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Abstract 

Solid-liquid equilibria of binary mixtures containing high-value compounds and ethyl lactate 

were studied. Using the gravimetric method, the solubility of various solutes such as caffeine, 

vanillic acid, ferulic acid, caffeic acid and thymol  in ethyl lactate was measured as a function 

of temperature (temperature range of  298.2 – 343.2 K), at atmospheric pressure. The 

differences in solubility of a given solute in water-saturated and dry ethyl lactate were 

observed. The deviation of these binary systems from ideal mixture behaviour was discussed. 

In order to understand the solubilization process, melting properties of pure solutes were 

determined by differential scanning calorimetry (DSC). The obtained solubility data were 
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represented using UNIQUAC and UNIFAC-based models as well as with the Cubic-Plus-

Association (CPA) equation of state. The results of the modeling indicate that these models 

are the appropriate tools for representing the solubility behaviour of various solutes in ethyl 

lactate.  

Keywords: solubility, green solvents, high-value solutes, UNIQUAC, UNIFAC, cubic-plus-

association equation of state 

1. INTRODUCTION 

 

High-value compounds derived from natural sources are of industrial importance due to the 

increased perception of their health benefits associated with their antioxidant and 

antimicrobial activities. Some of the examples are derivatives of hydroxycinnamic acid, such 

as ferulic and caffeic acids, which are the most abundant phenolic acids found in seeds of 

many plants: cereals, coffee, fruits and vegetables. Studies have shown their potential in the 

prevention of chronic illnesses such as cardiovascular diseases and cancer [1]. Free ferulic 

and caffeic acids presented great antioxidant activities with high scavenging effect towards 

hydrogen peroxide, superoxide, hydroxyl radical and nitrogen dioxide free radicals [2]. This 

ability has an important role associated to the anti-cancer effect of these compounds. Kaul et 

al. [3] reported that topical application containing caffeic and ferulic acids resulted in 

significant protection against anthracene-induced skin tumors while Guerriero et al. [4] 

showed anti-cancer activity of both acids on hepatocellular carcinoma. Ferulic acid 

significantly reduced the growth of oral cancer [5] as well as colon and rectal cancer [6].  

Another example of phenolic compounds with high biological activity is vanillic acid which 

belongs to the hydroxybenzoic acid group. Recent bioactivity studies of hydroxy- and 

polyhydroxybenzoic acids were reviewed by Khadem and Marles [7]. Vanillic acid occurs in 



many plants and it is known for its antisickling and anthelmintic activities. It reduced hepatic 

fibrosis in chronic liver injury [8], inhibited snake venom 5'-nucleotidase [9] and showed the 

protective effects in isoproterenol induced cardiotoxic rats [10]. 

Thymol, a compound characteristic of essential oils, has been identified as an effective 

antibacterial with relatively low inhibitory concentrations in vitro and somewhat higher 

concentration in foods [11]. In the recent study [12], thymol demonstrated dose dependent 

cytotoxic effects on acute promyelotic leukemia cells after 24 h of exposure. 

Furthermore, one of the most widely consumed and studied natural product in history is 

caffeine. Although research results are controversial, it is believed that low to moderate 

caffeine intake is generally associated with improvements in alertness, learning capacity, 

exercise performance, and possibly even in mood [13]. It is also used as an additive in pain 

medications.  

Most of high-value compounds derived from natural sources are obtained by energetically 

intensive vacuum distillation including several additional steps associated with the use of 

abundant amounts of organic solvents. As an alternative, supercritical fluid technology has 

been applied to extract various high-value components from natural materials [14]. 

Nevertheless, despite good performances, large-scale supercritical applications are burdened 

with bulky equipment requirements. Consequently, the search for other new alternatives – 

those that would be less costly, more similar by structure to the classical solvents and yet 

ambient friendly - continues. In that respect, ethyl lactate is a green and economically viable 

alternative to traditional solvents: it is fully biodegradable, non-corrosive, non-carcinogenic 

and non-ozone depleting. Ethyl lactate is approved by the U.S. Food and Drug 

Administration (FDA) as pharmaceutical and food additive and has been generally 

recognized as a safe (GRAS) solvent [15]. The molecular structure of ethyl lactate possess a 



specific topology of hydrogen bonds present as well in other lactate alpha-hydroxyesters [16]. 

