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Abstract: The ability of two thermodynamic approaches to predict the solubility of solid compounds in hot pressurized 

water is studied and compared. The Regular Solution Theory, based on the solubility parameter concept, and UNIFAC-

based models were applied to calculate the solute activity coefficient and then, solubility predictions were compared with 

experimental data reported in the literature. The analysis was carried out considering polycyclic aromatic hydrocarbons as 

model substances, i.e. substances which contain only the aromatic AC and ACH groups, and for which reliable pure 

physical properties such as melting point, fusion enthalpy and molar volume are available in the literature. The solubility 

values predicted with the UNIFAC-based models were considerably better than those obtained with the solubility 

parameter approach. Particularly, the modified Dortmund UNIFAC model presented an appropriate functionality of 

solubility with temperature, and the extension of this model to other type of aromatic compounds also provided a 

satisfactory prediction of solubility data.  

Keywords: Aromatic hydrocarbons, Regular Solution Theory, Solid solubility, Suberitical water, Thermodynamic modeling, 
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1. INTRODUCTION  

 Hot pressurized water (HPW), also called subcritical 
water, is gaining increasing applications as a green extraction 
solvent. Depending on temperature, it can be very effective 
to selectively extract a variety of polar or non-polar organic 
compounds from many different matrices. Some practical 
applications involve the extraction of alkyl benzenes  
from industrial soil and petroleum waste sludge [1], 
polychlorinated biphenyls from soil and river sediments [2], 
therapeutic substances from different plant matrices [3-5], 
natural antioxidants from aromatic plants [6, 7], etc. Recent 
reviews presented numerous applications of subcritical water 
extraction to recover high added value substances from 
natural matter [8, 9].  

 The main feature concerned with the extraction of 
hydrophobic organic compounds using water is the decrease 
of water polarity (measured by its dielectric constant) with 
increasing temperature. Thus, raising temperature with 
enough pressure to maintain water in the liquid state has a 
dramatic effect on the solubility of non-polar compounds. 
Proper representation of the solute + subcritical water phase 
behavior is particularly important, in order to select the 
optimum extraction temperature.  

 In recent years, many efforts have been made to develop 
semi-empirical approaches [10-13] to correlate the solubility  
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of solids in HPW, based on the use of solute and solvent 
(water) physical properties. For example, Miller et al. [10] 
developed a simple equation to relate the effect of increasing 
temperature on the solubility of polycyclic aromatic 
hydrocarbons (PAHs) in liquid water at high temperatures. 
The authors used a single parameter, i.e. the solubility of the 
solute at ambient temperature, to estimate its solubility at 
higher temperatures. Del Valle et al. [12] demonstrated the 
strong effect of other factors, such as critical temperature  
and acentric factor of the pure solute, and developed a  
new semi-empirical relationship for the solute solubility  
in HPW as a function of temperature. The results obtained 
demonstrated an excellent correlation of the solubility of 34 
different compounds including PAHs, pesticides, flavanoid-
type compounds and some essential oil components in HPW.  

 Another semi-empirical relationship, presented by 
Karásek et al. [13], uses the temperature dependency of pure 
water physical properties (internal pressure, cohesive energy 
density and dielectric constant) to correlate the activity 
coefficients of PAHs in water as a function of temperature. 
Pure solute physical properties (fusion enthalpy, triple-point 
temperature, subcooled liquid molar and solid molar 
volumes) are employed to calculate the ratio of the solute 
fugacity in the solid and subcooled liquid states, and high 
degree of correlation of the experimental solubility data was 
achieved [13].  

 The above mentioned approaches [10-13] are based on 
the use of physical properties of both the solute and water 
(i.e. no energy interactions between like or unlike molecules 
are considered) and are good correlative methods but are not 
predictive tools. 
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 Recently, Fornari et al. [14] investigated the capabilities 
of UNIFAC-based models to predict the solubility of PAHs 
in subcritical water. The original UNIFAC [15], its modified 
(Dortmund) version [16] and the (associative) A-UNIFAC 
model [17] were applied in the temperature range (298 to 
500) K. These models are based on the group contribution 
approach to take into account the energy interactions among 
molecules. Despite the fact that A-UNIFAC is specifically 
targeted to accounting for the association effects between 
molecules, the best prediction of solubility data was obtained 
with the modified Dortmund UNIFAC version. Hansen et al. 
[18] also emphasized the goodness of this UNIFAC version 
to predict the solubility of anthracene, fluoranthene and 
pyrene in polar solvents. 

