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ABSTRACT 17 

A first-order kinetic mechanism was appropriate for describing the thermal degradation of epoxy 18 

xanthophylls in virgin olive oil (VOO). Consecutive reactions that involve reorganization of 5,6-19 

epoxide groups to 5,8-furanoxide groups and subsequent rupture of the polyene chain occurred in 20 

the degradation pathways. Thermal stability was significantly affected by changes in the chemical 21 

structure (epoxy to furanoid structure), being the greatest stability for neoxanthin. A true kinetic 22 

compensation effect was found in a series of similar reactions, that is the degradation of 5,8-23 

furanoxides into colorless products. An isokinetic study in different VOO matrices showed that the 24 

oily medium did not significantly affect the reaction mechanisms. Consequently, the kinetic 25 

parameters obtained as temperature functions according to the Arrhenius model can be used to 26 

develop a prediction mathematical model for 5,8-furanoxide xanthophylls in VOO over time. The 27 

potential usefulness of the parameter neoxanthin/neochrome ratio is discussed as a chemical marker 28 

of heat treatment in VOO. 29 

 30 

 31 
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INTRODUCTION  34 

 The main biological function of carotenoids in photosynthetic organisms is energy transfer 35 

in photosynthesis and photoprotection1. Among the carotenoids, in addition to β-carotene and 36 

lutein, 5,6-epoxy xanthophylls such as neoxanthin and violaxanthin are widely distributed in the 37 

photosynthetic organs of higher plants2. In mammals, which can incorporate carotenoids only 38 

through diet, the only so far known biological function of some carotenoids is their role as vitamin 39 

A precursors. The nutritional importance of this biological function has been studied for years and 40 

is still of interest today3, 4. Certain physiological responses following the ingestion of food or 41 

dietary supplements rich in carotenoids have been observed. These responses are known as 42 

biological activities, which have raised the interest of the scientific community in the context of 43 

improving health through diet and developing functional foods. These include antioxidant activity 44 

and its associated benefits in preventing degenerative diseases4. 45 

Carotenoids must be bioavailable to express these biological activities in tissues, i.e., they 46 

must be transferred from the food matrix to the bloodstream to be metabolised and/or stored by the 47 

body. In addition to the individual’s physiological factors, many dietary factors will determine their 48 

bioavailability5. These include the characteristics of the food matrix6 and the various technological 49 

alternatives for obtaining and/or preserving food, which may influence the type and proportion of 50 

carotenoid derivatives formed.  51 

 Virgin olive oil (VOO) is considered to be a healthy fat. Its beneficial properties are 52 

attributed mainly to its proper fatty acid composition. Recently, however, benefits from other minor 53 

compounds in VOO with vitamin E (tocopherols) and provitamin A (β-carotene and β-54 

cryptoxanthin) functions have been reported, and other with potential biological activities as 55 

antioxidants (phenols, carotenoids, chlorophylls, squalene) or hypolipemiants (β-sitosterol) have 56 

been suggested7. Virgin olive oil is obtained from the olive fruit using only physical procedures 57 

under conditions, especially thermal, which do not involve alteration of the oil8. Thus, the 58 

composition of bioactive compounds that are transferred from the fruit remain potentially intact in 59 
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virgin olive oil. In terms of carotenoids, VOO mainly contains lutein and β-carotene, although there 60 

are also β-cryptoxanthin and 5,6-epoxy xanthophylls such as neoxanthin, violaxanthin, 61 

antheraxanthin and their furanoxides9.  62 

Carotenoids are susceptible to some reactions such as isomerization (trans to cis) and 63 

oxidation during food processing and storage due to the carbon-carbon double bonds of the polyene 64 

chain. Therefore, they react easily with acids, light, heat, and oxygen causing loss of colour and 65 

reduction of biological activity10, 11. Thus, these factors should be properly controlled to maximize 66 

carotenoids retention during storage.  In the case of isomerisation, the trans-isomers are more 67 

common and stable in natural foods whereas cis-isomers are usually formed during food 68 

processing12. Organic acids liberated during the processing of fruit juices are strong enough to 69 

promote rearrangements of 5,6-epoxide groups to 5,8-furanoxide groups of carotenoids13,14. 70 

Therefore, the stability of carotenoids in foods varies greatly15. 71 

During the mechanical process of extracting virgin olive oil, a total transfer of carotenoids 72 

from the fruit to the oil does not occur despite their lipophilic character. A high percentage remains 73 

in the alperujo (a subproduct from the olive oil extraction process), whereas some of it undergoes 74 

oxidation to colorless products16. The other structural changes of carotenoids associated with the 75 

processing are, however, of special importance, because they generate colored products and these 76 

compounds leave a "footprint" in the oil, which is used as a tracking parameter. These reactions are 77 

mostly mediated by the release of acid into the medium, the greater accessibility of enzymes and 78 

substrates, and the oxygenation that occurs during the milling of the fruit and the beating of the 79 

paste. In the fraction of xanthophylls, of note is the partial transformation of 5,6-epoxy xanthophylls 80 

to their corresponding 5,8-furanoxides17. 81 

 Kinetic models are becoming more popular for studying the changes in the chemical 82 

composition of food. These models are capable of predicting shelf life in keeping with the different 83 

variables that can affect the degradation of the food item. Studies describing the kinetics of 84 

carotenoids in fruit- and vegetable-based products are rather limited,  although this information 85 
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would be very useful and industrially relevant for predicting changes in functional compounds 86 

during fruit and vegetable processing18. In those studies, analysis of kinetic data suggested a first-87 

order model to describe the thermal degradation of carotenoids as in paprika oleoresins19, citrus 88 

juice13 or carrot puree18. The thermal and oxidative degradation of lycopene, lutein, and 9-cis and 89 

all-trans β-carotene has been studied in an oil model system20 to determine their relatives stabilities. 90 

The degradation kinetics also followed a first-order model, and the thermodynamic parameters 91 

indicated a kinetic compensation effect between all the carotenoids, with lutein being the most 92 

stable to degradation. A higher thermal resistance of lutein than β-carotene has been suggested by 93 

Achir et al.21 in model systems with two different frying oils reporting the influence of the oil initial 94 

composition in all degradation rates.    95 

 There are numerous experimental works in the literature describing VOO degradation, but  96 

recently the kinetic performance in oxidation parameters as peroxide value (PV), absorbance at 97 

232nm (K232) and 270nm (K270) has been described22. The first kinetic and thermodynamic study of 98 

pigment thermodegradation products in VOO is referred to chlorophylls and was reported in 201023.  99 

