.  

To understand the molecular mechanisms underlying the observed 

infertility in the absence of SGOL2, we examined the accuracy of meiotic 

divisions in testes using immunofluorescence of whole squashed seminiferous 

tubules, a technique which enables the analysis of meiosis at any stage in a 3D 

manner (Prieto et al. 2001). As shown in Fig. 3d, the low magnification view of 

DAPI and kinetochoric immunofluorescence of squashed spermatocytes from 

Sgol2-/- testis exhibited a very high proportion of cells arrested at the metaphase 

II stage (Supplemental Fig. S4), although the remaining cells of the testis looked 

apparently normal including the mitotic figures of dividing spermatogonial cells. 

As expected from a null allele, SGOL2, which is localized at the inner 

centromere domain in wild-type dividing spermatocytes (Gómez et al. 2007), 

was not detected in Sgol2-/- metaphases I and metaphases II (Fig. 3e). According  

with this loss of function, the SGOL2-dependent MCAK was also delocalized 

from the centromeres of metaphase I chromosomes in the knock-out meiocytes 

(Supplemental Fig. S2b). Strikingly, during Sgol2-/- meiosis II, and in contrast to 

wild-type, sister chromatids were not hold together through their centromeres and 

never congressed to a typical metaphase II plate. These secondary spermatocytes 

are hereafter referred as metaphase II-like  spermatocytes (Fig. 3e). Therefore, no 

canonical anaphases II were observed due most likely to the lack of biorientation 

of individualized chromatids (Fig. 4). This observation suggests a premature 

release of sister chromatid centromere cohesion during meiosis II as the most 

plausibly explanation for the infertile phenotype. 
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The inner domain of metaphase I centromeres is altered  in spermatocytes 

lacking SGOL2 

Since the formation of the axial/lateral elements (AEs/LEs) and the 

synaptonemal complex (SC) are abrogated in several mutant mice with meiotic 

defects including cohesive ones (Xu et al. 2005, Hodges et al. 2005), we took 

advantage of the SYCP3 protein marker to follow the development of AEs/LEs 

and SC during the prophase I (Lammers et al. 1994) in the absence of SGOL2. 

Examination of Sgol2-/- spermatocytes from adult testes by immunofluorescence 

revealed that the localization of SYCP3 at AEs/LEs was normal during pairing 

and synapsis of the homologs during zygotene and pachytene (data not shown), 

and during desynapsis at diplotene and diakinesis (Supplemental Fig. S5). These 

results indicate that SGOL2 is not necessary for chromosome pairing and 

recombination during mammalian prophase I. This is the expected situation since 

in mouse spermatocytes SGOL2 becomes associated to centromeres during late 

diplotene (Gómez et al. 2007). However, the distribution of SYCP3 at metaphase 

I is partially altered in the absence of SGOL2, although bivalents are accurately 

aligned at the equatorial plate. As shown in Fig. 5a, in wild-type metaphase I 

bivalents SYCP3 appears preferentially accumulated at the inner centromere 

domain showing a T-like distribution below the closely associated sister 

kinetochores, and as faint patches along the surface of contact between sister 

chromatids (interchromatid domain). SYCP3 mainstains a T-like distribution at 

anaphase I centromeres but redistributes at telophase I to appear as a small bar 

below or separated from the individualised sister kinetochores (Parra et al. 2004). 

By contrast, and although the distribution of SYCP3 at the interchromatid 

domain is unaffected in Sgol2-/- metaphase I bivalents, SYCP3 appears just like a 

small spot below the closely associated sister kinetochores and not as a T-shape 

like in wild-type bivalents  (inset from KO metaphase I at Fig. 5a). Thus, SGOL2 

is not required to maintain the close association between sister kinetochores that 

allows their monopolar orientation during prometaphase I. Interestingly, in 

mutant early anaphase I chromosomes SYCP3 redistributes at the inner 

centromere domain to appear as small bars connecting clearly separated sister 
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kinetochores (insets from KO early anaphases I at Fig. 5a) resembling the wild-

type telophase I distribution, to finally mostly disappear during telophase I. 

 All these results demonstrate that in the absence of SGOL2, the 

organization of the inner centromere domain, as detected by the SYCP3 labeling, 

is compromised, but bivalents are able to align correctly at the metaphase I plate. 

Moreover, the homologs segregate accurately at anaphase I, since we have never 

detected separated chromatids or lagging chromosomes during this stage. In this 

sense, sister kinetochores lose their close association (hereafter referred as sister 

kinetochore cohesion) during the metaphase/anaphase I transition, although 

centromere cohesion is apparently maintained during anaphase I. 

 

SGOL2 protects REC8 centromeric cohesin complexes from degradation during 

anaphase I 

Since we had observed that the lack of SGOL2 promoted an alteration at the 

inner centromere domain leading to a premature release of sister kinetochore 

cohesion during the metaphase/anaphase I transition, we next analyzed the 

distribution of the cohesin subunit REC8. This cohesin subunit of the canonical 

meiotic complex is cleaved along the chromosome arms by separase through the 

metaphase/anaphase I transition, but is protected at centromeres where REC8 is 

cleaved during the metaphase/anaphase II transition (Watanabe and Nurse 1999, 

Lee et al. 2003, Kudo et al. 2006). The fact that this protection is carried out by 

shugoshin-1 orthologs in budding and fission yeast (Katis et al. 2004, Kitajima et 

al. 2004), Drosophila (Kerrebrock et al. 1995) and maize (Hamant et al. 2005), 

prompted us to examine the location of REC8 in spermatocytes lacking SGOL2. 