This allows the formation of intra- and intermolecular associations with ethyl lactate, as 

either proton donor or proton acceptor [17]. On the other hand, ethyl lactate is soluble in 

paraffin oils, which fact imposes the formation of some van der Waals interactions [18]. 

Thus, this ester offers diverse solvent properties that may cover a large number of solutes. 

Consequently, there are several attempts in the literature to use ethyl lactate as an extraction 

solvent. For example, Ishida and Chapman [19] reported the potential application of ethyl 

lactate to extract carotenoids from different sources, such as tomatoes, carrots and corn; Strati 

and Oreopoulou [20] studied the effect of different extraction parameters on the carotenoid 

recovery from tomato waste; A bioactive bicyclic diterpene, namely sclareol, was selectively 

extracted using ethyl lactate and recovered from the liquid solution by a CO2 gas anti-solvent 

procedure [21]; Hernández et al. [22] studied the potential application of ethyl lactate to 

recover squalene from olive oil deodorizer distillates. Our group also reported the utilization 

of ethyl lactate for selective separation of α-tocopherol from triglycerides [23].  

The solvent selection is one of the essential parameters to envisage any extraction process. 

Therefore, the knowledge of the solubility of a target component in different solvents is 

required. In this work, the solubility of caffeine, vanillic acid, ferulic acid, caffeic acid and 

thymol, in liquid ethyl lactate were measured in the temperature range of 293.2 – 343.2 K. 

Although experimental data on solubility are essential to provide information about a system 

and help to understand its behaviour, correlations and prediction models are also required for 

the correct design of separation processes.  

Binary systems containing ethyl lactate have been described by some models, such as 

UNIQUAC [22],[23], UNIFAC activity coefficient models coupled with the Peng–Robinson 

equation of state (PR–EOS) [21] and the perturbed chain-statistical associating fluid theory 

(PC-SAFT) [24]. In this work, the obtained solubility data in ethyl lactate of caffeine, vanillic 



acid, ferulic acid, caffeic acid and thymol, were represented using the UNIQUAC model as 

well as the modified (Dortmund) UNIFAC method. 

In addition, for the first time we applied a simple Cubic Equation of State incorporating 

association, known as the CPA EoS for the description of the intermolecular physical 

interactions that include specific association in ethyl lactate containing systems. The CPA 

EoS was already successfully applied for binary mixtures water + phenolic compounds as 

reported by Mota et al. [25], [26] and Queimada et al.[27].  

 

2. EXPERIMENTAL SECTION 
 

2.1. Materials 

Caffeine (99% purity), vanillic acid (97% purity), ferulic acid (99% purity), caffeic acid 

(≥98.0% purity), thymol (≥99.5% purity) and ethyl lactate (98% purity) were supplied by 

Sigma-Aldrich (Table 1). Their molecular structures are given in Figure 1. All solutes were 

used without further purification. We studied solubility of solutes in: a) water-saturated ethyl 

lactate as received and without any further treatment, and b) dried ethyl lactate. In the case of 

latter, vacuum at room temperature was applied to ethyl lactate for several days in order to 

reduce its water content. Karl-Fischer coulometric titration (Metrohm 870 KF Titrino Plus 

coulometer) was employed to determine the water content before and after the vacuum 

procedure. 

2.2. Experimental procedure 
 
 

2.2.1. Differential scanning calorimetry 
 

Differential scanning calorimetry (Netzsch, model DSC 200 F3 Maia) was used in order to 

obtain the melting point (Tm), enthalpy of fusion (ΔHfus) and differences in  heat capacities 



(ΔCp) of caffeine, vanillic acid, ferulic acid, caffeic acid and thymol required for modeling 

the solid-liquid equilibrium. An aluminium crucible with 5 to 7 mg of sample was sealed 

hermetically and placed in the measuring cell of the calorimeter together with an empty 

crucible to be used as a reference. The sample was heated under a nitrogen stream over a 

large temperature range using a 3 K·min-1 heating rate. The measurements for each 

compound were repeated four times and average melting temperatures, enthalpies of fusion 

and differences in heat capacities were obtained. 

