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Abstract 15 

Bioactive food peptides are encrypted within the source protein but can exert 16 

physiological properties once released by enzymatic hydrolysis during gastrointestinal transit, 17 

fermentation or maturation during food processing, or proteolysis by food-grade enzymes derived 18 

from microorganisms or plants. Among the bioactive food peptides, those with antihypertensive 19 

activity are receiving special attention due to the high prevalence of hypertension in the Western 20 

countries and its role in cardiovascular diseases. This paper reviews the current literature on 21 

antihypertensive food peptides, focusing on the existing methodologies for their production, such 22 

as enzymatic hydrolysis, fermentation and genetic recombination in bacteria. This paper also 23 

evaluates the structure/activity relationship of angiotensin-converting enzyme (ACE) inhibitory 24 

peptides, as well as their bioavailability, physiological effects demonstrated by both in vitro and 25 

in vivo assays, and the existence of mechanisms of action other than ACE inhibition. Finally, 26 

current reported strategies for incorporation of antihypertensive peptides in foods and their 27 

effects on both availability and activity of these peptides are revised in this manuscript.   28 

 29 

Keywords: Antihypertensive peptides, angiotensin-converting enzyme inhibitory activity, 30 

enzymatic hydrolysis, fermentation, genetic recombination, bioavailability. 31 
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1. Introduction 32 

 In recent years, increasing epidemiological evidence is linking the prevalence of diseases, 33 

such as cardiovascular disease, obesity, hypertension, diabetes, and even cancer to dietary factors. 34 

Manufacture of new foods termed functional foods is emerging in response to the increased 35 

perception about the relation of food and health. A functional food is generally any food which 36 

can provide a health benefit to one or more bodily functions beyond that of basic nutrition [1]. 37 

Recently, it has been recognized that apart from their basic nutritional role, many dietary proteins 38 

contain, encrypted within their primary structure, different peptide sequences that exert beneficial 39 

effects upon human health once released by digestive enzymes during gastrointestinal transit or 40 

by fermentation or ripening during food processing. Bioactive peptides range in size from 2 to 50 41 

amino acid residues and exhibit different activities, such as antimicrobial, antioxidant, 42 

antithrombotic, antihypertensive, immunomodulatory, opioid, and antiproliferative activities, 43 

among others [2-4], affecting the major body systems – namely, the cardiovascular, digestive, 44 

endocrine, immune and nervous systems. The potential of these bioactive peptides to reduce the 45 

risk of chronic diseases and to promote human health has aroused increasing scientific and 46 

commercial interest over the past decade [5]. 47 

High blood pressure or hypertension, which is estimated to affect one third of the Western 48 

population [6], is a risk factor for cardiovascular diseases including coronary heart disease, 49 

peripheral artery disease and stroke. In view of its high prevalence and importance, changes in 50 

life-style, dietary approaches and pharmacological treatments are broadly applied to treat 51 

hypertension. It has been recognized that nutritional factors play a significant role in the 52 

prevention and/or treatment of hypertension, and therefore, efforts are being put into the 53 

production of foods with antihypertensive activity. Angiotensin-converting enzyme (ACE, EC 54 

3.4.15.1) is one of the main regulators of blood pressure through its action on two body systems. 55 
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Firstly, ACE forms part of the rennin-angiotensin system (RAS), converting angiotensin I to a 56 

potent vasoconstrictor, angiotensin II, which also induces the release of aldosterone and therefore, 57 

increases the sodium concentration and blood pressure. ACE also takes part of the kinin-kalicrein 58 

system as it hydrolyzes bradykinin, which has a vasodilator action. By inhibiting this enzyme, 59 

bioactive peptides have been shown to lower blood pressure in animal and clinical studies. First 60 

ACE inhibitors were discovered in snake venom. Currently, different ACE inhibitors, such as 61 

Captopril and Enalapril, are being extensively used to treat essential hypertension. However, their 62 

undesirable effects, such as hypotension, cough, increased potassium levels, reduced renal 63 

function, angioedema, etc. [7], have promoted the search of ACE inhibitory peptides derived 64 

from food natural sources. To date, milk from different species is the main source of ACE 65 

inhibitory peptides [3, 8, 9]. Other animal protein sources of these peptides are muscle [10], 66 

ovalbumin [11], blood [12], and fish proteins [13, 14]. Plant protein sources include, among 67 

others, pea [15], garlic [16], rice [17], soybean [18, 19], wheat [20], and Amaranth proteins [21].  68 

This article reviews current literature on the subject of ACE inhibitory and 69 

antihypertensive peptides, their structure-activity relationship, mechanism of action and 70 

bioavailability. Evaluation of their activity in humans as well as their possible incorporation into 71 

food products will be also covered.  72 

  73 

2. Release and identification of antihypertensive peptides 74 

Biologically active peptides can be released from their parent protein by enzymatic 75 

hydrolysis during gastrointestinal digestion, fermentation or maturation during food processing or 76 

proteolysis by food-grade enzymes derived from microorganisms, animals or plants [22]. If the 77 

peptidic sequence is known, it is also possible to synthesize the peptide by chemical or enzymatic 78 

synthesis or by recombinant DNA technology [23].  79 
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2.1. Gastrointestinal digestion 80 