In both wild-type and Sgol2-/- metaphase I bivalents, REC8 is located at the 

interchromatid domain and at the inner centromere domain at the vertical region 

of the T-shaped SGOL2 and SYCP3 signals (compare Fig. 5b and 3e) (Gómez et 

al. 2007). As metaphase I proceeds and transits to anaphase I, REC8 staining is 

restricted to a small bar perpendicular to the closely associated sister 

kinetochores in wild-type chromosomes (Fig. 5b). However, when SGOL2 is not 
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present, REC8 is not detected at centromeres in early anaphase I chromosomes, 

and sister kinetochores appear clearly individualized (inset from KO anaphase I 

at Fig. 5b). A similar distribution and behaviour was found for the cohesin 

subunit SMC3 in Sgol2-/- metaphase I and anaphase I spermatocytes 

(Supplemental Fig. S6). In order to quantify this alteration, we measured the 

distance between sister kinetochores (WT vs KO), and found that it is 

approximately two times larger in Sgol2-/- anaphase I centromeres than in control 

ones (Fig. 5c). We therefore conclude from these results that SGOL2 is necessary 

for protecting REC8 and SMC3-containing cohesin complexes at centromeres of 

mammalian anaphase I chromosomes. Thus, in the absence of SGOL2 the 

precocious release of centromeric cohesin complexes during early anaphase I 

leads to a loss of sister kinetochore cohesion.   

 

Sgol2 deficiency provokes spindle assembly checkpoint activation during the 

second meiotic division. 

Due to the lack of sister centromere cohesion in metaphase II-like chromosomes 

when SGOL2 is absent, one would predict that the meiotic SAC should be 

sensing the inaccurate kinetochore-microtubule attachments thus avoiding 

meiotic progression (Fang et al. 1998, Hassold and Hunt 2002, Kouznetsova et 

al. 2007). To test this, we compared the intensity of the immunofluorescent 

signals of two proteins involved in this checkpoint (CENP-E and BubR1) from 

prometaphase I up to metaphase II. As shown in Figure 6a, BubR1 signals are 

bright at the kinetochores of unaligned bivalents at prometaphase I, but very faint 

when bivalents have accurately aligned at the metaphase I plate. Likewise, a faint 

BubR1 labeling is detected at kinetochores of wild-type metaphase II aligned 

chromosomes (Fig. 6a). However, in Sgol2 deficient metaphase II-like 

spermatocytes we observed a strong labeling of BubR1 and CENP-E in almost 

all the kinetochores of the separated and unaligned chromatids (Fig. 6a and 

Supplemental Fig. S7). These results support that the SAC is activated in 
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metaphase II-like arrested spermatocytes, because of the centromere cohesion 

defect and the incapacity of single chromatids to biorient correctly. 

 

 

Spermiogenesis is partially altered in the absence of SGOL2 

We next examined whether this activation of the SAC at metaphase II-like could 

lead to aberrant spermatids through an adaptation process (either by slippage 

through an activated checkpoint or by an eventual inactivation) similar to that 

observed in mitosis after a prolonged SAC activation (Weaver and Cleveland 

2005). Our results show that in the absence of SGOL2 there is an accumulation 

of metaphase II-like spermatocytes  (16% of the meiotic divisions in the wild-

type versus 53.8% in the knock-out) which never progress through a standard 

anaphase II/telophase II stage (Fig. 4 and Supplemental Fig. S4). It is also 

remarkable the increased rate of TUNEL-positive spermatocytes detected in the 

seminiferous tubules from SGOL2 deficient mice in comparison with those in 

wild-type individuals. This result suggests that a fraction of the Sgol2-/- 

meiocytes enter into apoptosis (Supplemental Fig. S8). Moreover, our scoring of 

the percentage of the meiotic divisions in wild-type and mutant individuals on 

squashed seminiferous tubules shows that 19.3% of metaphase II-like 

spermatocytes (Fig. 4c-e) and 97.5% of anaphase II-like spermatocytes (Fig. 4g-

k) do not present any kind of kinetochore labeling by immunofluorescence and 

show hypercondensed and lagging chromatids (Supplemental Fig. S4). In order 

to follow the spermatid maturation, we undertook the quantification of the 

number of kinetochores per spermatid. We found the presence of round 

spermatids with a number of kinetochores ranging from 1 up to 40 (Fig. 6b and 

Supplemental Fig. S9). In addition, when we looked at elongated spermatids the 

percentage of cells with more than 20 kinetochores drastically increased (45% in 

round spermatids versus 79% in elongated spermatids). These observations raise 

the question of whether mature sperm can still be produced from the 

differentiation of the abnormal aneuploid spermatids. The results from the 
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histological and sperm counts performed in Sgol2-/- epididymis show that 

although the knock-out display close to a 40% reduction in the number of sperm, 

they still were able to produce sperm morphologically similar to their wild type 

counterparts (Supplemental Fig. S10). Altogether, these results indicate that the 

absence of SGOL2 results in an aberrant meiotic exit and partially altered 

spermiogenesis that leads to a reduction in the sperm production. 

 

Female mutant mice for Sgol2 are infertile and show also a cohesion defect in 

metaphase II 

It is well accepted from genetic analysis of human fetuses with chromosomal 

abnormalities and mouse genetic engineered models that mammalian female 

meiosis is more prone to error than male meiosis (Hassold and Hunt 2002). To 

better understand this gender differences, we undertook a meiotic chromosome 

analysis in female Sgol2-/- mice. By taking advantage of the meiotic maturation 

process in mammalian oogenesis, we directly analyzed metaphase II arrested 

oocytes obtained from superovulated Sgol2-/- and wild-type females. Despite that 

female Sgol2-/- mice are infertile, the histological analysis of adult ovaries 

showed that the number and structure of follicles and corpus lutei were similar to 

those found in wild-type ovaries (Supplemental Fig. S11a). This result indicates 

that mutant females ovulate physiologically. In addition, we collected a similar 

number of oocytes from mutant and wild-type females when they were 

superovulated (data not shown). C-banded metaphase II chromosomes obtained 

from mutant oocytes showed 40 individualized chromatids whereas wild-type 

presented 20 chromosomes, arguing to a similar defect in centromeric cohesion 

in both male and female meiosis as the cause of infertility (Supplemental Fig. 