 Our most recent research in this field has been aimed at the kinetic study and 100 

characterization of the thermodynamic parameters governing the thermal degradation reactions of 101 

carotenoids in VOO, to advance our understanding of the thermal stability of these compounds in 102 

an oily matrix, and to establish for the first time mathematical models enabling the prediction of the 103 

degradation of this pigment during VOO storage and/or thermal processing. This study necessarily 104 

had to be separated into two parts due to the large amount of data. Recently the results for lutein, β-105 

carotene and β-cryptoxanthin has been reported 24 and in this work the results concerning to 5,6-106 

epoxide xanthophylls are presented. 107 

MATERIALS AND METHOD.  108 

Chemicals and Standards. Tetrabutylammonium acetate and ammonium acetate were supplied by 109 

Fluka (Zwijndrecht, The Netherlands). HPLC reagent grade solvents were purchased from 110 

Teknokroma (Barcelona, Spain), and analytical grade solvents were supplied by Panreac 111 
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(Barcelona, Spain). For the preparation, isolation, and purification of carotenoid pigments, 112 

analytical grade reagents were used (Panreac). The deionized water used was obtained from a Milli-113 

Q 50 system (Millipore Corp., Bedford, MA, USA). Reference samples of neoxanthin, violaxanthin, 114 

and antheraxanthin were obtained from a pigment extract of fresh spinach saponified with 3.5 M 115 

KOH in methanol and isolated  by TLC on silica gel GF254 (0.7 mm thickness) on 20 x 20 cm 116 

plates using petroleum ether (65-95 °C)/acetone/diethylamine (10:4:1)25. Luteoxanthin, 117 

auroxanthin, neochrome, and mutatoxanthin were obtained by acidification with 1 M HCl in 118 

ethanol26. All standards were purified by TLC using different eluents25.  119 

Samples. The study of thermal degradation of pigments was carried out with virgin olive oils 120 

obtained from a single industrial mill (Cooperativa Sor Ángela de la Cruz, Estepa, Seville, Spain) to 121 

avoid any effect of pedoclimatic and agricultural parameters and the industrial variables of the 122 

extraction systems in the comparative studies. To have three lots of oil with differing pigment 123 

content, the starting material used was a mixture of two oil variety olives – Hojiblanca and 124 

Manzanilla – picked in three different months: November (sample N), December (sample D), and 125 

January (sample J). The proportion of fruits between varieties was 20:80, 80:20 and 100:0 126 

respectively. The dates of picking correspond to high, medium, and low pigment levels (referring to 127 

the green color) and correlated inversely with the degree of fruit ripening according to the method 128 

of Walalí-Loudiyi et al.27. 129 

Heat treatment. Preliminary assays, with a commercial sample of virgin olive oil, enabled an 130 

approximate determination of the degree of conversion for the main reactions to be studied and 131 

established a range of times for an appropriate sampling at each temperature. The total time of each 132 

experiment changed depending on the assay temperature: 42 h (120 ºC), 64 h (100 ºC), 370 h 133 

(80 ºC),  and 744 h (60 ºC). At least 128 aliquots (32 for each of the four assay temperatures) were 134 

separated from each oil lot (samples N, D, and J). These aliquots were put into glass tubes that were 135 

sealed in the absence of air (using nitrogen as neutral gas) and placed in thermostated ovens at the 136 

temperatures fixed for each experiment. These four temperatures were used to determine the kinetic 137 
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and thermodynamic parameters (reaction order, reaction rate, and activation energies).   138 

For each oil lot, two samples were analyzed for each time/temperature pair. The samples 139 

were removed from the thermostated ovens at fixed time intervals, depending on each experiment, 140 

to obtain a total of at least 16 duplicate samples. The samples were cooled rapidly in an ice bath and 141 

then kept at -20 ºC until analysis of the pigments.  142 

Extraction and Analysis of Xanthophyll Pigments. All procedures were performed under green 143 

lighting to avoid any photooxidation of xanthophyll compounds. Pigment extraction was performed 144 

by liquid-phase distribution. This method was developed for VOO by Mínguez-Mosquera et al.17. 145 

The technique is based on the selective separation of components between N,N-dimethylformamide 146 

(DMF) and hexane. The oil sample (10-15g) was dissolved directly in 150 mL of DMF and treated 147 

with five 50 mL successive portions of hexane in a decanting funnel. The hexane phase carried over 148 

lipids and carotene fraction whereas the DMF phase retained chlorophyll pigments and 149 

xanthophylls. This system yielded a concentrated pigment solution that was oil free and could be 150 

adequately analyzed by chromatographic techniques. 151 

 HPLC analysis of carotenoid pigments was performed according to the method described by 152 

Mínguez-Mosquera et al.25 using a reverse phased column (20 cm x 0.46 cm) packed with 3 µm 153 

C18 Spherisorb ODS2 (Teknokroma) and an elution gradient with the solvents (A) water/ion-pair 154 

reagent/methanol (1:1:8, v/v/v) and (B) acetone/methanol (1:1 v/v), at a flow rate of 1.25 mL/min. 155 

The ion-pair reagent was 0.05 M tetrabutylammonium acetate and 1 M ammonium acetate in water. 156 

The pigments were identified by co-chromatography with the corresponding standard and from 157 

their spectral characteristics described in detail in previous papers25, 28. The online UV-vis spectra 158 

were recorded from 350 to 800 nm with the photodiode array detector. Pigments were detected at 159 

the wavelength of maximum absorption (430 nm for neoxanthin, neochrome, violaxanthin, 160 

mutatoxanthin, and auroxanthin, and 450 nm for antheraxanthin) and were quantified from the 161 

corresponding calibrated curves (amount versus integrated peak area). The calibration equations 162 

were obtained by least-squares linear regression analysis over a concentration range according to 163 
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the levels of these pigments in VOO. Injections in duplicate were made for five different volumes at 164 

each standard solution.  165 

Kinetic Parameters. Changes in experimental data of pigment concentration, expressed in 166 

micromoles per kilogram, were used to calculate kinetic parameters by least-squares non linear 167 

regression analysis. The reaction order (n) and rate constant (k) were determined by trial and error 168 

using the integral method: a reaction order is initially assumed in the rate equation and then is 169 

integrated to obtain a mathematical expression that relates pigment concentration (C) with time (t). 170 

The mathematical expression that best fits the changes in the experimental data with the reaction 171 

time was selected to verify the order (assumed ad initio) and used to obtain the rate constant (k). 172 

Thermodynamic Parameters. The effect of temperature on the rate constant was evaluated by 173 

means of the Arrhenius equation with a simple reparametrization29 by using a reference temperature 174 

Tref:  175 
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where R is the molar gas constant (1.98 cal mol-1 K-1), T is the absolute temperature (K), Ea is the 177 

activation energy (cal mol-1), k is the specific reaction rate constant at the temperature T, and kref is 178 

the specific reaction rate constant at the reference temperature Tref. The reference temperature 179 

should preferably be chosen in the middle of the studied temperature regimen. 180 