It has been recognized that dietary proteins and peptides are susceptible to hydrolysis 81 

during the different stages of gastrointestinal digestion, namely ingestion, digestion and 82 

absorption [24]. Once ingested, these proteins and peptides are subjected to hydrolysis by 83 

different enzymes present in the gastrointestinal tract such as pepsin, trypsin, chymotrypsin and 84 

peptidases at the surface of epithelial cells to release peptides of various lengths. Some of these 85 

peptides may exert a direct function at the gastrointestinal tract. However, other peptides can be 86 

absorbed to reach target organs and tissues through systemic circulation [25].  87 

 In order to examine the effect of gastrointestinal proteases on the release of and 88 

breakdown of ACE inhibitory peptides from food proteins, simulated gastrointestinal digestion 89 

processes have been carried out on various protein sources, such as milk proteins (Table 1) [26-90 

30], egg proteins [11], meat proteins [31, 32], fish proteins [33, 34], as well as vegetal proteins 91 

[21, 35-37]. As an example, Hernandez-Ledesma et al., [28] identified peptides with ACE 92 

inhibitory and antioxidant activity in hydrolyzates of several samples of human milk and infant 93 

formulas after digestion with pepsin and pancreatin simulating infant gastrointestinal conditions. 94 

Recently, Majumder and Wu [38] have studied the effect of simulated gastrointestinal digestion 95 

of cooked eggs on the release of ACE inhibitory peptides. These authors found that fried egg 96 

digests showed more potent ACE inhibitory activity than boiled egg digests, and postulated that 97 

the lower protein denaturation in boiled eggs may results in a lower protein digestibility.  98 

 99 

2.2. Fermentation and maturation process 100 

During fermentation process, lactic acid bacteria (LAB) hydrolyze milk proteins, mainly 101 

caseins, into peptides and amino acids which are used as nitrogen sources necessary for their 102 

growth [39]. Hence, bioactive peptides can be generated by starter and non-starter bacteria used 103 
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in the manufacture of fermented dairy products (Table 1) [40-43]. Many of these peptides have 104 

been reported to exert ACE inhibitory and antihypertensive properties. Proteolytic system of 105 

Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, Lactococcus lactis ssp. 106 

diacetylactis, Lactococcus lactis ssp. cremoris, and Streptococcus salivarius ssp. thermophylus 107 

strains have been demonstrated to hydrolyze milk proteins releasing ACE inhibitory peptides 108 

[reviews 3, 43, 44]. Some of the peptides identified also have been shown to lower blood 109 

pressure in hypertensive rats [45-47], and humans [48, 49]. The best characterized ACE 110 

inhibitory peptides are VPP and IPP found in milk fermented with Lactobacillus helveticus and 111 

commercialized in Japan (Calpis, Calpis Co. Ltd., Tokyo, Japan) and Finland (Valio Evolus 112 

Double Effect, Valio Ltd., Finland). This fermented milk has shown beneficial effects on blood 113 

pressure in several rat models and human studies [47, 48, 50-55]. 114 

Ashar and Chand [42] identified an ACE-inhibitory peptide from milk fermented with 115 

Lactobacillus delbrueckii ssp. bulgaricus, and Pihlanto et al. [56] reported two peptides 116 

responsible for the ACE inhibitory activity of milk fermented with Lactobacillus jensenii. In 117 

combination with Streptococcus salivarius ssp. thermophylus and Lactococcus lactis biovar. 118 

diacetylactis, a hypotensive structure with a sequence of SKVYP was obtained from β-casein. 119 

Quirós and co-workers [57] identified two peptides in fermented milk with Enterococcus faecalis 120 

that corresponded to -CN fragments LHLPLP and LVYPFPGPIPNSLPQNIPP, with potent 121 

ACE-inhibitory activity and proven antihypertensive effect when orally administered to 122 

spontaneously hypertensive rats after acute and long-term administration. 123 

During the maturation of cheese, the major milk proteins are degraded into a large number 124 

of peptides due to the action of endogenous milk enzymes, added coagulants and microbial 125 

enzymes. A number of studies have shown that ACE inhibitory peptides can be produced during 126 
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cheese making, in particular during ripening process. These peptides have been characterized in 127 

different commercial cheeses, such as Edam, Gouda, Camembert, Havarti and Blue cheese [58], 128 

Italian and Spanish cheeses [29, 59, 60], and Asiago cheeses [30]. Tri-peptides VPP and IPP have 129 

also been identified and quantified in different cheese varieties by Butikofer and co-workers [61, 130 

62]. A low-fat cheese containing ACE-inhibitory peptides derived from s1-casein and named as 131 

“Festivo” is commercialized in Eastern countries. 132 

Fermented soy products, traditionally consumed in Eastern countries, have been also 133 

found to be an important source of ACE-inhibitory and antihypertensive peptides. A potent 134 

antihypertensive peptide has been identified and characterized in a Korean soy product 135 

denominated “chunggugjang” and obtained by soy fermentation with Bacillus subtilis CH-1023 136 

[63]. Other ACE-inhibitory and antihypertensive peptides have been identified in soy paste [64], 137 

soy sauce [65, 66], natto and tempeh [67], and other fermented soy products [19, 68, 69].  138 