S11b). This conclusion is consistent with a very recent report (appeared while 

this manuscript was being edited) using a knock-down strategy of Sgol2 in 

cultured mouse oocytes (Lee et al. 2008). Taken together, these findings provide 

in vivo evidence that mammalian SGOL2 is also protecting the removal of REC8 
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from the meiotic centromeres at oogenesis, since its deficiency also provokes 

premature chromatid disjunction at metaphase II. 
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Discussion 

We have generated knock-out mice for Sgol2 in order to analyse the in vivo role 

that this protein plays during both mitosis and meiosis. We have found that these 

mice develop normally and reach adulthood but are infertile. Our data on the 

proliferation and transformation rates, mitotic index, and conservation of normal 

karyotypes on MEFs and thymocytes suggest that SGOL2 is dispensable for 

mitosis. On the other hand, in these mutant individuals pairing, synapsis and 

recombination during prophase I are normal, as well as bivalent biorientation and 

alignment at the metaphase I plate. However, in the absence of SGOL2 there is a 

loss of centromeric cohesin complexes at the onset of anaphase I that promotes 

the separation between sister kinetochores, although the segregation of 

chromosomes to opposite poles is normal. During meiosis II, chromatids lose 

their centromeric cohesion, appear separated, and do not biorient at the equatorial 

plate. Some of the metaphase II-like and anaphase II-like spermatocytes 

degenerate by apoptosis but other spermatocytes escape the SAC and give rise to 

aneuploid spermatids with 1 up to 40 chromatids. Altogether, our data suggest 

that SGOL2 protects centromeric cohesin complexes until the metaphase 

II/anaphase II transition and is thus essential for an accurate gametogenesis. 

 

Mitosis is not altered in SGOL2 deficient mice 

The analysis of the mutant mice demonstrated surprisingly that despite the wide 

expression of SGOL2 in somatic tissues, homozygous mutant mice were viable 

and did not show any overt phenotype. Accordingly, all the mitotic parameters 

analyzed in cultured MEFs including centromeric cohesion and chromosome 

stability were unaltered. In addition, we found that the absence of SGOL2 was 

dispensable for the development of the tissular architecture of both the ovary and 

the testis including the highly proliferative spermatogonial compartment that 

sustains the spermatogenesis (de Rooij and Boer 2003) as well as the 

proliferation capacity of cultured thymocytes. These results are in marked 

contrast with the assumption that human SGOL2 participates together with 
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SGOL1 in protecting the centromeric cohesion in human HeLa cells, since when 

Sgol2 was knocked down a high incidence of prematurely chromatid separation 

was observed (Kitajima et al. 2006). Apart from the few putative species-specific 

differences between humans (HeLa) and mouse (MEFs), the fact that HeLa cells 

are not primary cell cultures but transformed cells with mutations in several 

important oncogenic and tumor suppressor pathways such as p53, a tumor 

suppressor that interacts with the SAC pathway (Oikawa et al. 2005), might 

underlie some of the observed discrepancies. In this same regard, Mei-S322, the 

only shugoshin ortholog in Drosophila, is not essential for somatic cell division, 

embryonic development, and adult homeostasis (Kerrebrock et al. 1995).  

Moving backwards in terms of complexity, the fission yeast with two paralogues 

(Sgo1 involved solely in meiosis and Sgo2 involved in mitosis and meiosis) and 

the budding yeast with a single member (Sgo1) constitute very well known 

systems to study this hypothesis. Despite controversial interpretations regarding 

the function of shugoshins in protecting centromeric cohesion  (Wang and Dai 

2005, Goulding and Earnshaw 2005) fueled by the strong meiotic phenotype 

observed in their mutants, the deficiency of either Sgo1 or Sgo2 did not elicit an 

obvious cohesion defect in mitosis (Kitajima et al. 2004, Marston et al. 2004, 

Katis et al. 2004). Moreover, these mutants shared properties at the mitotic level 

with other SAC mutants such as MAD2, like the presence of chromosome 

instability and aneuploidy as well as of an increased sensitivity to 

depolymerizing drugs (Indjeian et al. 2005). It thus seems from the more recent 

findings in yeast that shugoshins act by sensing tension across centromeres by 

interacting with members of the chromosomal passenger complex, enabling 

chromosome biorientation (Kawashima et al. 2007, Vanoosthuyse et al 2007).  

We cannot rule out that in the absence of Sgol2, its paralog Sgol1 could be 

playing a major role in protecting centromeric cohesion in mammalian mitosis 

constitutively or because of a compensatory mechanism. This possibility can not 

be empirically tested in the absence of mice deficient for SGOL1. However, it 

has been recently reported that the Cre-dependent loss of the SAC protein BUB1 

in MEFs resulted in the functional delocalization of SGOL1 from mitotic 
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centromeres whilst their chromatid cohesion was only modestly altered (Perera et 

al. 2007). In addition, the SGOL2 centromere loading is also dependent on BUB1 

(Huang et al. 2007), a fact that would indicate that the simultaneous loss of 

function of both mouse shugoshins (in addition to BUB1) in this primary cell 

culture model does not abruptly compromise mitotic cohesion. Further 

development of a loss of function mouse models of SGOL1 will be required to 

asses this hypothesis. 

 

SGOL2 is necessary for protecting centromeric cohesion  during the metaphase 

I/anaphase I transition 

Our analysis of Sgol2 mutant mice has allowed us to demonstrate unambiguously 

that mammalian SGOL2 is responsible for protecting the dissociation of 

centromeric cohesin complexes during meiosis I. This mechanism of protection 

is most likely due to the colocalization of SGOL2 and cohesin complexes at the 

inner domain of metaphase I centromeres (Gómez et al. 2007). In the absence of 

SGOL2 we have found that REC8 and SMC3 are lost from centromeres at the 

metaphase I/anaphase I transition concomitant to the separation between sister 

kinetochores. However, and strikingly, sister chromatids remain associated at 

their centromeres, and anaphase I segregation proceeds normally. A similar 

chromosome behaviour was previously found in mutants for Mei-S322 in 

Drosophila meiosis I (Kerrebrock et al. 1995). These observations are apparently 

contradictory since we could expect that the loss of centromeric cohesin 

complexes would lead to the complete separation of chromatids during anaphase 

I and then to an aberrant segregation. In our opinion, in Sgol2 mutants 

chromosomes can segregate normally during anaphase I with separated 

kinetochores given that they were previously attached to microtubules emanating 

from the same pole at metaphase I, when they were closely associated. There are 

several possibilities that may explain why the loss of centromere cohesion is only 

detected at metaphase II-like spermatocytes and oocytes when cohesin 

complexes with REC8 and SMC3 are released from centromeres during the 
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metaphase I/anaphase I transition. One possibility is that other RAD21-based  

cohesin complexes also located at the inner domain of metaphase I centromeres 

(Parra et al. 2004; Gómez et al. 2007) are not affected in the absence of SGOL2, 

and could maintain centromere cohesion during anaphase I while allowing the 

loss of association between sister kinetochores. Since it has been reported that 

RAD21 redistributes and is lost from centromeres during telophase I (Parra et al. 