 Therefore, Ea was estimated on the basis of non-linear regression analysis of ki versus 1/Tij 181 

(being i = N, D, J; j = 60, 80, 100, or 120 °C). 182 

 According to active complex theory, the enthalpy (∆H#) and entropy of activation and (∆S#) 183 

were determined by the Eyring equation:    184 
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 185 

where k is the rate constant at temperature T, kb is the Boltzmann constant; R is the molar gas 186 

constant and h is the Planck constant. Therefore, ∆H# and 
∆S# were estimated on the basis of linear 187 
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regression analysis of ln (ki/Tij) versus 1/Tij. The Gibbs free energy was estimated according to the 188 

Gibbs equation:  189 

∆G# = ∆H#  - T∆S# 190 

The pairs of ∆H# and ∆S# obtained were linearly correlated using the last equation. From which the 191 

isokinetic temperature (Tisok) and its corresponding Gibbs free energy (AGisok) for the reaction could 192 

be estimated. 193 

Calculations and Statistical Data Analysis. Data were expressed as the means ± SE. The data 194 

were analyzed for differences between means using one-way analysis of variance (ANOVA). The 195 

Brown & Forsythe test30 was used as a post hoc comparison of statistical significance (p values < 196 

0.05). Least-squares and non linear regression analysis were performed using Statistica 6.0 197 

(StatSoft, Inc., 2001) and Statgraphics Centurion XV for Windows (Statpoint Technologies, Inc., 198 

2005).  199 

RESULTS AND DISCUSSION 200 

Kinetic Study The qualitative carotenoid profile in the initial samples was typical of VOO9, 31, with 201 

lutein and β-carotene as major carotenoids and violaxanthin, luteoxanthin, auroxanthin, neoxanthin, 202 

antheraxanthin, mutatoxanthin and β-cryptoxanthin as minor xanthophylls. The study of carotenoid 203 

thermal degradation in VOO has had to be separated into two sections, given the high amount of 204 

data. In the first stage of the study were reported the results for lutein, β-carotene and β-205 

cryptoxanthin24 and in this stage we are presenting the results concerning the 5,6-epoxide 206 

xanthophylls: neoxanthin, violaxanthin, antheraxanthin and their corresponding 5,8-furanoxide 207 

derivatives: neochrome, luteoxanthin and auroxanthin, and mutatoxanthin. Table 1 shows the initial 208 

content of the pigments analyzed in this study for the high (N), medium (D), and low (J) 209 

pigmentation VOO matrices employed. The total pigment content includes chlorophylls and 210 

carotenoids as measured in this study and in previous ones23,24.  211 

Figure 1 shows the typical HPLC chromatograms for an olive oil pigment extract at three 212 

significant time points of the thermal degradation process studied: initial sample (t = 0 h), after 18 h 213 
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of heating at 120 ºC and after 42 h of heating at 120 ºC.  The main peak is not numbered and 214 

corresponds to lutein, the thermal degradation of which has been studied in a previous work24. In 215 

the initial sample, there were 5,6-epoxy xanthophylls including neoxanthin (peak 1), neoxanthin 216 

isomer (peak 2), violaxanthin (peak 4) and antheraxanthin (peak 7), and 5,8-furanoid xanthophylls 217 

including luteoxanthin (peak 5), auroxanthin (peak 6) and mutatoxanthin (peak 8). Figure 2 shows 218 

the structures of the studied carotenoids.  The presence of 5,8-furanoxides already in the initial 219 

sample is due to the release of intracellular acid medium during the milling of olive fruit to obtain 220 

virgin olive oil because (1)- no 5,8-furanoxides have been found in olive fruits17 and (2) it is known 221 

that acid conditions might induce the isomerisation of the 5,6-epoxide into a 5,8-furanoxide32. 222 

 Three groups of xanthophylls were defined to study their evolution during heating, each 223 

group consisting of the 5,6-epoxy xanthophyll and its corresponding 5,8-furanoxide(s) (Table 1). 224 

The first group consisted of neoxanthin and neochrome (group I), the second group was made up of 225 

antheraxanthin and mutatoxanthin (group II) and the third and last group was formed by 226 

violaxanthin, luteoxanthin and auroxanthin (group III).  227 

 In each of this group, the initial percentage of 5,8-furanoxide xanthophylls were quite 228 

different. In group I, no 5,8-furanoxide xanthophyll was detected, in group II it represented between 229 

23 and 46% of the carotenoids and in group III it exceeded 60%. 230 

 During heat treatment mentioned in Material and Methods, the concentration of 5,6- epoxy 231 

xanthophylls was gradually reduced (Figure 1), while changes in the corresponding 5,8-furanoxides 232 

were observed (Figures 3-5). Neochrome, mutatoxanthin and auroxanthin gradually increases over 233 

time, until they reached a maximum concentration (Figures 3-5). Then, they began to decline 234 

probably oxidized to colorless compounds. In contrast, the intermediate compound luteoxanthin 235 

maintained a gradual decrease in concentration from the start of treatment. 236 

 At maximum concentration, the highest percentage of 5,8-furanoxides comparing to 237 

epoxides were found in group III (luteoxanthin + auroxanthin) reaching values of up to 95%, 238 

followed by group II (mutatoxanthin), which ranged from 50% to 60%, and finally group I 239 
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(neochrome) which in no case exceeded 40%. For each group, the time required to achieve this 240 

maximum percentage of 5,8-furanoxides increased with decreasing temperature, and in all cases the 241 

highest time values corresponded to neochrome for all temperatures and matrices studied.  242 

 These results lead us to suggest the percentages of 5,8-furanoxide xanthophylls as chemical 243 

markers of heat treatment in a VOO. To support this claim, we will examine the experiment 244 

conducted at 120 °C in greater detail. Table 2 shows the changes in the ratio of 5,6-epoxides to 5,8-245 

furanoxides for the different groups of xanthophylls experienced during the heat treatment. This 246 

ratio decreased significantly during heat treatment and showed differences between groups. In the 247 

violaxanthin group (III), this relationship began at values < 1 in the initial sample and decreased to 248 

0 (100% of 5,8-furanoxides) after 22h of heat treatment at 120 ºC. In the antheraxanthin group (II), 249 

the initial sample started with values > 1 but progressively decreased, reaching 0 after 22 h at 250 