2.2.2. Solid-liquid  equilibria 

For all the studied solutions, except the one with thymol, solid–liquid equilibrium 

measurements were carried out using the gravimetric method. Ethyl lactate and a solute 

(caffeine or vanilic acid or ferulic acid or caffeic acid) in excess were placed into a glass 

vessel with a stirrer. The vessels were put inside a water bath and a stirring plate was used to 

agitate the samples during 48 h under fixed temperature, controlled by a thermocouple 

(Julabo ED). The temperature was monitored by a calibrated mercury thermometer, having an 

accuracy of 0.1 K. After equilibrium had been reached, stirring was stopped and vessels were 

left stilled for more 48 hours to allow a complete phase separation. Samples of clear saturated 

liquid solution (1 cm3) were taken by a micropipette and placed into glass vials, while both 

the mass of the empty vial and the mass of the sample were registered using an AAA 250L 

balance with the precision of ± 0.0001 g. The samples were then placed in a vacuum oven 

(Precision Scientific 5831) equipped with a vacuum pump (Edwards E2M1.5) for a couple of 

hours till constant mass of the dry samples were achieved. In order to evaporate all ethyl 

lactate from the samples, moderate temperature (338 K) and low pressure (0.01mbar) were 

applied. The vials containing dry samples were weighted and the mole fraction solubilities 

were finally calculated. 



In the case of ethyl-lactate + thymol solutions a visual dynamic method was used to 

measure the solubility of thymol. Solutions were prepared gravimetrically in the glass cell 

using an AAA 250L balance, with the precision of ± 0.0001 g. After vigorous mixing, the cell 

(explained in details elsewhere [28],[29]) was placed in the glass thermostat bath and the 

sample was heated very slowly (less than 0.5 K·h−1 near the equilibrium temperature) with 

continuous stirring. The temperature at which the last crystal disappeared was taken as that of 

solid-liquid equilibrium. 

For both methods, triplicates of each measurement were performed in order to obtain 

reliable solubility data. The average reproducibility in solid-liquid equilibrium temperature 

and compositions (mole fractions of solutes in ethyl lactate) was ± 0.3 K and 0.0007, 

respectively. 

2.3. Thermodynamic modeling 
 

The solubility of a solute i in a liquid phase can be calculated by the following equation [30]: 

ln
,

,
∑

∆
ln 1                                           (1) 

where trH, R, T and ΔCp are the enthalpy of transition at the transition temperature (Ttr), the 

ideal gas constant, absolute temperature of solid-liquid equilibria, and difference of the liquid 

and solid molar heat capacities, respectively. ΣtrH integrates enthalpies of different solid–

solid and fusion phase transitions of the solute. 

In this work the experimental solubility data were described by the UNIQUAC model [30] 

and by the modified UNIFAC (Dortmund) method – [31] as well as by the Cubic Plus 

Association equation of state (CPA EoS) [32], [33]. 



The UNIQUAC equation [30] (an activity coefficient model) can be used to represent the 

solubility data and equation (1) then becomes: 

exp ∑
∆

ln 1 	                                        (2) 

where xi and γi are the mole fraction of solute i in the liquid phase and the solute i activity 

coefficient. 

The surface area and volume fraction used in UNIQUAC were based on the volume and area 

parameters which were calculated using the corresponding group contribution values [34], 

[35]. The temperature-independent binary interaction parameters were obtained from the 

correlation of the SLE experimental data. 

Eq. (2) was also applied using the modified UNIFAC model [31] to calculate the solute 

activity coefficient in the liquid phase. The ACOH – COOH interaction parameters (both 

groups are present in the chemical structure of the phenolic acids studied) were estimated in 

this work using the SLE experimental data. 

The Cubic Plus Association equation of state (CPA EoS) is a combination of the simple cubic 

equation of state (SCEoS) and the Wertheim association term. The SCEoS term presents the 

description of the physical interactions, while the Wertheim association term takes into 

account the specific association interactions between molecules. The CPA EoS can be 

expressed in terms of the compressibility factor, where the pure component energy parameter 

(a) is given by a Soave-type temperature dependence: 

 

. . 1 ∑ ∑ 1               (3) 

1 1                                                         (4) 



where ρ and Tr are the molar density and reduced temperature. 