 139 

2.3. Enzymatic hydrolysis  140 

The most common way to produce bioactive peptides is through enzymatic hydrolysis of 141 

whole protein molecules (Table 1). A large number of studies have demonstrated the release of 142 

ACE inhibitory and/or antihypertensive peptides from food proteins, by hydrolysis with 143 

gastrointestinal enzymes, such as pepsin, trypsin, and chymotrypsin [24, 70-72]. Manso and 144 

Lopez-Fandino [73] described occurrence of ACE-inhibitory peptides in hydrolyzates of bovine, 145 

ovine and caprine κ-casein upon hydrolysis with various digestive enzymes. Pepsin was used by 146 

Contreras and co-workers [74] to hydrolyze total isoelectric casein and three peptide sequences 147 

derived from αs1-casein and αs2-casein were characterized as ACE inhibitors and antihypertensive 148 

peptides.  149 
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In addition to live microorganisms, proteolytic enzymes from bacterial and fungal sources 150 

have been used to generate bioactive peptides from various proteins. The use of commercially 151 

available microbial-derived food grade proteinases to hydrolyze food proteins is advantageous as 152 

these enzymes are low-cost and safe, and the product yields are very high [75]. Ueno et al. [76] 153 

purified and characterized an endopeptidase from Lb. helveticus CM4 and demonstrated that this 154 

peptidase can generate antihypertensive peptides using synthetic pro-peptides as substrates. 155 

Mizuno et al. [77] measured the ACE-inhibitory activity of casein hydrolyzates upon treatment 156 

with nine different commercially available proteolytic enzymes. Among these enzymes, a 157 

protease extracted from Aspergillus oryzae acted specifically on casein to release VPP and IPP, 158 

and the obtained casein hydrolyzate demonstrated a significant dose-dependent antihypertensive 159 

effect in a rat model with spontaneously hypertensive rats.  160 

Recently, the interest of food technologists has turned to the use of different techniques, 161 

such as high-pressure and heat denaturing and power ultrasound to modify protein structure and 162 

increase enzymatic hydrolysis. As compared to the proteolysis at atmospheric pressure, 163 

qualitative and quantitative differences were detected in the hydrolysis pattern when proteolysis 164 

with trypsin was carried out under high pressure treatments [78-79]. Hernandez-Ledesma et al. 165 

[80] reported that heating of -Lg during enzyme treatments with thermolysin enhances the 166 

formation of peptides with ACE-inhibitory activity, and one of the peptides released under these 167 

heat-denaturing conditions was LQKW that had previously been described as a potent ACE 168 

inhibitor [81]. Prolonged exposure to high-intensity ultrasound has been shown to inhibit the 169 

catalytic activity of a number of food enzymes [82]. However, in some cases, solutions 170 

containing enzymes have been found to have increased activity following short exposures to 171 

ultrasound [83]. Jia et al. [84] found that the use of ultrasonic treatment during proteolysis could 172 
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facilitate the enzymatic hydrolysis of peptide DWGP, whereas ultrasonic pre-treatment could 173 

promote the release of ACE inhibitory peptides from this peptide. 174 

 175 

2.4. Genetic recombination in bacteria 176 

Industrial preparation of ACE inhibitory and/or antihypertensive peptides by enzymatic 177 

hydrolysis and microbial fermentation showed to be a low efficient process because of low yield 178 

and high cost of separation and purification processes [85-88]. To solve these issues, during last 179 

years a new technique based on genetic engineering is being developed. One of the challenges of 180 

this technique is the susceptibility of short antihypertensive peptides to degradation by protease 181 

or peptidase. Moreover, the expression products may be harmful to the host, impacting the high-182 

level expression of the gene. This shortcoming has been conquered by expression of 183 

antihypertensive peptides in the forms of a fusion protein or a tandem gene. Antihypertensive 184 

peptides with sequences HHL, HVLPVP, FFVAPFPEVFGK, and GHIATFQER have been 185 

expressed successfully in Escherichia coli [89-92], although special proteases are needed to 186 

release the target active protein, thus increasing the cost of separation and purification after 187 

enzymatic hydrolysis. Recently, Rao et al. [93] expressed an antihypertensive peptide multimer, a 188 

common precursor of 11 kinds of antihypertensive peptides, and the release was confirmed by 189 

simulated gastrointestinal digestion. Because of the fact that currently genetic modified 190 

microorganisms are difficult to be used in food products, further studies should be needed.  191 

 192 

3. In vitro and in vivo assays 193 

The search for ACE inhibitory activity is the most common strategy followed in the 194 

selection of antihypertensive peptides derived from food proteins. In order to study ACE 195 

inhibition, simple, rapid, sensitive and reliable analytical methods are desirable. In vitro 196 
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inhibitory activity is generally measured by monitoring the conversion of an appropriate substrate 197 

by ACE in the presence and absence of the potential inhibitors. There are several methods, but 198 

those based on spectrophotometric and high-performance liquid chromatography (HPLC) assays 199 

are most commonly utilized. The spectrophotometric method of Cushman and Cheung [94] is 200 

based on the hydrolysis of Hippuryl-His-Leu (HHL) by ACE to hippuric acid and His-Leu, and 201 

the extent of hippuric acid released is measured after its extraction with ethyl acetate. The 202 

inhibitory potency is expressed as the IC50 value, or concentration needed to inhibit 50% of the 203 

enzyme activity. Extraction of reaction product is tedious and may overestimate ACE activity if 204 

unhydrolyzed HHL is also extracted. Another broadly used spectrophotometric method is based 205 

in the hydrolysis of a furanocryloyl tripeptide (FAPGG) to FAP and the di-peptides GG [95]. 206 