120 ºC. In the neoxanthin group (I) the relationship started at undefined values due to that the 5,8-251 

furanoxide was not detected in the initial sample and decreased significantly during heat treatment, 252 

but in no case was less than 3. These results marked a difference compared to other groups of 253 

xanthophylls. Even a short time of heat treatment at 120 ºC (e.g. 1.5 h) was sufficient to decrease 254 

the initial 5,6 epoxide /5,8 furanoxide ratio in all groups, but this decrease was only significant 255 

mathematically for group I (neoxanthin). For the other groups of xanthophylls, no significant 256 

differences were observed for this ratio after 1.5 h of heat treatment since the values corresponding 257 

to the initial sample (Table 1) showed a wide range of variation between different VOO matrices. 258 

Therefore, the ratio neoxanthin/neochrome (or the percentage of neochrome) offers the best 259 

possibility to be used as a chemical marker of thermal treatment in VOO.  260 

 Similar losses of 5,6 epoxy xanthophylls after heat treatment have been described in other 261 

foods. Thermal effects were clearly observed on violaxanthin and anteraxanthin after 262 

pasteurization33 and microwave heating34 of orange juice.  High losses of violaxanthin were also 263 

noted after cooking of pumpkin puree35 and green vegetables36 being more prone to degradation 264 

than β-carotene. There are also a few papers in which the isomerization of the epoxide function in 265 
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position 5,6 into a furanoxide function in position 5,8 is reported as a common reaction for the 266 

xanthophylls during thermal processing13,37-39 but this is the first work where kinetic study is 267 

performed on this subject.  268 

 Zepka and Mercadante40 studied the degradation compounds of carotenoids formed during 269 

heating of a simulated cashew apple juice. They also reported that the loss of total carotenoids was 270 

not compensated by those other isomers formed, indicating that isomerisation and oxidation to both 271 

coloured and no-colored compounds were the main reactions occurring during heating of 272 

carotenoids in aqueous-based and juice systems. 273 

 Based on the observed changes in the xanthophylls mentioned above, the kinetic models 274 

indicated in Figure 6 were proposed. All kinetic models proposed involve consecutive reactions. 275 

The first reactions determine the formation of the 5,8-furanoxides and the final reactions determine 276 

the destruction of the chromophores resulting in the formation of non-colored compounds (nc). 277 

Group I: In accordance with the mechanism proposed (Figure 6), neoxanthin (5,6-epoxide) leads to 278 

neochrome (5,8-furanoxide) and the last reaction leads to non-colored products. 279 

 The corresponding kinetic equations are expressed as follows: 280 

[ ] [ ]nAk1dt
Ad

NeoxanthinV =−=                                                       [ ]1  281 

[ ] [ ] [ ] n Bk2
n Ak1dt

Bd
NeochromeV −==

                                       
[ ]2  282 

                                                           
[ ]3  283 

[A]: concentration of neoxanthin; [B]: concentration of neochrome; [C]: concentration of non-284 

colored products (nc); k1 and k2: rate constants for the various reactions; n: reaction order.  285 

From the balance of materials of all species, the concentration of colorless compounds over time is 286 

derived by the following equation: 287 

[A] 0 + [B]0 + [C]0 = [A] + [B] + [C]  288 

V C o l o r l e s s = 
d C [ ] 

d t 
= k 2 B [ ]  n 
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[A] 0: initial concentration of neoxanthin; [B]0: initial concentration of neochrome;  [C]0: initial 289 

concentration of nc. Concentrations [A]-[C] are those described for equations 1-3. 290 

Solving the kinetic mechanism, assuming an order of 1 (n=1) and that all reactions are irreversible, 291 

we get   292 
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Group II: The kinetic mechanism of group II is similar to group I. Thus, antheraxanthin (5,6-295 

epoxide) leads to mutatoxanthin (5,8-furanoxide), and this leads to non-colored products (Figure 296 

6). 297 

The corresponding kinetic equations are expressed as 298 

[ ] [ ]nA3k
dt
Ad

thinAntheraxanV =−=                                                 
 
[ ]6  299 

                                     
[ ]7  300 

                                                                    
[ ]8  301 

[A]: concentration of antheraxanthin; [B]: concentration of mutatoxanthin; [C]: concentration of nc; 302 

k3 and k4: rate constants for the different reactions; n: reaction order. 303 

Using the material balance of all species, the next equation allows us to obtain the concentration of 304 

colorless products over time:  305 

[A] 0 + [B]0 + [C]0 = [A] + [B] + [C]  306 

[A] 0: initial concentration of antheraxanthin; [B]0: initial concentration of mutatoxanthin;  [C]0: 307 

initial concentration of nc. Concentrations [A]-[C] are those described for equations 6-8. 308 

Solving the kinetic mechanism, assuming an order of 1 (n=1) and that all reactions are irreversible, 309 

we get 310 
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Group III: Violaxanthin differs from neoxanthin and antheraxanthin in its structure due to its two 313 

5,6-epoxy groups. Therefore, the transformation of one of these epoxy groups into a 5,8-furanoid 314 

group leads to luteoxanthin. If the second epoxy group is transformed into 5,8-furanoid group, then 315 

this leads to auroxanthin. Accordingly, the proposed model (Figure 6) presents an additional 316 

consecutive reaction kinetic model from groups I and II described above. This further complicates 317 

the model and, consequently, its mathematical resolution. 318 

The corresponding kinetic equations are expressed as follows: 319 

[ ] [ ]nA5k
dt
Ad

inViolaxanthV =−=                           [ ]11  320 

[ ] [ ] [ ]nB6knA5k
dt
Bd

inLuteoxanthV −==
               

[ ]12  321 

[ ] [ ] [ ]nC7knB6k
dt
Cd

nAuroxanthiV −==
                   

[ ]13  322 

                                
[ ]14  323 

[A]: concentration of violaxanthin; [B]: concentration of luteoxanthin; [C]: concentration of 324 

auroxanthin; [D]: concentration of nc; k5, k6, and k7,: rate constants for the different reactions; n: 325 

reaction order. 326 

The next equation allows us to obtain the concentration of colorless products over time:  327 

 [A] 0 + [B]0 + [C]0 + [D]0 = [A] + [B] + [C] + [D] 328 

 [A] 0: initial concentration of violaxanthin; [B]0: initial concentration of luteoxanthin;  [C]0: initial 329 

concentration of auroxanthin; [D]0: initial concentration of nc. Concentrations [A]-[D] are those 330 

described for equations 11-14. 331 
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 Resolving the kinetic mechanism, assuming an order of 1 (n=1) and that all reactions are 332 

irreversible, we get 333 
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In accordance with the proposed kinetic equations 4, 5, 9, 10 and 15-17, and by nonlinear 337 

regression analysis of the experimental data, the rate constants for each of the proposed reactions in 338 

the mechanisms were estimated. For treatment of the high-pigmentation matrix (sample N) at 339 