XAi is related to the association strength ΔAiBj between sites A and B belonging to two 

different molecules (i, j). Since self- and cross-association are present in the studied systems, 

XAi is calculating through the following set of equations: 

∑ ∑ ∆
                                                         (5) 

∆ 1                                   (6) 

∆ ∆ ∆                                        (7) 

.
                                                 (8) 

                                                          (9) 

Equation (6) is used for self-associating molecules where εAiBi and AiBi are the association 

energy and association volume, respectively. The Elliot combining rule (eq. 7) is used for 

cross-associating molecules.  

The CPA EoS has been recently adopted for complex molecules in order to apply the explicit 

association energies and volumes for the different associating groups [25],[26],[27]. CPA 

EoS has five pure component parameters (a0, c1, b, ε, β) for associating compounds, which 

are obtained by the simultaneous correlation of experimental liquid density and vapor 

pressure data, taking into account the number and type of associating groups. However, these 

experimental data were only available for ethyl lactate and thymol and they were collected 

from DIPPR Database [36]. Otherwise, the pure component parameters were calculated using 

the following equations proposed before for phenolics [25]: 



a 0.2267 24.38                                               (10) 

3.557 6.289	 10                              (11) 

2.328 10 1.884                                   (12) 

where Tc, pc and VW are the critical temperature (in K), critical pressure (in Pa) and the van 

der Waals volume (in m3·mol-1), respectively. 

The association energies and association volumes of ethyl lactate and thymol were as well 

determined using the pure component vapor pressure and liquid density data. The 

methodology described by Mota et al. [25] was used to obtain association energies and 

volumes for ferulic acid, vanillic acid and caffeic acid, since in these cases the vapor pressure 

and liquid density data were not available. 

Finally, the solubilities of the studied solutes in ethyl lactate were obtained from the 

following equation: 

exp ∑ ∆ ∆
ln 1   (13) 

in which the CPA EoS was used to calculate the fugacity coefficients. As mentioned before, 

the melting temperatures, enthalpies of fusion and differences in heat capacities were 

measured by DSC.  

The experimental and modeling results were compared in terms of the absolute average 

deviations (AAD) of the solubilities: 

% ∑ 	 100                                      (14) 



where xi
calc and xi

exp are the calculated and experimental mole fraction solubilities 

respectively, and NP is the number of available solubility points. 

3. RESULTS AND DISCUSSION 
 

Measured enthalpies of fusion and melting temperatures along with differences in heat 

capacities for the studied solutes (caffeine, vanillic acid, ferulic acid, caffeic acid and thymol) 

are given in Table 2.  

A linear base line and a symmetric peak were observed for all the studied compounds, except 

for caffeine and caffeic acid. In the case of caffeine two phase transformations, solid-solid 

and solid-liquid, were detected upon heating while it was observed that caffeic acid 

decomposes before melting. Therefore, the melting point of caffeic acid adopted in this work 

was the one presented by Mota et al. [25] obtained by a third-order group-contribution 

method proposed by Marrero and Gani [37]. The difference in heat capacity of caffeic acid 

was acquired as a difference of the estimated liquid and solid heat capacities. The heat 

capacity of the liquid as a function of temperature was estimated by the third-order group-

contribution method given by Kolska et al. [38]. The temperature dependence of the group 

contribution was expressed as an empirical polynomial equation which applies the group 

contribution parameters determined by both a non-hierarchic and a hierarchic approach. As 

the non-hierarchic approach showed to be slightly superior, it was used to calculate the heat 

capacity of liquid caffeic acid. The heat capacity of solid caffeic acid was calculated using the 

power-law method which has a fixed temperature functionality but applies the two-group 

contribution method to obtain the compound-specific constant employed in the predictive 

equation [39]. 



The observed melting point of thymol was in a good agreement with the data reported in 

literature [40], showing a deviation of 0.7 %. A substantially higher deviation was observed 

for its fusion enthalpy (20.9 %). Similarly to what was observed by Dong et al.[41], caffeine 

showed two phase transitions, solid-solid and solid-liquid. In the case of the fusion of 

caffeine, our data deviated 0.7 % and 9.9 % for melting temperature and enthalpy of fusion, 

respectively. The properties of the solid-solid transition of caffeine also agreed reasonably 

with the literature data (1.8 % and 22 % deviations for melting point and fusion enthalpy, 

respectively). As for thymol and caffeine, the DSC thermograms of ferulic acid showed one 

endothermic peak and therefore corresponds to the one of two polymorphic forms reported by 

Sohn and Oh [42]. Measured melting temperature was smaller for 0.7 % while the fusion 

enthalpy was higher for 22 %. 