2004), only in this moment could sister centromeres separate. Another not 

exclussive possibility consists in the persistence of a topoisomerase II-dependent 

cohesion mechanism during anaphase I when REC8-containing cohesin 

complexes have been lost. Future studies are required to test these hypotheses. 

It is tempting to speculate that the additional processes required for the 

step-wise loss of cohesion in yeast should also be necessary in mammals: such as 

homologous recombination, the REC8 phosphorylation status by the interplay 

between phosphatases (PP2A) and kinases (Polo kinases) at meiosis I, but not 

meiosis II, and the separase-dependent cleavage of the phosphorylated form of 

REC8. Supporting this notion, it has been elegantly demonstrated in a conditional 

mouse model of separase, that cohesin dissociation from chromosome arms at 

anaphase I is dependent on the proteolytic activity of separase onto REC8 (Kudo 

et al. 2006). 

REC8 is considered as a specific cohesin subunit involved in the 

formation of the SC in yeast, flies, and mammals (Watanabe and Nurse 1999, 

Lee et al. 2003). However, it remains controversial that the mammalian function 

of REC8 is constrained to the germline since mice lacking REC8 show perinatal 

mortality and adult infertility whereas another reported loss-of-function mutation 

only display infertility (Xu et al. 2005, Bannister et al. 2004). Likely, previous 

unpublished results reported in Lee et al. 2008, comments about the lethality of 

deficient Sgol2. In relation with the additional functions of cohesins, very recent 

evidences support a non-canonical function in the integration of DNA sequence 

with the epigenetic state of the cell through the DNA-binding protein CTCF 

(Parelho et  al. 2008). 
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Phylogenetic relationships of the shugoshin family of proteins 

Genetic analysis in flies and later on in fission and budding yeast have shed 

essential knowledge on the chromosome cohesion field with the functional 

identification of the members of the shugoshin family of proteins (Kerrebrock et 

al. 1995, Kitajima et al. 2004). However, the confusing nomenclature employed 

leads to the establishment of some putative erroneous phylogenetic relationships 

between their members attending to their numeration. This is specially significant 

in the case of the mammalian shugoshins (Sgol1 and Sgol2) with respect to their 

yeast counterparts, which has hampered a true functional relationship among 

them. In addition, the very low sequence identity between the yeast and the 

mammalian counterparts has not allowed to elucidate their orthology 

relationship. Thus and from the functional data accumulated in this work, 

essentially the major involvement of mouse SGOL2 in meiosis and their role in 

protecting centromeric cohesion in spermatocytes, we suggest that mammalian 

SGOL2 is the functional ortholog of S. pombe Sgo1. We can speculate that the 

remaining mammalian member, mouse SGOL1, will share functional abilities 

with its fission yeast counterpart Sgo2. 

 

Alterations in the SGOL2 pathway can lead to meiosis II segregation defects and 

altered gametogenesis. 

Most of the human chromosome abnormalities found in fetuses result from non-

disjunction during female meiosis I. In addition, there is a group of less frequent, 

but also important trisomies (chromosome 18, and to a lesser extent 13, 14 and 

15 and 20% of the trisomies at chromosome 21), that arise because of meiosis II 

errors (Hassold et al. 2007). It has been previously postulated that partial 

alterations in the SGO/REC8/Separase cohesion pathway could lead to 

metaphase II non-disjunction in human gametogenesis and thus to aneuploidy 

(Orr-Weaver 1996, Warrenand and Gorringe 2006). However, the in vivo 

analysis of mutations affecting this meiotic pathway has impacted our 
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understanding of aneuploidy in a limited way due to the lack of viability of the 

model or because most mutations lead to prophase I arrest and subsequent 

apoptosis (de Rooij and de Boer 2003). The SGOL2 deficient mouse model 

analyzed in this work constitutes an exception in which the meiotic alterations 

(loss of centromeric cohesion) do not apparently compromise prophase I and the 

gametogenesis is completed in both sexes. Thus, this mutant provides new 

experimental evidences into the association between loss of chromosome 

cohesion, which would ultimately result in an increased susceptibility of 

premature chromosome segregation, and aneuploidy. 

 In this context, it has been reported in human and mouse, that a gradual 

loss of chromosome cohesion in females is associated with chronological age 

coupled with a reduced expression of the SAC genes MAD2 and BUB1 

(Steuerwald 2005, Cukurcam et al. 2004). This age-dependent miss-segregation 

has also been observed in a more rapid time scale in the SMC1ß mutant mouse 

(Hodges et al. 2005). We postulate that subtle alterations in the cohesin pathway 

due to either single nucleotide polymorphisms (SNPs) and/or age-dependent 

accumulated errors could account for a fraction of cases of mechanistically 

orphan aneuploidies. In this model, the Sgol2 deficient mice would display a full 

penetrance phenotype with complete infertility. 

In summary, our results establish for the first time in a mammalian 

organism that SGOL2 deficiency does not alter mitotic progression. However, 

SGOL2 is essential for meiosis and its deficiency provokes premature removal of 

REC8-containing cohesin complexes during anaphase I that leads to a loss of 

sister chromatid centromere cohesion during meiosis II resulting in mice 

infertility.  
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Material and Methods 
 

Mapping the integration site and genotyping 

Insertion of the β-geo cassette was verified by XL-PCR (with primers exon 1 sense 5’ 

ACCCTTCTCGGTAGCCACTCCTG 3’ and a universal LacZ antisense 5’ 

GTGCTGCAAGGCGATTAAGTTGG 3’) using as template genomic DNA  obtained 

from the embryonic cell line D025B05 and an Expand long template PCR polymerase 

kit (Roche). The PCR product was cloned in the Eco RV of pBS (Stratagene) and the 

integration site sequenced using universal primers.  