120ºC, Figures 3-5 show the concentration changes found and the regression estimated. Table 3 340 

shows the values for the estimated rate constants, together with the standard error and determination 341 

coefficient (R2) for each reaction studied. The determination coefficients obtained showed a good fit 342 

of the experimental data to the equations proposed and demonstrate that the first-order mechanism 343 

is appropriate for describing the thermal degradation of neoxanthin, antheraxanthin and 344 

violaxanthin in VOO.  345 

 Studies describing the kinetics of carotenoids degradation in fruit- and vegetable-based 346 

products are rather limited although this information would be very useful and industrially relevant 347 

for predicting changes in bioactive compounds during processing and shelf life of these foods18. In 348 

those studies, analysis of kinetic data also suggested a first-order model to describe degradation of 349 

carotenoids in green table olives41, paprika oleoresins19, citrus juice13, carrot puree18 and oils 350 

enriched with β-carotene and lutein21. 351 

 In general, all kinetic constants doubled or tripled for each 20ºC increase in temperature, 352 

demonstrating a marked effect of temperature in reaction rates, similar to other carotenoids in 353 
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VOO24. However, this effect was lower than that found in the thermal degradation of chlorophyll 354 

compounds in VOO23.  355 

 The rate constant estimated for neoxanthin isomerisation was significantly lower than that of 356 

antheraxanthin and violaxanthin (Table 3), in all temperatures and matrices, suggesting that 357 

neoxanthin has a relatively greater heat resistance. This result partly agrees with Fratianni et al.34, 358 

who found that violaxanthin was the most unstable compound followed by antheraxanthin. 359 

 Chemical structures of the carotenoids significantly affects thermal stability.  In group I, the 360 

ratio of rate constants between neoxanthin and neochrome was < 1 in all cases (average 0.4±0.1 of 361 

four temperatures and samples studied), indicating that the 5,8-isomer degradation into nc products 362 

is the preferred reaction. This explains why maximum concentration of 5,8-furanoxide (neochrome) 363 

does not exceed that of its predecessor 5,6 epoxide (neoxanthin) at any point in the heat treatment. 364 

 In contrast, in the other two xanthophyll groups, the 5,8-furanoxide formation reaction was 365 

always preferred. In group II, the rate constant of mutatoxanthin formation (k3) was always higher 366 

than its degradation to colorless products (k4). Similarly, in group III, the formation rate constants 367 

5,8-furanoxides (luteoxanthin from violaxanthin (k5) and auroxanthin from luteoxanthin (k6)) were 368 

always higher than the rate constant of the final degradation reaction of auroxanthin to colorless 369 

products (k7). 370 

Thermodynamic Study. The Arrhenius model and transition state theory were used to determine 371 

the influence of temperature on the reaction rates. Table 4 displays the values estimated for the 372 

thermodynamic parameters (entropy, enthalpy, activation energy and Gibbs free energy), with their 373 

respective standards errors for each matrix and reaction analysed.  374 

 To study the effect of matrix type on the reaction mechanism, we compared the 375 

thermodynamic parameters estimated in the three types of VOO. In general, no significant 376 

differences were found in the parameters ∆S# and ∆H# characterising the reactions of isomerisation 377 

and degradation of xanthophylls (t-test P ≤ 0.05) (Table 4). These results enable all the matrices to 378 

be considered a single reaction medium. An exception is the isomerisation reaction of luteoxanthin 379 
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to auroxanthin for which significant differences in the corresponding thermodynamic parameters 380 

(Ea, ∆S#, ∆H#) were found in matrix J, suggesting a slight effect of the matrix in this case. Also, 381 

differences in the activation energy were found in matrix D, N and D for the degradation of 382 

neoxanthin, neochrome and mutatoxanthin, respectively. 383 

 With respect to the estimated values for activation energy of isomerisation reactions, higher 384 

values were found in xanthophylls with a single epoxide group (neochrome and mutatoxanthin) 385 

than in those with two epoxy groups (luteoxanthin and auroxanthin), in all matrices studied. 386 

Mathematically, this can be interpreted as follows: a temperature increase produces a greater 387 

increase in the rate constant for 5,6-monoepoxy-compounds degradation; that is, a smaller 388 

temperature change is needed to form 5,8-monofuranoxy-compounds more rapidly. 389 

 In all cases, values for the T∆S# term were negative (due to the negative values of entropy); 390 

however, enthalpy values (∆H#) were positive, as were the Gibbs free energy values (∆G#), making 391 

the reactions nonspontaneous. 392 

Isokinetic ratio. The isokinetic ratio was studied along the same lines as previous studies23, 24, to 393 

determine whether there were changes in the reaction mechanisms (first case) or whether some 394 

specific step in the mechanism had greater importance under our different experimental conditions 395 

(VOO matrices with high, medium and low pigmentation) (second case). 396 

 The isokinetic effect (or isoequilibrium) is defined as the intersection point between the 397 

straight Arrhenius (or van’t Hoff) lines that show the thermodynamics of a series of similar 398 

reactions or reactions in various media42. This cut-off point is the isokinetic temperature at which 399 

reactions take place at identical rates. Specifically, the experiments study the same reaction taking 400 

place in various oily matrices. Thus, we are with the second case: a greater importance of a 401 

particular step in the mechanism. 402 

 To study the existence of an isokinetic ratio among oily matrices, the Arrhenius straight 403 

lines obtained for each of the three oily matrices studied were represented together. The study was 404 
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repeated for each of the reactions including the mechanism for thermal degradation of neoxanthin, 405 

antheraxanthin and violaxanthin. No isokinetic ratio was found for any of them. 406 

 Figure 7 shows the example of the violaxanthin isomerisation reaction. We could not 407 

conclude that there was an isokinetic ratio as the Arrhenius straight lines for the three samples (N, 408 

D and J) did not present any common cut-off points. These straight lines are almost parallel, but are 409 

also very close to one another (all points lie within the same interval of confidence). Consequently, 410 

all points can be explained by a single Arrhenius line, so that the reaction mechanism is not affected 411 

at any stage by different pigment content in the oily matrix. This same result was observed for the 412 

other reactions studied. 413 

 They are, therefore, isoenthalpic and isoentropic straight lines. This observation is consistent 414 

with the thermodynamic parameters (Table 4), which do not show significant differences (t-test 415 

P ≤ 0.05) between the various oily matrices. Thus, there is no isokinetic ratio, and one can conclude 416 

that the type of oily matrix does not affect the isomerisation reaction mechanisms of neoxanthin, 417 

antheraxanthin, violaxanthin and luteoxanthin, and the degradation reactions of neochrome, 418 

mutatoxanthin and auroxanthin during any of its steps. Consequently, the thermodynamic 419 

parameters characterised here can be extrapolated to any type of VOO matrix. 420 

 The isokinetic effect can also be considered in a series of similar reactions, as in the case of 421 

the degradation of neochrome, mutatoxanthin and auroxanthin to form colorless products, and in the 422 

case of isomerisation of neoxanthin, antheraxanthin and violaxanthin to 5,8-furanoids. The average 423 

values of the rate constants obtained in the three VOO matrices studied were used to obtain the 424 