Table 3 and Figure 2 present the solubility data of caffeine, vanillic acid, ferulic acid, caffeic 

acid and thymol in ethyl lactate as a function of temperature. Since ethyl lactate is a 

hygroscopic compound, solubilities in both water-saturated (1.4 mass %) and dried (0.03 

mass %) ethyl lactate were determined, thus permitting to understand the effect of water on 

solubility. To the best of our knowledge, there are no published data of the solubility of such 

given solutes in ethyl lactate to compare with. The relative affinity of the studied solutes to 

ethyl lactate follows the order: thymol>>ferulic acid >vanillic acid > caffeine >caffeic acid. 

As expected, solubilities of all studied solutes in ethyl lactate were moderately enhanced by 

temperature rise. It was observed that thymol is extremely soluble in ethyl lactate, reaching 

mole fraction of 0.8985 at 317.8 K which can be explained by its relatively low melting point 

of 322.0 K and low enthalpy of fusion of 17.4 kJ·mol-1 (see Table 2). Although the chemical 

structures of ferulic and caffeic acids (Fig. 1) are relatively similar, their solubility in ethyl 

lactate were quite unlike – 0.0614 and 0.0171 in mole fraction at 333.3 K for ferulic and 

caffeic acid, respectively.  



The substitution of one hydroxyl group of caffeic acid by a methyl ether group enhanced the 

solubility significantly. The solubilities of 0.0545 and 0.0614 in mole fraction at 333.3 K 

were observed for vanillic and ferulic acids, respectively. Thus, comparing these data it can 

be concluded that the presence of a longer acid alkyl chain increased the solubility only 

slightly.  

It is interesting to note that the solubility of solutes was differently influenced by the presence 

of water in ethyl lactate solvent (Fig. 2). For example, the solubility of thymol was not 

changed by water while that of vanillic acid and caffeine was only slightly influenced. On the 

other hand, a significant increase of the solubility of ferulic and caffeic acids was observed 

when water was present in ethyl lactate. Taking into account a low solubility of ferulic and 

caffeic acids in water, this solubility enhancement suggests a co-solvent effect which may 

have implications in potential extraction processes. 

According to equation (2), the calculation of the ideal solubility of a solute in a solvent at a 

given temperature is straightforward from the thermophysical property data (melting points, 

enthalpies of fusion and differences in heat capacities) of the studied compounds presented in 

Table 2. The ideal solubility corresponds to having an activity coefficient equal to one, 

meaning that the attraction forces between like-molecules (solvent-solvent and solute-solute) 

are the same as between unlike-molecules (solvent-solute). For the comparison of the 

deviation from ideal solution behavior, it is convenient to present measured (real) solubility 

as a function of ideal solubility (Figure 3). A straight dashed line corresponds to the ideal 

solution – activity coefficient ɣi = 1. On the other hand, the area above this relates to the 

solubility higher than ideal, indicating a tendency toward ordering between the two unlike-

molecule components (ɣi < 1). Conversely, the area below the dashed line indicates a 

tendency toward phase separation or clustering in the solution, meaning that the attraction 

forces between like-molecules are superior to those of unlike-molecules (ɣi >1). For all the 



studied solutes except thymol, the activity coefficients were larger than unity, suggesting the 

presence of repulsive solute-solvent interactions. On the other hand, there are specific 

attraction forces between thymol and ethyl lactate, reflected in an activity coefficient lower 

than unity. Ferulic and vanillic acids showed a close to ideal behaviour at lower temperatures. 

As the temperature rises, solute-solvent interactions get weaker and are dominated by solute-

solute and solvent-solvent cluster formations. 

Calculated volume and area parameters of the UNIQUAC model (ri and qi) are included in 

Table 4 along with the temperature-independent binary interaction parameters (aij and aji) 

obtained from fitting the experimental solubility data. The volume and area parameters are 

proportional to van der Waals volume (Vw) and van der Waals area (Aw) which are presented 

in Table 5. As can be seen in Fig.2, the UNIQUAC equation demonstrated an excellent 

description of the experimental data. The absolute average deviations comparing 

experimental and calculated solubilities were 3.9 % for caffeine, 0.98 % for vanillic acid, 3.6 

% for ferulic acid, 0.97 % for caffeic acid and 0.47 % for thymol.  