 Genotyping of the colony was performed by Southern blot analysis using as 

probe a PCR fragment amplified from genomic DNA using primers exon 2 sense 5’ 

CTGTTACCTCTGGAATTCAGAG 3’ and intron 2 antisense 5’ 

CACTTGGCTCTCCTTGGCATACC 3’. The 870 bp fragment enclosed exon 2 and 

part of the adjacent intron 2. The probe was labeled with α-dCTP32 (Perkin Elmer) by 

random priming. The probe recognized a 13 Kb Eco RV restriction band in wild-type 

DNA and a 7 kb restriction band in the Sgol2 mutant allele due to an Eco RV site 

located in the β-geo cassette. 

 The ES cell clone was used to generate chimeric mice by standard 

microinjection procedures at the University of Salamanca Transgenic facility. Two 

highly chimeric males were bred to C57BL/6 females transmitting by germline the 

Sgol2 allele. The genetic background under which the mutation was analyzed is a mixed 

BL6/129. The handling, maintenance and care of the animals, as well as all procedures 

performed in this study, were in accordance with institutional guidelines (CSIC and 

USAL). 

 

Fertility Assessment 

We investigated the reproductive capacities of Sgol2-/- and wild type mice by mating 

one male with two females for 2 weeks. Female mice were examined for vaginal plugs 

each morning and litter size was recorded on delivery after three successive matings. 

 

Cell culture and  proliferation assays  

MEFs were derived from E13.5 embryos following standard procedures. Cells were 

cultured at atmospheric oxygen pressure in Dulbecco's modified Eagle's medium 
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(Gibco, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (Sigma) 1% 

non-essential aminoacids and 2mM Gln. Serial 3T3 cultivation was carried out 

following standard procedures. Briefly, 106 cells were plated on 10 cm diameter dishes, 

3 days later the total number of cells in the dish was counted and 106 cells were replated 

again. This procedure was repeated for 25 passages. The increase in population 

doubling level (PDL) was calculated according to the formula PDL=log(nf/n0)/log 2, 

where n0 is the initial number of cells and nf is the final number of cells. 

 For cell proliferation assays, 2.5X104  or 4X104 cells/well were seeded in 12-

well plates with 10 % fetal bovine serum. The number of cells was counted daily.  

 

Immunofluorescence microscopy 

For immunofluorescence, mitotic cells were fixed in cold 4%  paraformaldehyde in 

PBS, rinsed in PBS, permeabilized with 0.2% Triton X-100, and incubated with the 

corresponding primary antibodies diluted in 7% FCS in PBS. The Rhodamine and 

FITC-conjugated secondary antibodies were from Jackson. Nuclei were counterstained 

with DAPI diluted in Vectashield (Vector). 

 Testes from adult male Sgol2+/+, Sgol2+/- and Sgol2-/- mice were used. Testes 

were removed, detunicated and seminiferous tubules fixed for squashing and subsequent 

immunofluorescence as previously described (Page et al. 1998). The slides were rinsed 

three times for 5 minutes in PBS and incubated for 45 minutes at room temperature or 

12 hours at 4ºC with primary antibodies diluted in PBS.  The slides were then incubated 

for 30 minutes at room temperature with either a fluorescein isothiocyanate (FITC)-

conjugated donkey anti-rabbit IgG (Jackson) secondary antibody (1:150) in PBS, a 

FITC-conjugated donkey anti-sheep IgG (Jackson) secondary antibody (1:40) in PBS, a 

FITC-conjugated donkey anti-mouse IgG (Jackson) secondary antibody (1:150) in PBS, 

or a Texas Red-conjugated donkey anti-human IgG (Jackson) secondary antibody 

(1:150) in PBS. The slides were counterstained with DAPI and mounted with 

Vectashield (Vector). Kinetochores were revealed with a purified human anti-

centromere autoantibody (ACA) serum (Antibodies Incorporated, 15-235) at a 1:50 

dilution. SGOL2 was detected with the rabbit polyclonal serum K1059 against the C-

terminus of mouse SGOL2 (Gomez et al. 2007) at a 1:20 dilution. The cohesin subunit 

REC8 was detected with a rabbit polyclonal serum against the C-terminus of mouse 

REC8 kindly provided by J. Lee  at a 1:10 dilution. To detect SYCP3 we employed a 

mouse monoclonal antibody (Abcam, ab-12452) at a 1:100 dilution. An affinity-purified 
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sheep polyclonal antibody against human BubR1 (SBR1.1) kindly provided by Stephen 

S. Taylor was used at a 1:50 dilution. To detect CENP-E we used a polyclonal rabbit 

serum (pAb1.6) that recognises the neck region (amino acids 256-817) of human 

CENP-E kindly provided by T. Yen  at a 1:100 dilution.  Antibody against anti-histone 

H3 phosphorylated at serine10 (P-H3-Ser10)  was from Upstate and was used at 1:400. 

 Immunofluorescence image stacks were collected on an Olympus BX61 

microscope equipped with epifluorescence optics, a motorised z-drive, and an Olympus 

DP70 digital camera controlled by analySIS software (Soft Imaging System). Stacks 

were analysed and processed using the public domain ImageJ software (National 

Institutes of Health, USA; http://rsb.info.nih.gov/ij) and VirtualDub (VirtualDub.org; 

http://www.virtualdub.com). Final images were processed with Adobe Photoshop 7.0 

software. 

 

Histology and β-gal histochemistry 

For histological analysis, samples were fixed with cold 4% paraformaldehyde in PBS, 

processed into serial paraffin sections and stained with H&E. Histochemical analysis of 

β-galactosidase reporter activity in frozen sections was performed following standard 

procedures. 

 

Superovulation of female mice 

At least three individuals of each genotype were induced successfully to superovulate 

using an standard procedure. Pregnant mare’s serum gonadotropin (PMSG) (Folligon, 

Intervet) and human chorionic gonadotropin (HCG) (Chorulon, Intervet) were used to 

induce efficient superovulation. Briefly, 4 weeks-old-C57BL/6J females were injected 

intraperitonally with 7 U.I. PMSG resuspended in 0.1mL saline solution at 2 p.m. into 

each animal, and the same dosage of HCG was administered 46 hours later. Unfertilized 

oocytes enclosed in cumulus were collected 21 hours post-HCG administration, 

digested with hialuronidase under microscope and immediately used for chromosome 

preparation. Meiotic chromosome figures were obtained following the classical air-dried 

technique and C-banded.  