Arrhenius straight lines (Figures 8 and 9).  425 

 In the first case (Figure 8), the confidence intervals of Arrhenius straight lines for 426 

mutatoxanthin and neochrome overlap (100% of data between confidence limits), whereas the 427 

overlap is lower with the confidence intervals of auroxanthin straight lines (50% of data within 428 

confidence limits). This results in two straight lines which are cut at an isokinetic temperature of 429 

383K (±15) and indicates the same isomerisation mechanism, but affected by the temperature 430 
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change in one or another of its steps. Thus, at temperatures below the isokinetic temperature, the 431 

formation of colorless products from auroxanthin is the most rapid, followed by mutatoxanthin and 432 

neochrome respectively. At temperatures above isokinetic, the formation from neochrome is the 433 

most rapid, followed by mutatoxanthin and auroxanthin respectively. 434 

 In the second case (Figure 9), the three lines were considered independent because the level 435 

of overlap was less than in the previous case (100% of violaxanthin and antheraxanthin data were 436 

found only within their respective confidence limits). Thus, the lines intersect in pairs, leading to 437 

three isokinetic temperatures. One of these, the intersection of neoxanthin and antheraxanthin, takes 438 

place at high temperature (>1000K), well above the boiling point of olive oil. The other two 439 

isokinetic temperatures are below the boiling point of olive oil, 450K (≈177 °C) for the intersection 440 

of violaxanthin and neoxanthin and 403K (≈130 °C) for violaxanthin and antheraxanthin. The 441 

isomerisation mechanism of these pigments is the same, but some of the mechanism steps are 442 

influenced by temperature (the influence of temperature is similar for neoxanthin and 443 

antheraxanthin, and very different from violaxanthin). Therefore, above the isokinetic temperature, 444 

isomerisations are faster in xanthophylls with an epoxide group (antheraxanthin and neoxanthin), 445 

whereas at lower temperatures the isomerisation of violaxanthin with two epoxide groups is 446 

preferred. 447 

Compensation Effect. A kinetically compensated system requires that the various thermodynamic 448 

parameters obtained for the same reaction in different environments define an isokinetic line. This 449 

theoretical line includes all of the various kinetic and thermodynamic coordinates of a single 450 

reaction, with the isokinetic temperature (Tiso) being the line slope and the increase in Gibbs free 451 

energy of all reactions at the Tiso being the intercept, according to: 452 

 ∆H# = Tiso∆S# + 
∆G# 453 

 There are some papers describing degradation reactions of carotenoids in different reaction 454 

media and reporting the existence an isokinetic line defined by thermodynamic parameters and its 455 

application in stability prediction studies43, 44. 456 
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 Liu and Guo45 demonstrated that the compensation effect and the isokinetic effect are not 457 

necessarily synonymous as had been previously thought, and that the existence of one does not 458 

imply the existence of the other. Errors are inevitable in experiments and the data used are therefore 459 

estimators of the corresponding variables. Consequently, it is possible that the real values are not 460 

correlated, although their estimators are. This would be the case for the so-called false 461 

compensation effect. Krug et al.46 proposed that the straight line in the plane ∆H versus ∆S was 462 

only a manifestation of the statistical pattern of the compensation, and that this hypothesis can be 463 

ruled out if the estimation of the line slope is sufficiently different from the harmonic temperature 464 

(Thm), defined as:  465 

∑ =

=
n

i
i

hm

T

n
T

1

1  466 

 Liu and Guo45 proposed a method for distinguishing the real compensation effects from the 467 

false ones, based on the graphical representation of experimental values of enthalpies and entropies 468 

with their error bars in the ∆H# versus ∆S# plane. 469 

 To apply this study to our experimental data, the linear regressions ∆H# versus ∆S# were 470 

estimated for each of the reactions. Table 5 shows the values obtained for the line slope (Tiso) and 471 

the corresponding determination coefficients (R2). An isokinetic line was obtained in all cases 472 

(R2>0.95), except in violaxanthin isomerisation. However, by comparing the estimated isokinetic 473 

temperature and the Thm under study conditions (362K), we deduced that the compensation effect 474 

could only be true for the degradation of neoxanthin, luteoxanthin, auroxanthin and antheraxanthin, 475 

for a series of similar reactions that involved the isomerisation of neoxanthin, violaxanthin and 476 

antheraxanthin, and for the degradation of neochrome, auroxanthin and mutatoxanthin to colorless 477 

products. Finally, applying the error bar method proposed by Liu and Guo (2001) showed that there 478 

is no true compensation effect in these cases, except for the group of reactions of neochrome, 479 

auroxanthin and mutatoxanthin to colorless products (Figure 10B). 480 
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 The degradation of 5,6-epoxy xanthophylls in VOO during heat treatment followed first-481 

order kinetics. The analysis of the 5,8-furanoxide compounds (reaction intermediates) that appear 482 

during the thermo-degradation of neoxanthin, antheraxanthin and violaxanthin to colorless products 483 

has established that the degradation process is not simple, and takes place in several consecutive 484 

elemental steps. The marked effect of temperature on the reaction mechanism was revealed. The 485 

thermal stability varied among carotenoids and was greater for neoxanthin but was significantly 486 

affected by changes in their chemical structure. A true kinetic compensation effect exists only for 487 

the case of similar reactions in the degradation of neochrome, mutatoxanthin and auroxanthin to 488 

colorless products. 489 

 No significant effect of the oily medium on the reaction mechanisms of any of these 490 

xanthophylls have been found from the isokinetic study, which compared kinetic and 491 

thermodynamic parameters determined in the three VOO matrices of different pigment content 492 

(high, medium, and low). The thermodynamic parameters characterised in this study could therefore 493 

be applied to any type of VOO matrix yielding a mathematical model developed from activation 494 

energies, which predict xanthophylls degradation and 5,8-furanoxide formation if the time–495 

temperature profile of the processing method is known. Reaction conditions similar to those used in 496 

the soft deodorisation of VOO (1.5h at 120ºC) are sufficient to increase the percentage of 5,8-497 

furanoxides, decreasing the natural 5,6-epoxide/ 5,8-furanoxide ratio. This criterion was significant 498 

for neoxanthin/neochrome ratio and could be proposed as a chemical marker of heat treatment in 499 

VOO. 500 
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FIGURE CAPTIONS 618 