Using HPLC methods, the peak of hippuric acid may be interfered with by the added ACE 207 

inhibitors in the reaction mixture, so the mobile phase needs to be adjusted to different tested 208 

compounds. Moreover, the HPLC method show lower detection sensitivity and longer analysis 209 

time to obtain good results. Doig and Smiley [96] and Mehanna and Dowling [97] have improved 210 

HPLC methods by applying ultraviolet detection, and Van Elswijk et al. [98] have developed an 211 

alternative strategy for the screening of complex food samples applying an HPLC method with 212 

biochemical detection. In that approach, separation and activity detection are combined within 213 

one step. However, as spectroscopic detection is used to monitor the enzymatic conversion, these 214 

methods are restricted to artificial substrates as well. Direct, extraction-free methods have been 215 

published recently [99, 100]. Siemerink et al. [101] have optimized a new robust HPLC coupled 216 

with electrospray ionization mass spectrometry (HPLC/ESI-MS)-based screening method for 217 

ACE-inhibiting substances in crude samples. Similarly, an ultra-performance-liquid 218 

chromatography (UPLC) coupled with MS (UPLC-MS) for determination of the ACE activity 219 

has been recently developed by Geng et al. [102]. This new method is more sensitive, accurate 220 
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and reproducible. The small total reaction volume, the short analysis time, high selectivity and 221 

lower expense are the advantages of this method in comparison with the conventional methods.  222 

The antihypertensive effects can only be reliably assessed by in vivo experiments using 223 

spontaneously hypertensive rats that constitute an accepted model for human essential 224 

hypertension [7]. A great number of studies have addressed the effects of both short-term and 225 

long-term administration of potential antihypertensive peptides using this animal model [88, 103-226 

106]. Moreover, many in vivo studies include the evaluation of the effect of antihypertensive 227 

peptides on arterial blood pressure of normotensive Wistar-Kyoto rats. Recently, Nakahara et al. 228 

[66] have used the Dahl salt-sensitive rats as a model of salt-sensitive hypertension to evaluate 229 

the antihypertensive effect of a peptide-enriched soy-sauce like seasoning. The results of these 230 

tests have highlighted an important lack of correlation between the in vitro ACE inhibitory 231 

activity and the in vivo action. This fact has provided doubts on the use of the in vitro ACE 232 

inhibitory activity as the exclusive criteria for potential antihypertensive substances because other 233 

mechanisms of action than ACE inhibition might be responsible for the antihypertensive effect. 234 

Also, it should be needed to take into consideration the physiological transformations 235 

determining the bioavailability of the peptides.  236 

 The antihypertensive effect of some food proteins-derived peptides has been conducted in 237 

human studies to determine whether these peptides posses an antihypertensive effect on human 238 

subjects with high-normal blood pressure and mild hypertension [50, 107, 108]. The most 239 

substantiated antihypertensive activity in humans has been obtained for the commercial 240 

fermented milk products and hydrolyzates containing the ACE-inhibitory peptides IPP and VPP. 241 

The antihypertensive effect of the sour milk product Calpis, commercialized in Japan, was tested 242 

in a clinical study with mildly hypertensive patients [50]. Recently, a study has been conducted 243 

among patients with high-normal blood pressure and mild hypertension, evaluating the effect of 244 
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different doses of a casein hydrolyzate produced by Aspergillus oryzae containing IPP and VPP 245 

and commercialized as AmealPeptide
®

 by Calpis [77]. Similarly, a milk product Evolus
®
 246 

fermented with Lactobacillus helveticus LBK-16H and produced by Valio Ltd. (Finland) has 247 

been tested in hypertensive humans [48]. This product, containing peptides IPP and VPP, showed 248 

to exert a long-term blood pressure-lowering effect after normal daily ingestion during a 21- 249 

weeks intervention period.   250 

 251 

4. Structure-activity relationship 252 

Although the structure-activity relationship of ACE-inhibitory peptides derived from 253 

foods has not yet been fully elucidated, several structural features influencing potency of these 254 

peptides have been identified [7, 109]. Recently, it has been reported that artificial neural 255 

networks (ANN) and quantitative structure-activity relationship (QSAR) modelling may be used 256 

to develop statistical computer models potentially capable of identifying ACE inhibitory peptides 257 

based on structure-activity data [110]. Several descriptor variables such as molecular mass and 258 

shape, hydrophobicity, charge and electronic properties have been recognized as critical in this 259 

QSAR modelling. The majority of ACE inhibitory peptides are relatively short sequences 260 

containing from 2 to 12 amino acids. This in agreement with the results of Natesh and coworkers 261 