 

Karyotyping of MEFs 
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Metaphases were obtained from MEFs at passage 4-5 by standard procedures. Active 

growing cultures were arrested using colcemide (1 μg/mL) for 4 h, trypsinized, treated 

with hypotonic solution (KCl 0.75 mM) and fixed with Methanol/Acetic. At least 50 

metaphases were counted from four independent embryos of each genotype. 
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Figure legends 

 
Figure 1. Generation and genetic characterization of Sgol2 deficient mice. 

(a) Schematic representation of the wild-type locus (wt) and insertional mutant at 

the Sgol2 locus showing the insertion site, the corresponding coding exons (light 

grey) and non-coding exons (open boxes) and the β-geo cassette (dark grey). 

Thin (non-coding) and thick (coding sequences) lines under exons represent the 

expected transcript derived from WT and Sgol2 trapped allele. ATG initiation 

codon; TAA, stop codon; SA, splicing acceptor; β-geo bacterial β-galactosidase 

fused to the neomycin resistance gene. pA, polyadenilation signal. Nucleotide 

sequence of the insertion site derived from PCR amplification of DNA from the 

embryonic stem cells (D56678) is indicated. Primers are represented by arrows. 

The junction of the intronic sequence (regular) and from the β-geo cassette (bold)  

is depicted. (b) Southern-blot analysis of genomic DNA from three littermate 

progeny of Sgol2 heterozygote crosses. Probing of Eco RV-digested DNA 

revealed 13- and 7-kb fragments for wild-type and disrupted alleles respectively. 

(+/+), (+/-) and (-/-) designate wild-type, heterozygous, and homozygous knock-

out animals, respectively. (c) Northern blot analysis of RNA extracts from testis 

of (+/+), (+/-) and (-/-) animals with a full length Sgol2 cDNA probe. The 

corresponding ethidium bromide stained 18 and 28 S ribosomal RNA used as a 

loading control is also shown below. (d) Immunofluorescence of mitotic plates 

obtained from MEFs from wild-type (WT) and knock-out (KO) genotypes using 

a polyclonal antibody against the C-terminal region of the SGOL2 protein. Bar in 

(d), 10 µm. 

 

Figure 2. Normal mitosis in somatic cells lacking Sgol2. (a) Serial 3T3 

cultivation of primary MEFs of different genotypes. Four independent embryos 

are shown for each genotype. Cumulative population doublings were measured 

until immortalization. (b) Proliferation of wild-type (WT) and Sgol2-/- (KO) 

primary MEFs at two different cell densities (experiment A and B) and counted 

every following day (see Methods). (c) Measurement of the mitotic index (%) by 
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immunostaining with anti-histone H3 phosphorylated at serine10 (P-H3-Ser10) in 

wild-type (WT) and knock-out MEFs (KO). Nuclei were counterstained with 

DAPI. Left panel shows the similar proportion of cells positives for P-H3-Ser10 

between Sgol2+/+ and Sgol2-/- MEFs scored in three independent experiments. (d) 

Immunolabeling of  kinetochores (ACA, red) and counterstaning of chromatin 

(DAPI, blue) of a somatic cell from a Sgol2 deficient mice. (e) Karyotype 

distribution of wild-type and knock-out MEFs. Each data point in a, b, c and e 

represents the mean ± s.m. Bar in (c), 100 µm; bar in (d), 10 µm. 
 

 

Figure 3.  Testicular characterization showing minor size, normal histology 

and metaphase II-like arrest in Sgol2 deficient mice.  (a) Testes from a wild-

type and a null Sgol2 mouse. (b) Hematoxylin-eosin staining of a section of the 

testis at 200 X (left) showing seminiferous tubules. Higher magnification of 

seminiferous tubules showing Leydig cells (black arrows), spermatogonia 

(arrowhead) in a more peripheral position within the tubule, and spermatids 

(white arrow) in Sgol2-/- and wild-type testes. (c) β-galactosidase staining (blue) 

counterstained with eosin (red) of a section of a testis from a heterozygote mouse 

showing blue positive staining in the meiocytes. (d) Low magnification view of a 

representative squash preparation of seminiferous tubules showing the 

accumulation of metaphases II-like in knock-out Sgol2 (KO) in comparison with 

a representative wild-type view (WT, left). The identity of metaphases II 

(asterisks)/metaphases I (MI) was confirmed by the immunolabeling of 

kinetochores (ACA, red) and counterstaining with DAPI (blue). (e) Double 

immunodetection of SGOL2 and kinetochores (ACA) in metaphase I and 

metaphase II from a wild-type and a Sgol2 KO cell showing an accurate 

congression during metaphase I but a lack of congression of separated 

chromatids at the metaphase II-like plate when SGOL2 is lacking. Bar in (c) and 

the right panels in (b), 200 µm;  bar in the right panels in (b), 50 µm; bar in (d), 

15 µm; bar in (e), 5 µm. 
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Figure 4. Defective metaphase II congression and progression to anaphase 

II.  Immunolabeling of kinetochores (ACA, red), and counterstaining with DAPI 

(blue) in wild-type (WT) and Sgol2-/- (KO) spermatocytes from metaphase II up 

to anaphase II. (a) Example of a canonical metaphase II in wild-type cells. (b) 

Metaphase II-like from a Sgol2-/- showing 40 individualized chromatids with a 

single kinetochore that do not congress at a metaphase II plate like in WT. (c-e) 

Examples of degenerating metaphases II without kinetochore labeling. (f) 

Example of a canonical anaphase II from a WT cell. (g-k) Degenerating 

anaphases II with lagging chromatids from Sgol2-/- spermatocytes. The absence 

of kinetochoric signals present in figures c, d, e, g, h, i, j, and k are due to the 

entrance in a degenerative process with loss of most centromeric proteins or its 

antigenicity. Bar, 5 µm. 