Figure 1.  HPLC profile of xanthophylls from virgin olive oil (sample N), at initial sample (t = 0 h), 619 

and after 18 h and 42 h of heating at 120 ºC. Detection was by absorption at 450nm. Peaks: 1, 620 

neoxanthin; 2, neoxanthin isomer; 3, neochrome; 4, violaxanthin; 5, luteoxanthin; 6, auroxanthin; 7, 621 

antheraxanthin; 8, mutatoxanthin.  622 

Figure 2. Structures of carotenoids. 623 

Figure 3. Evolution of concentration-time of neoxanthin (  ) and neochrome (  ) in VOO (sample N) 624 

during 42 h at 120 ºC, and corresponding fits (  ) to the mathematical model developed in this study 625 

(eqs. 4-5). 626 

Figure 4. Evolution of concentration-time of antheraxanthin (   ) and mutatoxanthin (   ) in VOO 627 

(sample N) during 42 hours at 120 ºC, and corresponding fits (  ) to the mathematical model 628 

developed in this study (eqs. 9-10). 629 

Figure 5. Evolution of concentration-time of violaxanthin (  ), luteoxanthin (  ) and auroxanthin (   ) 630 

in VOO (sample N) during 42 hours at 120 ºC, and corresponding fits (  ) to the mathematical 631 

model developed in this study (eqs. 15-17). 632 

Figure 6.  Kinetic mechanisms for thermal degradation pathway of neoxanthin (A), antheraxanthin 633 

(B) and violaxanthin (C) in VOO. 634 

Figure 7. Arrhenius plot for 5,6-epoxide/5,8-furanoxide isomerization of violaxanthin in VOO oil 635 

samples studied (N,  ;  D,   ; J,  ). Confidence intervals (95%). 636 

Figure 8. Arrhenius plot for a series of similar reactions:  neochrome (    ), mutatoxanthin (     ) and 637 

auroxanthin (     ) degradation to colorless in VOO. (average values from the three samples (N, D, 638 

J); confidence intervals 95%). 639 
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Figure 9. Arrhenius plot for a series of similar reactions:  neoxanthin (    ), antheraxanthin (    ) and 640 

violaxanthin  (     ) 5,6-epoxide/5,8-furanoxide isomerisation reaction in VOO. (average values from 641 

the three samples (N, D, J); confidence intervals, 95%). 642 

Figure 10. Graphic representation of ∆H# versus ∆S# by error bars method45: (A) false compensation 643 

effect for the group of 5,6-epoxide/5,8-furanoxide isomerization reactions of neoxanthin, 644 

violaxanthin and antheraxanthin; (B) true compensation effect for the group of degradation reactions 645 

of neochrome, auroxanthin and mutatoxanthin to noncolored products.  646 
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Table 1. Initial Content for Xanthophyll Compounds and Total Pigments in Virgin Olive Oilsa. 

Group I b Group II Group III  Total 
Samplec Neox.d Neoc. Ratio Anther. Muta. Ratio Violax. Luteo. Auro. Ratio  Pigmentse 

N 1.00±0.04 0.00±0.00 udf 0.84±0.01 0.30±0.00 2.80 0.80±0.01 1.40±0.01 0.55±0.02 0.41  36.91±0.55 

D 0.73±0.01 0.00±0.00 ud 0.67±0.01 0.20±0.00 3.35 0.40±0.01 0.66±0.00 0.33±0.07 0.40  28.23±0.80 

J 0.25±0.00 0.00±0.00 ud 0.12±0.00 0.10±0.00 1.20 0.15±0.00 0.18±0.00 0.07±0.00 0.60  15.30±0.26 

aData, expressed as µmol/kg, represent the mean value ± SD for three determinations. CV≤3.5%. bEach group consisting of the 5,6-epoxy xanthophyll and its 
corresponding 5,8-furanoxide(s). Ratio is 5,6-epoxy/5,8-furanoxide(s).  cThe sample codex corresponds to the harvest date of the olive fruits used to obtain the 
virgin olive oils studied, November (N), December (D), January (J). dNeox. , Neoxanthin; Neoc., Neochrome; Anther., Antheraxanthin; Muta., Mutatoxanthin; 
Violax., Violaxanthin; Luteo., Luteoxathin and Auro., Auroxanthin. eTotal chlorophyll and total carotenoid pigments. fud, undefined. 
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Table 2. Ratios between isomers 5,6-epoxide/5,8-furanoxide by groupsa. 
Time (h) Neox/Neoc Violax/Luteo+Auro Anther/Muta 

0 ud 0.41 2.83 

1.5 16.92 0.29 1.35 

3 9.57 0.21 0.86 

4.5 7.63 0.15 0.62 

6 5.86 0.11 0.47 

7.5 5.22 0.09 0.38 

9 4.78 0.07 0.31 

10 4.57 0.06 0.27 

14 4.11 0.03 0.18 

18 3.90 0.02 0.13 

22 3.82 0.00 0.00 

26 3.74 0.00 0.00 

30 3.98 0.00 - 

34 3.49 0.00 - 

38 3.52 - - 

42 3.61 - - 

 
aNeox, Neoxanthin; Neoc, Neochrome; Anther, Antheraxanthin; Muta, 
Mutatoxanthin; Violax, Violaxanthin; Luteo, Luteoxathin and Auro, 
Auroxanthin; ud, undefined. 
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Table 3. Rate Constants (k) and Determination Coefficients (R2) Estimated for the Kinetic Mechanism of the Thermal Degradation of Neoxanthin, Antheraxanthin and 
Violaxanthin in VOO. 

  120 ºC  100 ºC  80 ºC  60 ºC 
Reactiona Sampleb kc x 103 (h-1) SE R2  kc x 103 (h-1) SE R2  kc x 103 (h-1) SE R2  kc x 103 (h-1) SE R2 

D. Neoxanthin N 44.91a 1.21 0.99 10.99a 0.14  1.00 3.66a 0.29 0.95 0.74a 0.03  0.97 
k1 D 48.74b 1.05  1.00 17.48b 0.70  1.00 4.47b 0.16  0.99 0.97b 0.02  0.99 
 J 60.59c 1.32  0.99 15.46c 0.49  0.98 9.17c 0.30  0.99 0.99b 0.03  0.98 
              

D. Neochrome N 213.47d 2.48  0.99 51.18d 0.79  0.99 10.40d 0.38  0.94 1.31c 0.06  0.99 
k2 D 228.23e 3.20  0.99 81.93e 1.30  0.97 13.53e 0.37  0.96 1.68d 0.05  0.99 
 J 182.67f 2.87  0.99 63.51f 1.20  0.96 27.04f 0.53  0.99 1.38e 0.11  0.93 
              

D. 
Antheraxanthin 

N 228.23g,e 3.50  1.00 141.74g 5.30  0.97 10.79g,d 0.27  1.00 6.86e 0.13  1.00 

k3 D 182.69h,f 1.57  1.00 96.99h 1.34  1.00 8.91h,c 0.24 1.00 5.87f 0.07  1.00 
 J 152.48i 2.28  1.00 77.99i 1.15  1.00 15.05i 0.39  1.00 4.91g 0.27 0.97 
              