[111], which demonstrated from crystallography studies, that the active site of ACE cannot 262 

accommodate large peptide molecules. However, some studies have identified ACE inhibitory 263 

peptides with up to 27 amino acids [58, 112, 113]. Of many ACE-inhibitory peptides identified 264 

from different food sources, structure-activity correlation indicated that C-terminal tri-peptide 265 

residues play a predominant role in competitive binding to the active site of ACE. It has been 266 

reported that this enzyme prefers substrates or inhibitors containing hydrophobic (aromatic or 267 

branched side chains) amino acid residues at each of the three C-terminal positions. The most 268 
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effective ACE inhibitory peptides identified contain Tyr, Phe, Trp, and/or Pro at the C-terminal. 269 

Gomez-Ruiz and coworkers [29] have suggested that amino acid Leu may contribute 270 

significantly to increase ACE inhibitory potential. Furthermore, other branched chain aliphatic 271 

amino acids such as Ile and Val are predominant in highly peptide inhibitors. In addition, 272 

structure-activity data suggest that the positive charge of Lys ( -amino group) and Arg (guanidine 273 

group) as the C-terminal residue may contribute to the inhibitory potency [114-117]. Other 274 

characteristics have also been found to play important roles for ACE inhibition. It has been 275 

recognized that ACE inhibitory peptides possess a characteristic pattern (i.e. a similar positive 276 

potential located at the C-terminal end) different from that of inactive peptide molecules [112, 277 

118]. For long chain peptides, it is expected that peptide conformation, i.e. the structure adopted 278 

in the specific environment of the binding site, will influence binding to ACE [117, 118]. It has 279 

also been demonstrated that ACE has a requirement for the L-configuration of the amino acid at 280 

position three from the C-terminal. Moreover, changes in cis-trans conformations of Pro at the C-281 

terminal position of an ACE inhibitory peptide may cause significant changes in its interaction 282 

with the enzyme [119].  283 

 284 

5. Mechanism of action 285 

 Blood pressure is determined by cardiac output and vascular peripheral resistance, and is 286 

regulated by a complex system involving the RAS, the sympathetic nervous system (SNS), and 287 

the kidney and fluid balance mechanism [118]. Most food-derived peptides usually display 288 

higher in vivo activities than the efficacy levels extrapolated from the in vitro ACE inhibitory 289 

activity. This may be an indication of the existence of an additional mode of action [120]. In fact, 290 

increasing evidence is being provided that different mechanisms, others than ACE inhibition, are 291 
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involved in the blood-pressure-modulating effect exerted by many of these peptides. In vitro, tri-292 

peptides VPP and IPP have been shown to inhibit ACE at micromolar concentrations [40, 41]. In 293 

vivo, long-term treatment of spontaneously hypertensive rats with fermented milk containing 294 

these peptides has been found to decrease serum ACE activity [121-123]. However, according to 295 

Jauhiainen et al. [54], the mechanistic theory of ACE inhibition of IPP and VPP remains to be 296 

confirmed and other effects have to be taken into consideration. Some of these effects have been 297 

evaluated in animal models and clinical studies. Plasma rennin activity and levels have been 298 

found to be raised in spontaneously hypertensive rats receiving IPP and VPP for 14 weeks. This 299 

raising can be due to the lack of negative feedback by angiotensin II, which supports that ACE 300 

was inhibited [47]. Other authors have reported the protective effects exerted by these peptides on 301 

endothelial function of isolated mesenteric arteries of rats after 24 h incubation with them [124]. 302 

In humans with mild hypertension, administration of a casein hydrolyzate containing VPP and 303 

IPP increases maximum blood flow forearm during reactive hyperemia, thus demonstrating an 304 

improvement in the vascular endothelial dysfunction. Yamaguchi et al. [125] studied effect of a 305 

5-day repeated administration of VPP and IPP on gene expression of spontaneously hypertensive 306 

rats abdominal aorta using DNA microarray microanalysis, reporting a significant increase for the 307 

endothelial nitric oxide synthase (eNOS) gene and the connexion 40 gene, which are involved in 308 

blood pressure regulation. Expression of these genes was restored in the aortic tissue after 309 

treatment with these tri-peptides [126, 127], suggesting that VPP and IPP might act in vivo as 310 

ACE inhibitors in the aorta and also have preventive potential in cardiovascular function.  311 

Fuglsang et al. [46] reported that ingestion of two milks fermented with Lactobacillus 312 

helveticus provokes a decrease of the response to an intravenous injection of angiotensin I in 313 

unconscious normotensive rats, whereas response to bradikinin was increased, confirming the 314 

inactivation of ACE. Dried bonito-ACE inhibitory peptides slightly inhibit angiotensin I-induced 315 



 15 

contractions in rat-isolated aorta as compared with Captopril, but unlike this drug, peptides exert 316 

a direct action on vascular smooth muscles [128]. Similarly, peptide lactokinin (ALPMHIR) 317 

inhibits the release of ET-1, an endothelial factor that evokes contractions in smooth muscle cells 318 

through mechanisms both dependent and independent of ACE-inhibition [129]. It is also likely 319 

that opioid receptors are involved in the antihypertensive effect of some peptides, such as α-320 

lactorphin, β-lactorphin and human casein-derived fragments, as this was abolished by the opioid 321 

receptor antagonist naloxone. As an example, it has been demonstrated that α-lactorphin, a tetra-322 

peptide (YGLF) formed by in vitro proteolysis of α-lactalbumin with pepsin and trypsin, lowers 323 