 In this work, the predictive capabilities of the UNIFAC-
based models and approaches based on Regular Solution 
Theory (RST) [19] to represent the solubility of PHAs in 
subcritical water are compared. Furthermore, the group 
contribution procedure developed by Fedors [20] to calculate 
Hildebrand Solubility Parameter was compared with 
solubility predictions resulting from applying the Three 
Dimensional Hansen Solubility Parameter [21].  

 The Scatchard-Hildebrand theory has been effectively 
used as a screening tool in the case of athermal solutions (i.e. 
non-polar or slightly polar systems) to find out the best 
solvent for a given solute, usually at ambient temperature 
[19]. This theory is based on the presumption that dispersive 
interactions are the only kind of intermolecular forces in the 
mixture and thus, it is expected that predictions will not be 
satisfactory in the case of water + PAH systems. 
Nevertheless, it is also expected that predictions should 
improve with increasing temperature since water polarity 
decreases with temperature (i.e. the water + PAH mixture 
should better suit the regular solution concept at high 
temperature).  

 On the other side, Hansen Solubility Parameter theory 
appears to be more appropriate to represent solid solubility in 
HPW since the solubility parameter of a compound depends 
on the contribution of not only dispersive, but also polar and 
hydrogen bonding forces. This theory has been traditionally 
used to study the interactions of polymeric and biological 
compounds with a variety of solvents. Provided the 
interactions of a given compound with a range of chemicals 
are known then it is possible to plot Hansen spheres that 
depict the miscibility range of the compound under study 
[22]. 

2. THERMODYNAMIC FRAMEWORK 

 The fundamental equi-fugacity equilibrium condition for 
liquid water (1) and a pure solid solute (2) is: 

f2
S
= f2

L
 (1) 

where f2
S

 is the fugacity of the solute in the solid phase and 

f2
L

 is the fugacity of the solute in the liquid water phase. If 

the solid phase is a pure compound, then the fugacity of the 

pure solid solute f2
S

 equals its fugacity in the solvent, 

assuming complete immiscibility with the solvent in the 

solid state.  

 The solute fugacity in the liquid phase can be referred to 
the fugacity of the pure solute in liquid state f2

o
: 

f2
L
= 2x2 f2

o  (2) 

where 2  is the activity coefficient of the solute in the liquid 

phase, x2  is its molar fraction (solubility) and f2
o
 is the 

liquid-phase standard state fugacity that typically is taken as 

the pure-liquid fugacity at the system temperature and at 

pure-liquid vapor pressure, with the corresponding 

corrections for pure-fluid vapor-phase non-ideality and for 

the effect of total pressure. 

 Replacing Eq. (2) in Eq. (1) the following relation for the 
solubility is obtained: 

ln x2 = ln( f2
S / f2

o ) ln 2  (3) 

 When the mixture temperature is lower than the solute 

triple point temperature, f2
o
 stands for the pure solute in a 

hypothetical liquid state. Additionally, for most substances, 

there is little difference between the triple point temperature 

and the normal melting temperature. Thus, the ratio 

f2
S / f2

o can be calculated as follows: 

ln( f2
S / f2

o ) =
Hm2

RTm2

Tm2
T

1

+
Cp2

R

Tm2
T

1 + ln
T

Tm2

V2
Liq V2

S

RT
Psat

P

dP

 (4) 

where Tm2 and Hm2
are, respectively, the solute normal 

melting temperature and enthalpy of fusion, and Cp2  is the 

difference between the heat capacity of the pure liquid and 

solid solute. The first term on the right-hand side of Eq. (4) 

is the dominant; the second term is often considered as being 

small, as the opposite signs of the enthalpic and entropic 

correction lead to near cancellation, especially if the mixture 

temperature and the solute melting temperature are not far 

apart. Finally, the last term of Eq. (4), which takes into 

account the effect of pressure on the solute fugacity, is 

significant only at very high pressures since the difference 

between the solute molar volume in the liquid and solid 

states is negligible.  