D. 
Mutatoxanthin 

N 178.92j 2.98  1.00 111.68j 3.11  0.97 8.61j,c,h 0.21  0.95 4.55h,g 0.05  0.99 

k4 D 144.82k 1.46  1.00 69.15k 1.06  0.99 7.78k 0.19  0.94 4.70i,g 0.05  0.99 
 J 131.86l 1.23  0.99 51.64l,d 0.20  1.00 14.94l,i 0.26  0.99 3.10j 0.06  0.96 
              

D. Violaxanthin N 257.95m 3.65  1.00 170.17m 4.86  0.99 109.76m 1.47  1.00 54.06k 0.50  1.00 
k5 D 289.35n 2.67  1.00 204.92n 6.43  0.99 93.67n 1.61  1.00 63.80l 0.92  1.00 
 J 267.38o 1.56  1.00 165.10o 0.64  1.00 90.27n,o 1.74  1.00 54.36k 0.32  1.00 
              

D. Luteoxanthin N 191.42p 2.91  1.00 150.27p,g 3.52  0.98 89.92o 0.60  1.00 35.09m 0.11 1.00 
k6 D 226.70q,e,g 1.23  1.00 187.17q 5.29  0.98 73.86p 1.24  1.00 40.34n 0.18  1.00 
 J 195.52p 0.91  1.00 140.76r,g 0.93  1.00 70.58q 0.85  1.00 43.98o 0.28  1.00 
              

D. Auroxanthin N 145.85r 1.43  0.98 119.36s 1.40  0.98 68.60r,p,q 6.37  1.00 21.46p 0.04  1.00 
k7 D 155.69s,i 1.41  0.99 142.22t,g,q 2.56  0.96 53.82s 0.60  0.99 23.82q 0.06  1.00 
 J 135.91t 0.33  1.00 110.37u,j 0.62  0.99 51.68s 1.55  1.00 17.04r 0.05 1.00 

aReactions according to the kinetic mechanism shown in Figure 6: D, degradation; bS, Sample codex as in Table 1; cValues are obtained from a minimum of 16 
experimental data points analyzed in duplicate; SE, standard error; At each temperature, different letters between rows indicate significant differences (p≤ 0.05).  
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Table 4. Thermodynamic parametersa for the thermodegradation reaction of xanthophyll compounds in Virgin Olive Oil. 
Reactionb Samplec ∆S# [(cal/mol·K)] SEd ∆H#(kcal/mol) SE Ea(kcal/mol) SE ∆G#

298(kcal/mol) SE 
Neoxanthin N -38.74 1.07 16.75 0.39 17.79 0.12 28.30 0.39 
Neoxanthin D -39.18 0.71 16.41 0.26 17.10 0.12* 28.09 0.26 
Neoxanthin J -39.59 3.69 16.11 1.33 17.84 0.21 27.91 0.33 
          
Neochrome N -23.84 0.93 21.30 0.34 22.16 0.06* 28.40 0.34 
Neochrome D -24.40 2.16 20.91 0.78 21.63 0.32 28.18 0.78 
Neochrome J -27.75 5.47 19.69 1.98 21.56 0.38 27.96 1.98 
          
Antheraxanthin N -36.31 5.50 16.29 1.99 15.51 0.62 27.11 1.99 
Antheraxanthin D -38.24 4.99 15.76 1.80 15.14 0.42 27.16 1.80 
Antheraxanthin J -40.71 2.02 14.88 0.73 15.08 0.35 27.01 0.73 
          
Mutatoxanthin N -35.02 5.18 16.96 1.87 16.25 0.66 27.39 1.87 
Mutatoxanthin D -39.54 4.27 15.46 1.54 14.99 0.31* 27.24 1.54 
Mutatoxanthin J -39.21 1.08 15.60 0.39 16.49 0.17 27.29 0.39 
          
Violaxanthin N -62.04 0.31 6.17 0.11 6.84 0.07 24.66 0.11 
Violaxanthin D -62.16 0.54 6.02 0.19 6.73 0.15 24.54 0.19 
Violaxanthin J -61.74 0.37 6.28 0.13 6.93 0.06 24.68 0.13 
          
Luteoxanthin N -60.59 1.24 6.89 0.45 7.66 0.37 24.95 0.45 
Luteoxanthin D -59.79 1.54 7.05 0.56 7.89 0.46 24.87 0.56 
Luteoxanthin J -62.94 0.76* 6.02 0.27* 6.59 0.18* 24.77 0.27 
          
Auroxanthin N -58.48 1.79 7.89 0.65 8.80 0.53 25.31 0.65 
Auroxanthin D -58.76 2.44 7.68 0.88 8.67 0.71 25.19 0.88 
Auroxanthin J -57.03 2.20 8.49 0.79 9.43 0.59 25.48 0.79 
a
∆S#, activation entropy;  ∆H#, activation enthalpy; Ea, activation energy, ∆G#, Gibbs free energy; bReactions according to the kinetic 

mechanism showed in Figure 6; cS, Sample codex as in Table 1; dSE, standard error; *,Indicate significant differences for a parameter 
between different samples (p≤0.05). 
 

 



 33 

 

Table 5.  Isokinetic Temperature (Tisok) and Determination Coefficients (R2) 

Estimated by Leffer´s Compensation Law (∆H#
i =∆H#

0+β∆S#) for the Thermal 

Degradation Reactions of Xanthophylls in Virgin Olive Oil. 

Reactiona ββββc SE R2 

D. Neoxanthin 751.8 14.4 d*  0.99 

D. Neochrome  394.1 40.6 0.99 

D. Violaxanthin 591.1 248.9 0.89 

D. Luteoxanthin 338.2 35.0* 0.99 

D. Auroxanthin 448.9 44.1* 0.99 

D. Antheraxanthin 322.8 23.9* 0.99 

D. Mutatoxanthin 327.9 74.9 0.99 

Group of reactionsb    

Neox, violax and anther degradation  reactions 424.1 16.1* 0.99 

Neoc, auro and muta degradation  reactions 385.7 3.7* 1.00 
aReactions according to the kinetic mechanism showed in Figure 6; D, 
degradation.bGroup of reactions. Neox, Neoxanthin; Neoc, Neochrome; Anther, 
Antheraxanthin; Muta, Mutatoxanthin; Violax, Violaxanthin; Luteo, Luteoxathin and 
Auro, Auroxanthin.cβ = Tisok. 

d*Indicates significant differences (p≤0.05) with the 
mean harmonic temperature (Thm) = 362K. 
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