blood pressure in spontaneously hypertensive rats and produces an endothelium-dependent 324 

relaxation of their mesenteric arteries that is inhibited by an eNOS inhibitor [47]. Therefore, a 325 

mechanism of action driven by the stimulation of peripheral opioid receptors and subsequent 326 

nitric oxide (NO) release causing vasodilation has been proposed for this peptide. Although -327 

lactorphin interacting with opioid receptors does no elicit effects typical of centrally active 328 

opioids such as antinociception and sedation [130]. It has been suggested that these opioid 329 

peptides might lower blood pressure through receptors expressed in the gastrointestinal tract, 330 

which implies that no absorption is required [131].  331 

 Strong epidemiological evidence indicates that oxidative stress and associated oxidative 332 

damage are mediators in cardiovascular diseases. In experimental and human hypertension 333 

studies, it has been demonstrated an increased production of superoxide anion and hydrogen 334 

peroxide, reduced NO synthesis, and decreased bioavailability of antioxidants [132]. Therefore, 335 

food-derived peptides with antioxidant properties might also have effect on blood pressure 336 

modulation. Many of these peptides have been identified and characterized from casein and whey 337 

proteins hydrolyzed with different enzymes [133, 134]. 338 
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Taking together the results of all these studies, more thorough mechanistic research 339 

should be probably needed to detect the changes in the factors affecting blood pressure and 340 

vascular tone to show the exact mechanisms also in vivo of antihypertensive peptides.  341 

 342 

6. Bioavailability and clinical studies 343 

The physiological effects of bioactive peptides depend on the ability to reach in an active 344 

form their target organs. This implies resistance to gastrointestinal enzymes and brush border 345 

membrane peptidases and absorption through the intestinal epithelium. The resistance of peptides 346 

to these processes is usually performed by sequential hydrolysis with pepsin and pancreatic 347 

extracts mimicking the gastrointestinal conditions and with in vitro studies with epithelial 348 

intestinal cells. Although peptides were though to be rapidly metabolized to constituent amino 349 

acids, these studies have demonstrated that several peptides are resistant to these physiological 350 

processes and can reach the circulation. This is the case of the short tri-peptides IPP and VPP 351 

[135, 136], but also has been demonstrated for longer proline-rich peptides, such as, LHLPLP. 352 

This latter peptide resists simulated gastrointestinal digestion but it is hydrolysed to a shorter 353 

active form, HLPLP, by cellular peptidases prior to transport across the intestinal epithelium [137, 354 

138]. Figure 1 shows the formation of the shorter peptide during incubation of the peptide 355 

LHLPLP in the apical chamber of the Caco-2 cell culture. The penta-peptide appeared in 356 

approximately 3 min and its concentration increased with the incubation time up to 60 min. This 357 

shorter form has also been detected in human plasma after oral administration which 358 

demonstrates intestinal absorption of the pentapeptide in humans [139]. In some cases, the active 359 

form is released during gastrointestinal processes. For instance, the active form of peptide 360 

KVLPVPQ is generated by hydrolysis of the glutamine residue at the C-terminal end during 361 

pancreatic digestion [140]. This is also the case of the egg-derived antihypertensive peptides 362 
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YAEERYPIL and RADHPFL that were hydrolysed to other active forms after simulated 363 

gastrointestinal digestion [11]. The pharmacokinetic behaviour of the tri-peptides IPP and VPP 364 

has also been studied and an absolute bioavailability of 0.1% respect the administered dose has 365 

been calculated in pigs [141]. In humans, these two tri-peptides were detected in plasma after oral 366 

administration at picomolar concentrations and their absorption was enhanced when ingested in 367 

the form of an enriched yogurt beverage. In addition, a further increase (1.2-fold) in the plasmatic 368 

concentration of IPP was found when the enriched yogurt was administered after a meal [142]. 369 

Several clinical studies have evaluated the antihypertensive effect of the tri-peptides IPP 370 

and VPP after long-term administration in humans. Most of them are included in two meta-371 

analyses recently published [143, 144]. The meta-analysis by Xu et al. [143] includes 12 trials 372 

with a total of 623 participants and found significant decreases in systolic and diastolic blood 373 

pressure (4.8 mmHg and 2.2 mmHg, respectively). Similar results arose from the meta-analysis 374 

published by Pripp et al. [144] with a total of 15 clinical trials included. Although two long-term 375 

studies have not found statistical differences with these tri-peptides [145, 146], most recent 376 

reviews on the subject identify several factors such as component of the final product, dose, 377 

method for blood pressure measurement that can influence the results in different trials [147, 148]. 378 

 379 

7. Incorporation into food products 380 

For an industrial application of protein hydrolyzates containing antihypertensive peptides, 381 

main considerations would be the organoleptic characteristics of these ingredients and the 382 

evaluation of the resistance of the active peptides to processing conditions. The practical use of 383 

protein hydrolyzates in food systems is hindered due to the presence of low molecular weight 384 

peptides composed mainly of hydrophobic amino acids that results in a bitter taste [149]. In fact, 385 

this problem has limited the use of some of the developed hydrolyzates with proved 386 
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antihypertensive effect. In addition to the bitterness, the pH of the hydrolysis reaction needs to be 387 

regulated because the substrate susceptibility and the enzyme activity are strongly influenced by 388 

the pH. In order to achieve the desired hydrolysis degree to obtain biologically active peptides, 389 

the addition of some alkali or acid is required to neutralize the hydrolysis products. This leads to 390 

undesirable high ash build up in the hydrolyzates and the development of salty off-flavors. 391 