 Introducing the above standard simplifications in Eq. (4): 

ln( f2
S / f2

o ) =
Hm2

RTm2

Tm2
T

1  (5) 

and provided the solute-water mixture is assumed to be ideal 

( 2 = 1 ), allows obtaining the following expression for the 

ideal solubility: 

ln x2
id
=

Hm2

RTm2

Tm2
T

1             (6) 

 Thus, according to Eq. (6), the ideal solute solubility 
depends only on its melting properties and on the system 
temperature.  

 Fig. (1) shows a comparison between the experimental 

solubility of several PAHs at T 0 = 298 K, with the ideal 
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solubility predicted by Eq. (6). The melting properties of the 

pure solutes were obtained from the literature and are given 

in Table 1, together with the references for the source of the 

experimental data. As expected, there are considerable 

differences between the experimental solubility and the 

values calculated according to Eq. (6), since water + PAH 

mixtures are strongly non-ideal solutions.  

 Taking into account Eq. (6), Eq. (3) can be re-written as 
follows: 

ln x2 = ln x2
id ln 2             (7) 

 In this work, the solute activity coefficient in the liquid 
phase, which quantifies the deviation from the ideal 
contribution term, is calculated using (i) the RST-based 
models and (ii) UNIFAC-based group contribution methods.  

3. RESULTS AND DISCUSSION  

 According to the Schatchard-Hildebrand RST, the 
solubility ( x2 ) of a solid solute in a liquid is given by [19]: 

ln 2 =
V2
RT 1

2 ( 1 2 )
2

            (8) 

where V2  is the solute molar volume in a hypothetical liquid 

state (usually the melting temperature of the solid solute is 

higher than the mixture temperature), V1 is the molar volume 

of the liquid solvent (water), 1 = (x1V1 ) / (x1V1 + x2V2 )  is 

the volume fraction of water, and 1  and 2  are, 

respectively, the water and solute solubility parameter, 

defined by: 

i =
Ui

Vi

1/2

                i = 1, 2   (9) 

where Ui  is the vaporization energy and Vi is the liquid 

molar volume.  

 Fig. (1) shows a comparison between the experimental 

solubility of different PHAs at T 0
=  298 K and the values 

calculated using Eqs. (6-8). The value for the water solubility 

parameter 
1

0
=  47.9 (MPa)

1/2
 was calculated from Eq. (9) 

Fig. (1). Solubility of PAHs in subcritical water at 298 K: ( ) 

experimental data [8, 10, 11]; (+) ideal solubility (Eq. 6); ( ) RST-

Fedors; ( ) RST-Hansen; ( ) original UNIFAC model. 

Table 1. Melting Properties of the Solid Solute Compounds Considered in this Work 

 Molecular Weight Tm2
a
 (K) Hm2

 (J mol
-1

) Ref. for Exp. Solubility Data 

Naphthalene 128.17 353 19000a [11] 

Anthracene 178.23 490 29000a [10] 

Perylene 252.31 547 32580a [10] 

Benzo-pyrene 252.31 454 17320a [11] 

Pyrene 202.25 424 17360a [10] 

Chrysene 228.29 528 26150a [10] 

Carbazole 167.21 515 27200a [10] 

Alizarin 240.21 562-566 29272b [8] 

Chlorothalonil 265.91 523-524 22882b [11] 

Propazine 229.71 485-489 24714b [11] 

Atrazine 215.68 446-450 21433b [8] 

Simazine 201.70 498-500 35415b [8] 

a http://webbook.nist.gov/chemistry/ [23] 
b Estimated in this work applying the method of Jain et al. [24].  
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using experimental enthalpy ( H
1

0
= 41.4 kJ·mol

-1
) and 

molar liquid volume data (V
1

0
= 18.1 cm

3
mol

-1
). The 

solubility parameter and the hypothetical liquid volume of 

each of the solutes were estimated following the group 

contribution method proposed by Fedors [20] and are given 

in Table 2. Fig. (1) also displays the solubility values 

obtained when 2  in Eq. (7) is calculated using the original 

UNIFAC group contribution approach.  