 

Figure 5. Altered localization of SYCP3 and REC8 in the absence of SGOL2 

in meiosis I. (a) Double immunolabelings of SYCP3 (green) and kinetochores 

(ACA, red), and counterstaining with DAPI (blue) in wild-type (WT) and Sgol2-/-  

spermatocytes (KO) at metaphase I and early anaphase I. Arrowheads indicate 

the presence of SYCP3 cytoplasmic agglomerates in both WT and KO 

spermatocytes. Insets at the metaphase I panel show magnification of the T-

shaped structure delineated by SYCP3 at wild type bivalents and the small spot 

in the KO ones. Insets at the early anaphase I panel show SYCP3 at the inner 

centromere region in WT and the bar structure in the KO meiocytes. (b) Double 

immunolabeling of REC8 (green) with kinetochores (ACA, red) and DAPI (blue) 

in WT and KO spermatocytes at metaphase I and early anaphase I. REC8 

distribution at the interchromatid domain and at centromeres is similar in WT 

and Sgol2-/- metaphase I bivalents (insets). At early anaphase I REC8 distribution 

in WT persists as a bar (arrow, inset) and is absent in Sgol2-/- spermatocytes, 

where sister kinetochores are clearly separated (arrow, inset). All images are 

projections of different focal planes throughout the cell volume. ACA, anti-

centromeric autoantibody. (c) Centromeres of Sgol2-/- and wild-type anaphase I 
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were immunodetected with ACA and interkinetochore distances measured. Error 

bars represent the mean ± s.m. (statistical significance is indicated by asterisks, 

P<0.001, Student´s t test). Bar, 5 µm. 

 

Figure 6. Abnormal meiosis II and formation of aneuploid spermatids in the 

presence of an activated spindle assembly checkpoint in Sgol2-/-

spermatocytes. Double immunolabeling of BUBR1 (green), and kinetochores 

(ACA, red) and counterstaining with DAPI (blue) in wild-type (WT) and Sgol2-/-  

(KO) spermatocytes. (a) Proper BUBR1 labeling in meiosis I in the absence of 

SGOL2 showing an unaligned bivalent with intense BUBR1 labeling at their 

kinetochores during prometaphase I, and a very faint labeling in metaphase I and 

anaphase I. In metaphase II-like, most of the kinetochores of the separated 

chromatids show an intense BUBR1 labeling in contrast to the WT.  In wild-type 

meiosis II spermatocytes, unaligned chromosomes show an intense BUBR1 

labeling at their kinetochores in prometaphase II, but the labeling almost 

disappears in metaphase II. (b). Representative field of round and elongated 

abnormal spermatids with 1 up to 36 kinetochore (ACA, red) signals and 

counterstained with DAPI (blue). Scale bar represents 5 µm in a and left panel of 

b, and 10 µm in the right panel of b. 
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Supplemental Research Data 

 

Figure S1. Expression analysis of Sgol2 in somatic tissues and chromosomal 

stability of cultured thymocytes. (a) Northern blot analysis of RNA extracts 

from thymus, uterus, intestine, ovary, spleen, heart and cultured thymocytes of 

wild-type (WT) and knock-out (KO) mice with a full length Sgol2 cDNA probe. 

The corresponding ethidium bromide stained 28S ribosomal RNA used as a 

loading control is also shown below. Thymocytes were cultured following 

standard procedures. Briefly, single-cell suspensions from the thymus were 

prepared from age-matched (6-week-old) wild-type and knockout mice by 

mincing samples through a 10 µm pore-size nylon mesh. Primary thymocytes 

were cultured at a density of 106/ml and stimulated with phorbol myristate 

acetate (50 ng/ml) and ionomycin (500 ng/ml). Seventy-two hours after mitogen 

addition, cells were prepared for RNA extraction or karyotyping. (b) RT-

PCR/Southern blot analysis of different tissues from wild-type (WT) and knock-

out (KO) mice. 5 μg of RNA was reverse-transcribed into cDNA using oligo dT 

and SuperScript II reverse transcriptase (Invitrogen). Reverse transcribed RNA 

was amplified by PCR using the following primers (forward and reverse, 

respectively): Sgol2 (Exon 1 5´-ACCCTTCTCGGTAGCCACTCCTG; Exon-3 

5´-CTAAGGGCCCGCGCTAATGCTC  3’); β-actin (5´-

GCTCCGGCATGTGCAA-3'; 5´-AGGATCTTCATGAGGTAGT). The PCR 

products for Sgol2 (355 bp) were agarose-electrophoresed, photographed (upper 

panel), and southern blot analysed with a p32-labeled probe to determine more 

quantitatively the absence of any amplification in the knock-out samples (middle 

panel). (c) Karyotype distribution of wild-type (WT) (n=3 individuals) and 

knock-out (KO) thymocytes (n=3 individuals) from cell cultures (at least 100 

metaphases from each individual were analysed). (d) Mitotic indexes obtained 

from the same cell cultures. Each data point in (c) and (d) represents the mean ± 

s.m. 
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Figure S2. SGOL2 deficiency inhibits the loading of MCAK at centromeres 

(a) Immunofluorescence of mitotic cells obtained from MEFs from (+/+) and (-/-) 

genotypes using a sheep polyclonal antibody against MCAK (kindly provided by 

Dr. L. Wordeman, Univ. of Washington). The MCAK signals (red) are  located 

at the inner centromere domain of the mitotic chromosomes in the wild-type cell 

but is absent in the Sgol2-/- cell. (b) Double immunolabeling of MCAK (green) 

and kinetochores (ACA, red), and counterstaining with DAPI (blue) in 

metaphase I wild-type (+/+) and Sgol2-/- spermatocytes. MCAK accumulates at 

the inner centromere domains as a T-shaped signal below the closely associated 

sister kinetochores (arrow, inset) in wild-type spermatocytes. However, in Sgol2-

/- mutant spermatocytes MCAK is not present at centromeres but detected as 

cytoplasmic aggregates (white arrowheads). Images in b are projections of 

different focal planes throughout the cell volume. Bars 5 µm. 