Different strategies have been applied for debittering protein hydrolyzates. These include 392 

absorption of bitter peptides on activated carbon, chromatographic removal using different 393 

matrices and selective extraction with alcohols [149]. The most extended approaches include 394 

hydrolysis of bitter peptides with enzymes such as aminopeptidase, alkanine/neutral protease and 395 

carboxypeptidase, condensation reactions of bitter peptides using protease and use of 396 

Lactobacillus as debittering starter adjunct [150]. However, the application of all these methods 397 

in biologically active hydrolyzates is limited because the enzymatic activity used for debittering 398 

can hydrolyze the previously generated bioactive peptides. Although it has not been found a 399 

significant correlation between bitterness and the ACE-inhibitory activity of di- and tri-peptides 400 

[151], it is recognized the importance of hydrophobic amino acid residues for both bitterness and 401 

ACE-inhibitory peptides. Therefore, those methods based in the removal of bitter peptides (either 402 

absorption, extraction or hydrolysis) have to be carefully applied to hydrolyzates containing, for 403 

instance, ACE-inhibitory peptides. For bioactive hydrolyzates, the application of masking 404 

methods by using monosodium glutamate or glutamylglutamic acid [152], the addition of 405 

cyclodextrins [153], encapsulation [154], or the addition of phospholipids and lysophopholipids 406 

[155] could be preferably used. For instance, for the encapsulation of casein hydrolyzates, 407 

different materials such as soy proteins isolates alone or in mixtures with gelatin [154, 156], 408 

maltodextrins [157], or lipospheres [158] have been successfully applied. The presence of 409 

proteins and reducing carbohydrates in a food ingredient will lead to the formation of Maillard 410 
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compounds that can have a positive effect on flavor but this reaction has to be controlled to avoid 411 

the generation of undesirable compounds [159, 160]. Therefore, the improvement of the flavor of 412 

biologically active protein hydrolyzates including possible protein-flavor interactions and the 413 

effect of these processes on biological activity are of interest in relation to the development of 414 

novel protein foods. 415 

Processing provides an additional value to foods in improving their safety, shelf-life, 416 

palatability, nutritive and functional value, but the conditions of processing and storage may be 417 

detrimental to peptides. At this regard, changes in the molecular structure of an amino acid may 418 

lead to changes in the bioactivity and in the absorption of the peptide of interest. The most 419 

relevant degradation pathways of amino acids during processing were recently reviewed by 420 

López-Fandiño & co-workers [3]. For example, thermal processing favors racemization, amino 421 

acids decomposition (e.g. ornithine from arginine), glycation (non-enzymatic browning or 422 

Maillard reaction), and cross-linking. Furthermore, amino acids can be also oxidized during food 423 

processing [161], and even D-amino acids can by synthesized out from L-amino acids by LAB. 424 

Dehydratation by spray-drying may produce some negatively effects on food protein 425 

hydrolyzates, such as changes in peptide composition, reduction of amino acid content and non 426 

enzymatic browning [162-164]. There are little data about the effects of other processes on 427 

bioactive peptides. Recently, the stability of two s1-casein-derived antihypertensive peptides to 428 

spray-drying, homogenization and pasteurization when they were incorporated into fermented 429 

milk has been demonstrated [165]. Incorporation of active hydrolyzates to fermented milks 430 

implies that these peptides have to survive in the presence of LAB because of their cell-431 

associated proteinases/peptidases systems that could further hydrolyze the bioactive sequences. 432 

For instance, it has been reported that an 12 amino acid long antihypertensive peptide can be 433 
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digested by exposure to yogurt starter culture strains and therefore, the incorporation of this 434 

bioactive peptide should preferably done at the end of the yogurt-making process [166]. 435 

 436 

8. Future prospects 437 

Among the different groups of bioactive peptides defined, antihypertensive peptides have 438 

received special attention, their activity has been tested in vitro, animal models and humans, and 439 

they have been incorporated into different food products. Controversial results on clinical studies 440 

and the different health claim legislations will contribute to increase research in this area. In this 441 

sense, different studies have been performed to demonstrate stability of the peptide, absorption 442 

and identification of the active form in the organism. It has been postulated that physiologically 443 

relevant concentrations and elimination kinetics will be mandatory for food derived bioactive 444 

components as it is now for pharmaceutical compounds. At the same time, the recent advances on 445 

specific analytical techniques able to follow small amounts of the peptides or derivatives from 446 

them in complex matrices and biological fluids will allow performing these kinetic studies in 447 

model animals and humans. Similarly, advances in new disciplines such as nutrigenomic and 448 

nutrigenetic will open new ways to follow bioactivity in the organism by identifying novel and 449 

more complex biomarkers of exposure and/or of activity. All these advances will be done 450 

simultaneously with the knowledge food technologists since the final formulation of the food 451 

product is crucial to ensure activity and bioavailability of bioactive peptides. 452 
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Figure captions 459 