 

Table 2. Solubility Parameter and Liquid Volume of Polycyclic 

Aromatic Hydrocarbons Estimated Using Fedors’ 

Group Contribution Approach (T 0
 = 298 K) 

 
2

0
 (MPa)

1/2
 V2

0
 cm

3
/mol 

Naphthalene 21.3 118.0 

Anthracene 22.7 145.6 

Perylene 24.8 176.0 

Benzo-pyrene 24.8 176.0 

Pyrene 25.2 148.4 

Chrysene 23.6 173.2 

 

 According to the results shown on Fig. (1), the original 

UNIFAC model can provide, at T 0
= 298 K, a much better 

and a completely acceptable estimation of the solubility of 

PHAs in water in comparison with the RST-Fedors model. 

Nevertheless, one possible source for the considerable 

differences between the experimental and calculated 

solubility values obtained with the RST could be the use of 

non-adequate values for V2
0

 and 
2

0
 which were estimated 

applying the group contribution approach of Fedors [20]. 

Thus, particular attention was paid to the accuracy with 

which this method predicts PHAs solubility parameters and 

liquid molar volumes. In order to analyze that, Eq. (9) was 

employed to calculate the solubility parameter of two PHAs, 

namely naphthalene and anthracene, for which the required 

physical properties are known (Table 3). In Eq. (9) the term 

Ui  is also known as the cohesive energy term and is equal 

to H vap RT . The enthalpy of vaporization was estimated 

as the difference between the sublimation and fusion 

enthalpies (see Table 3). An accurate value of, respectively, 

naphthalene and anthracene molar volume in the 

(hypothetical) liquid state at 298 K was calculated by 

correlating experimental liquid molar volumes (see Fig. 2). 

An expansion coefficient 2 = 0.011 K
-1

 was obtained for 

both PHAs, and extrapolation of the linear correlation to 298 

K provided values for naphthalene and anthracene liquid 

volume (V2
0

) of, respectively, 122.4 cm
3

mol
-1

 and 151.2 

cm
3

mol
-1

. These values are in good agreement with the 

values given in Table 2, being in both cases around 4% 

higher than those predicted using Fedors’ method.  

 Taking into account Eq. (9) the solubility parameter of 
naphthalene and anthracene were calculated (Table 3). The 
results obtained are also in an excellent agreement with 
Fedors’ approach (Table 2). Finally, the V2

0  and 2
0  

parameters of Table 3 were applied to calculate naphthalene 
and anthracene solubility in water at 298 K. As can be 
observed, the solubility predictions are quite similar (and not 
better) than those obtained using RST-Fedors approach (see 
Table 3). Thus, it can be concluded with a high degree of 
certainty that the deficiency of the RST approach (Fig. 1) 
cannot be attributed to the use of Fedors’ method to estimate 
the PAHs parameters.  

 In order to investigate the capability of the RST approach 
to predict the variation of PAH solubility with temperature, 
the following procedure was adopted. 

 

Table 3. Physical Properties of Naphthalene and Anthracene Employed in the Calculation their Solubility Parameter by Means of 

Eq. (9) 

  Naphthalene Anthracene Ref. 

Melting temperature (Tm) 353.2 490.0 [23] 

H 2
s

at Tm (kJ mol-1) 66.3 98.8 [23] 

H 2
f

at Tm (kJ mol-1) 18.6 28.8 [23] 

H 2
vap

at Tm (kJ mol-1) 47.7 70.0 H 2
vap = H 2

s - H 2
f  

V2
0

 (cm3 mol-1) 122.4 151.2  

2

0
 (MPa1/2) 19.2 21.1  

Comparison of solubility calculation with experimental data 

x2 (experimental solubility, mole fraction) 4.6·10-6 8.1·10-9 [10, 11] 

x2 (V2
0

and
2

0
from Fedors method) 7.0·10-16 6.7·10-19  

x2 (V2
0

and
2

0
from this table) 4.0·10-17 2.5·10-19  
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 On one hand, the temperature dependence deduced for 
naphthalene and anthracene liquid molar volume, i.e.: 

V2 = V2
0 1+ (T T 0 )           (10) 

was applied to establish the temperature dependence for the 
PAHs solubility parameter as proposed by Fedors [20]: 

2 = 2
0 (V2

0 /V2 )
1.13

 (11) 

where 
2

0
 is Fedors’ solubility parameter at 298 K. For  

the sake of comparison, Eqs. (10) and (11) were applied to 

calculate anthracene solubility parameter at its triple point, 

which resulted to be 18.2 MPa
1/2

. Again, this prediction is in 

a very good agreement with the experimental value of 18.9 

MPa
1/2

 reported by the DIPPR database [27]. 