Table 6 shows the group composition of the substances studied in the case of applying the 

modified (Dortmund) UNIFAC model. The volume parameter (Rk) for the CHCOO group 

(present in ethyl lactate) was considered to be 1.2700, as is for the rest of groups comprising 

main group 11 (ester) given by Gmehling et al. [31]. The corresponding surface area 

parameter (Qk) was calculated to be 0.9901, according to Bondi [43]. The rest of group Rk 

and Qk parameters together with the temperature-dependent interaction parameters (aij, aji, bij, 

bji, cij, cji) were obtained from the literature [31].  

In the case of thymol, the calculated solubilities correspond to model predictions and give an 

absolute average deviation (AAD) between the experimental and calculated mole fractions of 

6.9 %. As mentioned before, the ACOH-COOH group interaction was estimated in this work, 



including non-zero bij and bji parameters, in order to represent the phenolic acid solubilities. 

The values obtained are given in Table 7 along with a comparison with those reported in 

literature [31]. The AAD obtained between the experimental and calculated mole fractions 

were 11.4 % for vanillic acid, 9.6 % for ferulic acid and 24.7 % for caffeic acid. Caffeine 

solubility could not be calculated due to the lack of parameter for cycl-CO group [44]. Figure 

2 shows a comparison between the solubility calculations attained with the modified 

UNIFAC model and those obtained with the other models applied in this work. 

The CPA pure component parameters for the solutes were calculated from available 

experimental data [25],[36],[45],[46] according to equations (10)-(12). The van der Waals 

volume for vanillic acid was calculated using a group contribution approach proposed in 

literature [34]. All calculated and adopted data are presented in Table 8. 

The CPA EoS showed initially absolute average deviations (AAD) up to 72 % when the pure 

component parameters were calculated according to eqs. (10)-(12). A small temperature-

independent binary interaction parameter (kij) was thus necessary to decrease the AAD. The 

CPA modeling results thus obtained are presented in Figure 2. The absolute average deviation 

for caffeine, vanillic acid, ferulic acid and caffeic acid are 6.05 % (kij = - 0.043), 13.71 % (kij 

= -0.213), 14.97 % (kij = -0.022) and 24.21 % (kij = -0.018), respectively. The mixture of 

ethyl lactate and caffeic acid showed the highest AAD. The correlated kij’s are negative 

which means that the interactions between the molecules are stronger than expected by the 

CPA EoS. The ether group in vanillic acid was not taken into account for associative 

interactions which leads to the highest kij value. For the mixture of ethyl lactate and thymol, 

the CPA EoS gave a very small absolute average deviation (AAD = 3.17%) without adjusting 

the binary interaction parameter. This result leads to a conclusion that the CPA EoS is a good 

predictive tool for systems with self- and cross-association whenever binary interaction 

parameters cannot be obtained. It was also confirmed that the CPA EoS can still give 



satisfactory results if the pure component parameters of the solutes are obtained only from 

their molecular structure, whereas a small kij is the only parameter to be determined from 

experimental data. 

Conclusions 

In this work, the solubility of caffeine, vanillic acid, ferulic acid, caffeic acid and thymol in 

both dry and water saturated ethyl lactate was measured as a function of temperature, at 

atmospheric pressure. All solubilities were found to increase with temperature. 

Thermophysical properties of the studied solutes, namely, enthalpies of fusion and melting 

temperatures along with differences in heat capacities were obtained by DSC. From the 

thermophysical and solubility data, activity coefficients were calculated. It was found that for 

all the studied solutes except thymol, the activity coefficients were larger than unity, 

suggesting the presence of repulsive solute-solvent interactions. On the other hand, there are 

specific attraction forces between thymol and ethyl lactate, reflecting in activity coefficients 

lower than unity. 

The obtained solubility data were represented using UNIQUAC and UNIFAC as well as 

using the Cubic-Plus-Association (CPA) equation of state. The UNIQUAC model provided 

an excellent description of the solubility data, with the absolute average deviations (AAD) of 

3.9 % for caffeine, 0.98 % for vanillic acid, 3.6 % for ferulic acid, 0.97 % for caffeic acid and 

0.47 % for thymol,. The UNIFAC-based model showed reasonable predictive capabilities for 

the studied mixtures. Good agreement between the experimental and calculated mole 

fractions were obtained for vanillic acid (AAD of 11.4 %), ferulic acid (AAD of 9.6%), and 

thymol (AAD of 6.9 %) while somewhat inferior agreement was observed for caffeic acid 

(AAD of 24.7 %).  



