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SUMMARY 

 

Vibriosis is one of the main causes of mortality in all stages of fish. In larvae, further improvements on the control 

and knowledge of bacterial diseases require the development of models for experimental infections. A reproducible 

model for in vivo infections of first feeding turbot (Scophthalmus maximus) larvae with the pathogen Vibrio 

(Listonella) anguillarum is described. Experimental challenges were carried out under hatchery conditions 

considering different ways of delivery of V. (Listonella) anguillarum strain 90-11-287 serotype O1 to turbot larvae: 

via rotifers (orally) and via water of the larval rearing tanks (bath). The effect of the supernatant of the bacteria 

culture was also considered and discussed. The model proposed is based on the incorporation of the bacteria into 

previously enriched rotifers and the delivery to the larvae during the rotifer feeding period. The effect of infections 

was already evident 24-72 h after the first challenged day. Final mortalities (day 8-14) in infected larvae were 56-

72% with respect to unchallenged larvae. Mortalities achieved by applying the protocol of infection are reliable, 

reproducible and adequate for experimental purposes. The model of infection via rotifers proposed in this study is a 

useful tool for experimental purposes in the larval rearing of marine fish. 
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INTRODUCTION 

During years, efforts have been made on the reduction of diseases caused by Vibrio. This genus has been associated 

with severe disease in fish culture (Egidius, 1987; Toranzo et al., 1987, 1990, 1993; Austin et al., 1995; Diggles et 

al., 2000) and Vibrio anguillarum has been often reported as the cause of severe infections in cultured marine fish. 

Turbot (Scophthalmus maximus L.) is one of the species particularly affected by V. anguillarum (Egidius, 1987; 

Toranzo et al., 1987; 1993, 1994; Toranzo and Barja, 1990; Myhr et al., 1991; Chair et al., 1994; Larsen et al., 1994; 

Grisez et al., 1996). 

Several authors suggested two ways of entry for Vibrio in fish: via live food (Masumura et al., 1989; Muroga et al., 

1987, 1990; Chair et al., 1994; Grisez et al., 1996) or via skin, gills and anus (Chart and Munn, 1980; Baudin-

Laurencin and Germon, 1987; Kanno et al., 1989). 

Literature focussed on the development of models for experimental infections in fish larvae, particularly turbot, is 

very scarce (Chair et al., 1994; Munro et al., 1995; Grisez et al., 1996). Reliable experimental models for further 

studies with larvae on diseases caused by bacteria would be helpful in the assessment of the virulence of isolates and 

the evaluation of methods or treatments of prevention (Roque et al., 1998). 

The present paper describes for the first time a technique developed for reproducible experimental infections via 

rotifers with a strain of Vibrio anguillarum in standard conditions in the very early stages of turbot larvae (from first 

feeding up to day 8-14 posthatching). The effect of oral (via rotifers) and bath (via water of larval tanks) 

administrations of the bacteria during the rotifer feeding period is also discussed. 

 

MATHERIALS AND METHODS 

Bacterial culture conditions and growth 

Vibrio (Listonella) anguillarum strain 90-11-287 serovar O1 was isolated from rainbow trout (Oncorhynchus 

mykiss) in Denmark (Skov et al., 1995) and delivered by Prof. H. Birkbeck (Institute of Biomedical and Life 

Sciences, Glasgow, UK). Serovar O1 is the most important in adult turbot (Larsen et al., 1994) and may cause 

septicaemia in the larvae (Grisez et al., 1996). The virulence of this isolate by immersion (103-107 CFU ml-1) on 

non-feeding turbot larvae was previously reported by Hjelm et al. (2004).  

For long-term preservation, the strain was kept at -80°C in TSB (30 g l-1) with glucose (5 g l-1), skimmed milk (20 g 

l-1) and glycerol (40 g l-1). The bacterium was initially grown during 24 hours in 10 ml of marine broth (MB, Difco) 



on a rotary shaker at 200 rpm and 22oC. Then, an aliquot of 1 ml of the culture was added to a flask with 100 ml of 

MB, grown during 24 hours and sub-cultured twice under the same conditions. For the separation of the bacteria 

from supernatants, aliquots of the culture were centrifuged at 5000 rpm for 15 min, washed and re-suspended to the 

appropriate cell densities in sterile sea water. Growth was monitored both by measurement of the optical density 

(700 nm) and by serial dilution and plate counting. 