 

 

Figure S3. Spindle assembly checkpoint and DNA damage response in Sgol2 

deficient MEFs. Two independent embryos are shown for each genotype (wild-

type and knock-out). (a-b) MEFs were irradiated with 5 Gy and allowed to 

recover for 1 h. After that, nocodazole was added (100 ng/ml) and 9 h after 

irradiation, cells were processed for immunofluorescence with a phospho-histone 

H3 antibody as described in Material and Methods. (a) Measurement of the 

mitotic index by scoring the presence of intense phospho-histone H3 signals 

associated with condensed chromatin. (b) Measurement of the mitotic index of 

cells arrested at G2 by scoring the presence of nuclei with punctated phospho-

histone H3 signals. (c) MEFs were irradiated with 10 Gy and allowed to recover 

for 1 h or 6 h and the cells showing positive gamma-H2AX  (antibody form  

Upstate) signals were scored. Control MEFs from both genotypes were not 

irradiated and positive gamma-H2AX foci were also scored. (d) Measurement of 

the mitotic index by scoring the presence of intense phospho-histone-H3 signals 

associated with condensed chromatin after the addition of nocodazole (100 
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ng/ml) and taxol (0.2 μM) for 16 h. Each data point in a, b, c and e represents the 

mean ± s.m. 

 

 

Figure S4. Increased frequency of metaphase II-like stage in meiocytes from 

Sgol2 mutant mice. (a) Percentage of the meiotic stages in wild-type (WT) and 

knock-out (KO) squashed seminiferous tubules showing an accumulation of 

metaphases II-like in Sgol2-/- individuals in comparison with the wild-type 

control. Aberrant anaphases II-like figures observed in the knock-out tubules 

were scored as degenerating and are shown in Fig. 4g-k. (b) Numerical data of 

the meiotic stages from which the figure (a) was constructed. 

 

Figure S5. Normal progression of prophase I in spermatocytes lacking 

SGOL2. (a) Double immunolabeling of SYCP3 (green) and kinetochores (ACA, 

red), and DAPI counterstaining (blue) in Sgol2-/- spermatocytes at diplotene and 

diakinesis. Diplotene spermatocytes show normal SYCP3-labeled desynapsed 

lateral elements. Diakinesis spermatocytes show normal SYCP3 difused in the 

nucleoplasm and at enlargements along desynapsed lateral elements. (b) Merge 

image of the kinetochoric signals (red) with the DNA stained with DAPI. All 

images are projections of different focal planes throughout the cell volume. Bar, 

10 µm. 

 

Figure S6. SMC3 localization in meiocytes lacking SGOL2. Double 

immunolabelings of SMC3 (green) and kinetochores (ACA, red), and 

counterstaining with DAPI (blue) in Sgol2-/- spermatocytes at metaphase I and 

early anaphase I. (a,b) In metaphase I bivalents SMC3 is present at the 

interchromatid domain and at centromeres (see inset). (c,d) At early anaphase I, 

SMC3 is not detected on chromosomes (see inset). All images are projections of 

different focal planes throughout the cell volume. Bar, 5 µm. 
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Figure S7. Activation of the spindle assembly checkpoint in Sgol2 mutant 

metaphase II-like spermatocytes. Double immunolabeling of CENP-E (green) 

and kinetochores (ACA, red), and counterstaining with DAPI (blue) in  Sgol2-/- 

spermatocytes. Meiosis I progresses normally in the absence of SGOL2 and 

CENP-E labels intensely the kinetochores in unaligned bivalents in prometaphase 

I (arrow, see inset), whilst the labeling decreases in aligned bivalents in 

metaphase I when the spindle assembly checkpoint is satisfied. Similarly, CENP-

E labels the kinetochores in prophase II. However, a bright CENP-E labeling is 

still present at the kinetochores of the separated chromatids in metaphase II-like 

mutant spermatocytes. All images are projections of different focal planes 

throughout the cell volume. Bar, 5 µm. 

 

Figure S8. Increased apoptosis detected by TUNEL assay in the testis of 

mice lacking SGOL2. In situ labeling of apoptotic cells in sections of the 

seminiferous tubules from Sgol2+/+ and Sgol2-/- animals.  Sections were 

deparaffinized and apoptotic cells were detected with the In Situ Cell Death 

Detection Kit (Roche) following the manufacturer instruction. Chromatin was 

counterstained with DAPI. Apoptotic cells were pseudocolored in red. Bar in left 

panels, 100 µm; bar in right panels, 25 µm 

 

Figure S9. Number of kinetochores in round and elongated spermatids in 

Sgol2 mutant mice. (a) Percentage of round and elongated spermatids with 

different numbers of kinetochores from squashed seminiferous tubules 

immunolabeled with an ACA serum as shown in Fig. 6b. (b) Table containing the 

corresponding numerical data from which the figure (a) was constructed. 

 

Figure S10. Sgol2 mutant mice exhibit sperm in their epididymis with a 

lower density than in wild-type ones. (a)  Hematoxilin/eosin staining of a tissue 

section of an epididymis (left panels) from wild-type (+/+) and knock-out (-/-) 

mice. Sperm can be visualized within the epididymal ducts in mice from both 

genotypes although at a lower density in mutant mice. The sperm obtained from 
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the epididymis (right panels) of wild-type and knock-out mice show similar 

morphology. (b) Sperm counts from wild-type and knock-out mice at two months 

of age. Mature sperm was harvested from epididymis (by mincing the tissue) and 

vas deferentia (by squeezing the duct) under the microscope into warmed 

completed DMEM. After an incubation of 15 min, the sperm suspension (free of 

excess tissue and aggregates) was centrifuged at 1200 × g for 5 min, diluted in 

fresh completed DMEM medium and counted. Each data point represents the 

mean ± s.m. Bar in left panels, 100 µm; bar in right panels 20 µm. 

  

Figure S11. Female gametogenesis in Sgol2 mutant mice. (a) 

Hematoxilin/eosin staining of a section of an ovary from a wild-type (WT) and 

Sgol2-/- (KO) adult mice showing the presence of primary follicles (arrows) and 

corpus lutei (asterisks) which are indicative of physiological active ovulation in 

both genotypes. (b) Mutant and wild-type females were superovulated and C-

banded metaphase II chromosomes were obtained showing the absence of 

centromeric cohesion between chromatids in  Sgol2-/- oocytes.  Bar in (a), 100 

µm; bar in (b) 20 µm. 
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