The CPA EoS represented very well the solid-liquid equilibrium data of the studied solutes, 

namely caffeine, vanillic acid, ferulic acid, caffeic acid and thymol in ethyl lactate, but only 

when a small binary interaction parameter was regressed from the experimental solubility 

data. The CPA modelling results for such complex molecules are surprisingly good, given the 

higher predictive character of the CPA EoS when compared with the activity coefficient 

models. It also clearly shows the importance of including associative effects in the model. 
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Table 1. Purities of chemicals used in this work  

Compound Supplier CAS Number 
Sample purity, 
mass fraction 

Ethyl lactate Aldrich 687-47-8 0.98 
Caffeine Sigma-Aldrich 58-08-2 ≥ 0.99 
Vanillic acid Fluka 121-34-6 ≥ 0.97 
Ferulic acid Aldrich 537-98-4 0.99 
Caffeic acid Sigma 331-39-5 ≥ 0.98 
Thymol Sigma 89-83-8 ≥ 0.995 

 



Table 2. Average melting points (Tm), enthalpies of fusion (ΔHfus) and differences in heat 
capacities (ΔCp) of the studied compounds.* 

compound Tm / K ΔHfus / kJ·mol-1 ΔCp / J·mol-1·K-1 

Caffeine  
405.8 ± 0.4 a 2.6 ± 0.2 a 
505.4 ± 0.0 17.9 ± 0.1 12.0 ± 1.8 

Vanillic acid 480.7 ± 0.2 29.1 ± 0.6 64.4 ± 2.5 
Ferulic acid 444.9 ± 0.4 31.9 ± 0.9 73.7 ± 9.0 
Caffeic acid 464.1 b 39.85 b 162.7 c 
Thymol 322.0 ± 0.1 17.4 ± 0.6 66.6 ± 4.7 

* Maximal standard uncertainties u are u(Tm) = 0.28 K, u(ΔHfus) = 0.6, u(ΔCp) = 6.4. 
a Solid-solid transition of caffeine 
b Calculated using a group contribution method  as described elsewhere[25]. 
c Calculated using a group contribution method for the estimation of the heat capacities of liquids [38] and the 
power-law method to estimate heat capacities of organic solids[39]. 
  
 



Table 3. Experimental solubilities of thymol, caffeine, vanillic acid, caffeic acid and ferulic 
acid in ethyl lactate containing 1.40 mass % of water and dried ethyl lactate containing less 
than 0.03 mass %.* x stands for solute mole fraction.   

 

T / K x T / K x 

1.40 mass% water in      
ethyl lactate 

< 0.03 mass% water in   
ethyl lactate  

Caffeine 
298.2 0.0192 296.2 0.0144 
313.2 0.0305 303.1 0.0198 
328.2 0.0418 312.7 0.0253 
343.2 0.0508 323.0 0.0319 

333.3 0.0414 
Vanillic acid 

298.2 0.0270 296.2 0.0279 
313.2 0.0355 303.1 0.0321 
328.2 0.0482 312.7 0.0379 
343.2 0.0584 323.0 0.0444 

333.3 0.0545 
Ferulic acid 

298.2 0.0803 296.2 0.0277 
313.2 0.0939 303.1 0.0349 
328.2 0.1061 312.7 0.0428 
343.2 0.1177 323.0 0.0526 

333.3 0.0614 
Caffeic acid 

298.2 0.0129 296.2 0.0089 
313.2 0.0165 303.1 0.0103 
328.2 0.0203 312.7 0.0119 
343.2 0.0230 323.0 0.0142 

333.3 0.0171 
Thymol 

301.4 0.6975 301.0 0.6978 
304.3 0.7281 303.5 0.7207 
307.5 0.7653 307.5 0.7638 
307.8 0.7671 308.4 0.7784 
308.3 0.7717 309.3 0.7928 
316.5 0.8893 311.0 0.8085 
318.6 0.9137 313.3 0.8421 

     317.8 0.8985 
                                                    * Standard uncertainties u are u(T) = 0.15 K, u(x) for caffeine, vanillic acid, ferulic acid,  
                                     caffeic acid equals to 0.0005, while for thymol equals to 0.0007.  
 