Turbot larval rearing 

Newly hatched larvae (day 0) of turbot were obtained from Stolt Sea Farm (Merexo, Galicia, Spain). Two days old 

larvae were transferred (30-35 larvae l-1) to 60 l tanks. Tanks were previously disinfected with 1% Dismozon Pur 

(Bode). The temperature was progressively raised from 15 to 18°C during the following 3 days and the light 

(continuous day light provided by 30 w fluorescent lamps) intensity at the surface of the larval tanks was adjusted to 

3.5 µE sec-1 m-2. The larvae were fed on enriched rotifers from day 3 until day 10. The density of rotifers was daily 

adjusted to 3-5 rotifers ml-1. The water of the rearing tanks was partially (30-40%) changed every 2 days from first 

feeding with a subsequent addition of 2.5 l of I. galbana culture. The bottom of the tanks was siphoned daily to 

remove and count dead larvae. Samples of larvae were also taken at the end of the experiments for dry weight 

analyses. Dry weights were obtained after collecting 100 larvae on 150 µm mesh, washing with tap water and drying 

at 60°C for 48 h. All the tanks were conducted by duplicate. 

Challenge P: Pathogenicity of V. anguillarum strain assayed in juvenile turbot 

The pathogenicity of V. anguillarum strain and the effect of bacteria culture supernatant were assayed in turbot 

juveniles (Challenge P). Turbot juveniles (5-8 g), provided from Stolt Sea Farm (Merexo, Galicia, Northwest Spain), 

were maintained at 17ºC in sea water under aeration and fed daily on a commercial diet. After a week of 

acclimatizing, four groups of 10 juveniles each were distributed into four 60 l tanks (10 juveniles per tank) and 

intraperitonealy injected with 0.1 ml containing: 

Control: Ringer’s solution (Ringer’s tablets, Merck). 

Low: 104 CFU of V. anguillarum without supernatant (bacteria cultures centrifuged and washed) 

High: 105 CFU of V. anguillarum without supernatant (bacteria cultures centrifuged and washed) 

High+: 105 CFU of V. anguillarum with supernatant (cells not washed nor centrifuged) 

Turbot juveniles were maintained and fed on an inert diet for 11 days. Mortalities were recorded daily in each tank 

and were considered to be due to the inoculated V. anguillarum if the bacterium was recovered in pure culture from 



dead fish. Relative percent infection (RPI) was calculated as a ratio of percentage of mortalities in the infected 

groups to the percentage mortalities in the control group (1-% infected mortality/% control mortality x 100) 

(Amend, 1981). 

Challenge R: Incorporation of V. anguillarum into rotifers 

Challenge R1: Long term incorporation (axenic rotifers). Bacteria-free Isochrysis galbana and rotifer cultures were 

performed at 23°C during 6 days using a modification of the chemostat system described by Scott (1980). 

Microalgae and rotifers were inoculated in 5 l flasks (1 flask with 3.5 X 105 cells and 4 flasks with 2 rotifers ml-1 

respectively) containing sterile sea water. Another flask containing sterile Walne media was used to supply nutrients 

to the microalgae. The flasks were connected to a system composed of a peristaltic pump (Ismatec IPN-8) and two-

stop silicone tubings (Ismatec, SC0102) which permitted a daily supply of Walne media to the microalgae and 

microalgae to rotifers. Two flasks of the rotifer cultures were inoculated once with V. anguillarum (107 CFU ml-1) 

and the other two flasks remained as controls. Samples of rotifers were daily taken for rotifer growth calculations. 

Challenge R2: Long term incorporation (non-axenic rotifers). Rotifers were filtered and washed, and then bathed 

(400 rotifers ml-1) in 5 l of sea water containing V. anguillarum (108 CFU ml-1) for 3 hours at 23ºC. Subsequently, 5 

l of I. galbana culture (3.5 X 106 cells ml-1) were added daily and the rotifers were enriched for 3 days. Samples of 

rotifers and water were taken for microbiological analysis. 

Challenge R3: Short-term incorporation (non-axenic rotifers). Incubation of V. anguillarum with rotifers was 

assayed by enriching the rotifers (200 rotifers ml-1) on Isochrysis for 24 h in 10 l tanks at 23°C. Following the 

enrichment, the rotifers were washed, filtered and transferred (200 rotifers ml-1) into 5 l buckets containing sea water 

with V. anguillarum (108 CFU ml-1). The rotifers were maintained in this bacterial suspension for 3 hours and then 

filtered and rinsed again. Samples of rotifers were taken at the start and at the end of the enrichment on I. galbana 

and at the end of the maintenance in the bacterial suspension. 