Figure 1: Changes of the synthetic peptide LHLPLP when added to apical chamber of a Caco-2 460 

cell culture at different periods of time. Extracted ion chromatograms obtained by HPLC-MS 461 

analysis of the apical chamber after a) 5 min, b) 10 min, c) 30 min, and d) 60 min of incubation. 462 

The extracted ion chromatogram was obtained by extraction of ions with m/z 689.4, 711.4 and 463 

727.4, which correspond to molecular ion of peptide LHLPLP and its sodium and potassium 464 

adducts, and ions with m/z 598.3, 614.3 and 620.3, corresponding to molecular ion of peptide 465 

HLPLP and its sodium and potassium adducts. Reproduced from [137] with permission. 466 
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Table 1. ACE inhibitory and antihypertensive activity in spontaneously hypertensive rats of peptide derived from caseins and whey proteins by fermentation 921 
and enzymatic hydrolysis 922 
 923 
 924 

Peptide Sequence
 

IC50 ( M)
a
 Decrease of 

SBP (mmHg)
b
 

Origin Reference 

s1-CN f(1-9) RPKHPIKHQ 13.4 -9.3 Gouda cheese  [58] 

s1-CN f(146-147) YP 720 -32.1
 

Fermentation with Lb. helveticus CPN4 [140] 

-CN f(58-76) LVYPFPGPIPNSLPQ

NIPP 

5.2 -15.0
 

Fermentation with En. faecalis [11, 57] 

-CN f(60-68) YPFPGPIPN 14.8 -7.0
 

Gouda cheese  [58] 

-CN f(74-76) IPP 5.0 -28.3 (-10.1)
d 

Fermentation with Lb. helveticus y Sc. cerevisiae [40, 41] 

-CN f(84-86) VPP 9.0 -32.1 (-10.1)
d 

Fermentation with Lb. helveticus y Sc. cerevisiae [40, 41] 

-CN f(133-138) LHLPLP 5.5 -21.9 Fermentation with En. faecalis [11, 57] 

-CN f(133-139) LHLPLPL 425 -7.7 Fermentation with En. faecalis [11, 57] 

-CN f(197-206) VLGPVRGPFP 137 -16.2 Fermentation with En. faecalis [11, 57] 

-CN f(201-209) VRGPFPIIV 599 -16.1 Fermentation with En. faecalis [11, 57] 

s1-CN f(23-34) FFVAPFPGVFGK 77 -34.0 Hydrolysis with trypsin [167] 

s1-CN f(104-109) YKVPQL 22 -13.0
 

Hydrolysis with a proteinase from Lb. helveticus CP790 [140] 

s1-CN f(194-199) TTMPLW 16 -13.6 Hydrolysis with trypsin [167] 

s2-CN f(189-192) AMPKPW 580 -5.0 Hydrolysis with a proteinase from Lb. helveticus CP790 [140] 

s2-CN f(190-197) MKPWIQPK 300 -3.0 Hydrolysis with a proteinase from Lb. helveticus CP790 [140] 

s2-CN f(198-202) TKVIP 400 -9.0 Hydrolysis with a proteinase from Lb. helveticus CP790 [140] 

s2-CN f(203-208)
d
 PYVRYL 1.9 23.4 Hydrolysis with pepsin [168] 

-CN f(59-61) VYP 288 -21.0
 

Hydrolysis with proteinase K [169] 
-CN f(59-64) VYPFPG 221 -22.0

 
Hydrolysis with proteinase K [169] 

-CN f(80-90) TPVVVPPFLQP 749 -8.0
 

Hydrolysis with proteinase K [169] 
-CN f(140-143) LQSW 500 -2.0

 
Hydrolysis with a proteinase from Lb. helveticus CP790 [140] 

-CN f(169-174) KVLPVP 5 -32.2
 

Hydrolysis with a proteinase from Lb. helveticus CP790 [140] 

-CN f(169-175) KVLPVPQ 1000 -31.5
 

Hydrolysis with a proteinase from Lb. helveticus CP790 [140] 

 925 
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Table 1. (Continuation). ACE inhibitory and antihypertensive activity in spontaneously hypertensive rats of peptide derived from caseins and whey proteins 926 
by fermentation and enzymatic hydrolysis 927 
 928 
 929 

Peptide Sequence
 

IC50 ( M)
a
 Decrease of 

SBP (mmHg)
b
 

Origin Referente 

-CN f(177-183) AVPYPQR 15 -10.0
 

Hydrolysis with trypsin [167] 

-La f(50-53) YGLF 733 -23.0
 

Hydrolysis with gastric and pancreatic enzymes [170] 

-Lg f(58-61)
e
 LQKW 34.7 -18.1 Hydrolysis with thermolysin [103] 

-Lg f(78-80) IPA 141 -31.0 Hydrolysis with proteinase K [169] 

-Lg f(103-105)
e
 LLF 79.8 -29.0

 
Hydrolysis with thermolysin [104] 

BSA f(221-222) FP 315 -27.0 Hydrolysis with proteinase K [169] 

 930 
 931 
 

a
: Peptide concentration needed to inhibit 50% ACE activity 932 

b
: Systolic blood pressure 933 

c
: Antihypertensive effects in humans  934 

d
: Ovine protein 935 

e
: Caprine protein 936 

 937 

 938 

 939 