Table 4. Interaction (aij, aji) and structural (ri, qi ) parameters for the UNIQUAC model. 

 

i aij / K aji / K ri qi 

Ethyl lactate 4.441 3.928 

Caffeine 409.11 -222.00 7.0534 5.6400 

Vanillic acid 15.564 51.572 6.6638 5.6000 

Ferulic acid 384.41 -207.61 5.8266 5.0040 

Caffeic acid 380.93 -147.59 6.2624 5.1600 

Thymol 459.35 -306.35 6.4931 4.8640 

 

  



Table 5. Critical temperatures (Tc), critical pressures (pc), van der Waals volumes (VW) and 
van der Waals surface areas (AW) used. 
 

compound Tc / K pc / MPa 
Vw·105 /    
m3·mol-1 

Aw·10-6 /  
m2·mol-1 

Ethyl lactate [36] 607.0 3.74 6.74 0.98 

Caffeine [46]  855.6 4.15 10.1136 1.4036 

Vanillic acid [45] 905.2 3.45 8.84a 1.25a 

Ferulic acid [25] 854.6 3.64 10.70 1.41a 

Caffeic acid [25] 876.2 5.11 9.50 1.29a 

Thymol [36] 698.3 3.41 9.85 1.22 
a Calculated using the group-contribution approach proposed by Bondy [34] 

  



Table 6. Group composition adopted to represent the chemical structure of solutes and ethyl 
lactate for UNIFAC method. 

  ethyl lactate vanillic acid ferulic acid caffeic acid thymol 

CH3 2 2 
CH2 1 
CH 1 
CH=CH 1 1 
AC 2 2 1 1 
ACH 3 3 3 3 
ACCH3 1 
ACOH 1 1 2 1 
OH(s) 1 
CHCOO 1 
OCH3 1 1 
COOH   1 1 1   

 

  



Table 7. Modified UNIFAC interaction parameters between the ACOH and COOH groups: 
comparison between parameters regressed in this work and those reported in the literature. 

i j aij bij cij Ref. 

ACOH COOH 401.88 0.0 0.0 [31] 
  415.72 -1.97 0.0 this work 

COOH ACOH 281.08 0.0 0.0 [31] 
  120.50 -2.37 0.0 this work 

 



Table 8. Pure component parameters used in the CPA EoS. 

Compound 
a0 /     

Pa·m6·mol-2 
c1  b·104 /   

m3·mol-1

OH COOH %AAD 

ε·10-4  / J·mol-1 β·102  ε·10-4  / J·mol-1 β·103  p ρ 

Ethyl lactate 1.994 1.030 1.030 1.875 4.046 0.513 0.062 
Caffeine 4.532 1.824 1.672 
Vanillic acid 6.017 2.136 1.432 1.837 1.185 3.201 0.010 
Ferulic acid 5.118 1.818 1.783 1.871 1.345 2.756 3.698 
Caffeic acid 3.890 1.953 1.557 1.134 6.255 2.756 3.698 
Thymol 3.113 1.140 1.418 2.242 3.796       0.396 0.019 



Captions to the Figures 

Figure 1. Chemical structure of caffeine (a), vanillic acid (b), ferulic acid (c), caffeic acid (d) 
and thymol (e). 

Figure 2. Solubilities of caffeine (a), vanillic acid (b), ferulic acid (c), caffeic acid (d) and 
thymol (e) in ethyl lactate: experimental results (empty circle stand for solute + ethyl lactate 
containing 1.40 mass % of water; filled circle stand for solute + dried ethyl lactate system). 
Lines present estimation by the UNIQUAC (round dot line), CPA (straight line) and 
UNIFAC (dashed line). 

Figure 3. Measured solubility as a function of ideal solubility,  where filled squares, filled 
triangles, empty circles, filled circles and asterisk stand for caffeine, vanillic acid, ferulic 
acid, caffeic acid and thymol, respectively. Straight dashed line corresponds to the ideal 

solution (activity coefficient   = 1) calculated from equation (2), while areas above and 

below this line present region of  < 1 and  > 1, respectively. 
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