 On the other hand, the variation of water solubility 

parameter ( 1 ) with temperature was considered by applying 

Eq. (9) and using water steam tables to calculate U1 and 

V1 as a function of temperature. 

 Considering the temperature dependence of 1  and 2 as 

explained above, the solubility of naphthalene and 

anthracene were calculated using the RST-Fedors model and 

were compared with the experimental data (see Fig. 3). As 

expected, the RST-Fedors predictions greatly improve with 

increasing temperature since water becomes less polar and 

the PAH + water mixture becomes more similar to a regular 

solution.  

 Fig. (3) also shows a comparison between the 
experimental PAHs solubility in water and the values 
predicted using the original and modified (Dortmund) 
UNIFAC models to estimate the activity coefficient. 
Definitely, the UNIFAC-based models provide better 
predictions than those obtained with the RST-Fedors model, 
although the deviations between experimental values and 
UNIFAC predictions increase with temperature. This effect 
should be attributed to the fact that the UNIFAC energy 
interaction parameters have been obtained correlating 
experimental phase equilibrium data which normally 
contains few high molecular weight compounds and high 
temperature data points. 

 Table 4 shows the average absolute deviations (AAD%): 

AAD% =
100

Nexp

ln x2
exp ln x2

cal

ln x2
exp

i=1

Nexp

        (12) 

Fig. (2). Experimental ( ) naphthalene [25] and ( ) anthracene 

[26] liquid molar volume as a function of temperature. Solid line: 

lineal correlation given by Eq. (10). 

 

Fig. (3). Solubility of (a) naphthalene and (b) anthracene in subcritical water as a function of temperature: ( , ) experimental data [10, 11]; 

(  ·  · ) RST-Fedors method; (- - - - -) original UNIFAC; ( ) modified UNIFAC. 
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obtained applying the RST-Fedors approach and both the 
original and modified UNIFAC models. For all PAH + water 
systems studied, the predictions obtained with the UNIFAC-
based models are significantly better than the results 
obtained with the RST-Fedors approach. Further, the AAD% 
values obtained with the modified UNIFAC model are 
considerably lower than those obtained with its original 
version (see Table 4 and Fig. 3).  

 An extended Hansen method, incorporating Hansen 
solubility parameters into a modified Schatchard-Hildebrand 
equation to calculate the solute activity coefficient [28], was 
also applied to predict the solubility of PHAs in water in 
order to ascertain the capability of the RST-based models. 
The solute activity coefficient is given by: 

ln 2 =
V2
RT d ,2 d ,1( )

2
+ 0.25 p,2 p,1( )

2
+ 0.25 h,2 h,1( )

2

+1
V2
V1

+ ln
V2
V1

    (13) 

where d, p, and h are the dispersion, polar, and hydrogen-
bonding Hansen solubility parameters, respectively.  

 To estimate the dispersion, polar and hydrogen-bonding 

contribution to the PAHs solubility parameters, the group 

contribution approach of Stefanis and Panayiotou [29] was 

employed, while the water contributions ( d,1 = 15.5, p,1 = 

16.0 and h,1 = 42.3) were taken from the literature [30]. 

Table 5 shows the corresponding contributions and the total 

Hansen solubility parameter (
HANSEN = d

2
+ p

2
+ h

2 ) obtained. 

The table also displays a comparison of HANSEN with the 

solubility parameters calculated using Fedors’ group 

contribution approach. The predicted PAHs’ solubility in 

water at 298 K are depicted in Fig. (1) and compared with 

the rest of the results obtained in this work. As can be 

observed, the solubilities predicted by the RST-Hansen 

approach are significantly better than those predicted using 

RST-Fedors approach. The average absolute deviations 

obtained were, respectively, 109.1% for RST-Fedors method 

and 41.3% in the case of RST-Hansen approach. 

Furthermore, it should be pointed out that when the Hansen 

solubility parameters (Table 5) were used to calculate the 

PAHs activity coefficients (Eq. 8), predictions are similar 

(AAD = 104.4%) to those obtained with the RST-Fedors 

method. That is, the considerably improved predictions 

achieved with the RST-Hansen method is a consequence of 

the application of the modified Schatchard-Hildebrand 

equation (Eq. 13). 

 Despite the improvement obtained with the RST-Hansen 
approach, calculations with UNIFAC-based models always 

Table 4. Absolute Average Deviation (AAD%) Obtained with the Original and Modified UNIFAC Models and with the RST-

Fedors Approach in the Prediction of PAH Solubility in Subcritical Water in the Temperature Range (298 to 493) K 

System: Water + Original UNIFAC Modified UNIFAC RST-Fedors Model 

Naphthalene 7.9 7.6 151.3 

Anthracene 23.6 14.7 68.3 

Perylene 29.2 21.8 33.5 

Benzo-pyrene 43.4 20.9 30.2 

Pyrene 13.9 12.9 58.2 

Chrysene 34.2 22.2 43.7 

Total AAD% 26.5 17.3 61.9 

Table 5. Comparison Between the Values of the Solubility Parameters Employed in the RST-Fedors and RST-Hansen Approaches 

to Predict PAHs Solubility in Water at 298 K 

 d  p h HANSEN 
a 

FEDORS 

Naphthalene 19.90 4.35 4.55 20.87 21.3 

Anthracene 21.81 4.53 3.71 22.58 22.7 

Perylene 25.41 5.94 2.88 26.25 24.8 

Benzo-pyrene 25.41 5.94 2.88 26.25 24.8 

Pyrene 23.50 5.76 3.72 24.48 25.2 

Chrysene 23.72 4.70 2.86 24.35 23.6 

a 
HANSEN = d

2
+ p

2
+ h

2  
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resulted in much better predictions. For the sake of 
illustration, the AAD in the solubility predictions applying 
the modified UNIFAC model (Fig. 1) is 10.1%. 

 Modified UNIFAC was also applied in even wider 
predictive mode to estimate the solubility of other solid 
compounds, e.g. carbazole, chlorothalonil and alizarin, 
which comprise additional functional groups to the AC and 
ACH aromatic groups. Values for the enthalpy of fusion of 
these compounds were not available in the literature and 
were estimated in this work applying the method of Jain  
et al. [24] (see Table 1). The AAD obtained in the prediction 
were (24.1, 21.0 and 7.5) %, respectively, for carbazole, 
chlorothalonil and alizarin, considering a total of 15 data 
points and covering a temperature range from (298 to 493) 
K.  

 Due to the lack of adequate groups in the modified 
UNIFAC table to represent the chemical structure of 
pesticides (propazine, atrazine and simazine) a new chloro-
triazine (CN)3Cl group was defined (see Fig. 4). Its volume 
and area parameters were calculated following Bondi [31] 
and the values obtained were Rw = 2.7429 and Qw = 1.4200. 
The melting temperatures for these pesticide compounds 
were obtained from the literature [23] and the corresponding 
fusion enthalpies were estimated according to the method of 
Jain et al. [24]. By fitting binary interaction parameters 
between the n (CN)3Cl group and m H2O (anm = 970 K, amn = 
160 K, bnm = - 1.24, bmn = 0.0 and cnm = -0.003 K

-1
, cmn = 0.0) 

a satisfactory correlation of the pesticides solubility in water 
was achieved (see Fig. 5) with an AAD of 5.3 %. 

CONCLUSIONS 

 This work explores the capabilities of several well-
known thermodynamic models to predict the solubility of 
polycyclic aromatic hydrocarbons in hot pressurized water. 
As expected, the high nonideality of the PAH + water 
mixture - not only due to water polarity but also because of 
their size-asymmetry - resulted in poor predictive capability 
of models based on the Regular Solution Theory. That is, 
both presumptions embedded in the RST concept, i.e. 
dispersive interactions as the only kind of intermolecular 
interactions the zero excess volume, resulted in poor 
predictions. On the other hand the modified (Dortmund) 
UNIFAC model, which comprises a combinatorial 
contribution suitable for compounds very different in size 
and a set of temperature-dependent dispersive interaction 
parameters, provided satisfactory predictions, in a wide 
range of temperatures, by applying the extensive and well-
known liquid-vapor parameter table.  
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