In all incubation challenges, the bacteria were added together with the supernatant of the culture (cells not washed 

nor centrifuged). 

Challenge S: Effect of the supernatant of V. anguillarum  



This challenge was conducted in order to ascertain the effect on the larvae of the addition of supernatant of V. 

anguillarum cultures in the enrichment of rotifers. Turbot larvae were fed on rotifers according to the following 

treatments: 

Control: Rotifers enriched on Isochrysis for 24 h. 

R: At days 3, 5 and 7, the rotifers were previously enriched on Isochrysis for 24 h and subsequently maintained 

for 3 hours in two 5 l buckets (18°C; 200 rotifers ml-1) with addition of 108 CFU ml-1 of V. anguillarum 

without culture supernatant. The other days, the larvae were fed as for controls. 

R+: Rotifers as for treatment R but with addition of not washed (with supernatant) V. anguillarum. The volume 

of bacteria culture supernatant added was to 175 ml. 

Challenge L: Experimental infections of turbot larvae 

Several challenges (L1, L2, L3a, L3b and L3c) were assayed for testing different ways of delivery of V. anguillarum 

(Table 1). All the tanks were conducted by duplicate. The following treatments were applied: 

Control: Turbot larvae were reared as described previously in 60 l tanks. The larvae were fed on rotifers enriched 

on I. galbana for 24 h (Rotifer C). 

W: Supernatant-free V. anguillarum were added (106 CFU ml-1) to the water of the larval tanks at larval first 

feeding. 

R+: The larvae were fed on rotifers previously enriched on I. galbana for 24 h and then bathed in a suspension of 

V. anguillarum (108 CFU ml-1) with supernatant for 3 hours (Rotifer R+). 

R+W+: The larvae were fed on Rotifers R+, and not washed V. anguillarum (107 CFU ml-1) was delivered to the 

water of the larval tanks. 

Microbiological methods 

Samples from larvae, rotifers and water were taken at different time intervals (Table 4)). Ten larvae or 400 rotifers 

were separated using a 250 µm or 30 µm Nylon mesh, respectively. Larvae were anaesthetised with 3-aminobenzoic 

acid ethyl ester (MS22, Sigma). Larvae and rotifer were washed with sterile sea water and mashed. Water and 

homogenized larvae or rotifer samples were serially diluted in sterile sea water, plated into Marine Agar (MA, 

Difco) and incubated for 3 days at 20ºC in the dark. Plates with 30 to 300 colonies were counted. For Vibrio 

identification, appropriate dilutions were replica-plated from MA onto TCBS plates (Scharlau), incubated one day at 

20ºC and colonies were counted. This replica-plated method avoided the underestimation of Vibrio counts, observed 



in direct counting on TCBS (data not shown). Colonies of Vibrio anguillarum and other Vibrio strains were 

recognized morphologically. V. anguillarum was identified using the agglutination test MONO-VA (Bionor, 

Norway). The later were carried out at the University of Glasgow by Dr. T.H. Birkbeck and Dr. H. Duncan. 

Numerical methods 

Fitting of data and parametric estimations calculated from the results were carried out by minimisation of the sum of 

quadratic differences between observed and model-predicted values, using the non linear least-squares (quasi-

Newton) method provided by the macro ‘Solver’ of the Microsoft Excel XP spreadsheet. Statistica 6.0 (StatSoft, 

Inc. 2001) was used to demonstrate the significance of the parameters estimated by the adjustment of the 

experimental values to the proposed mathematical models. The two statisticians (parameters) corresponding to the 

logistic model used (1) were: K (maximum mortality) and rm (maximum specific mortality rate). 

Statistical analyses 

Differences in final survivals and weights of larval challenges were analysed using one-way analysis of variance 

(ANOVA) and Student-Newman-Keuls multiple range test at 5% level of significance. Data of survivals were 

previously transformed as arc sin (square root). 

 

RESULTS 

Challenge P: Pathogenicity of V. anguillarum strain 

Infections of turbot juveniles with Vibrio and supernatant (treatment High+) resulted in a huge and sudden mortality 

(60%) after 3 days of treatment. Mortalities increased up to 70% afterwards and remained constant until day 11. 

Dead fish showed haemorrhagic lesions on the skin and at the base of the fins. Pathogenicity of the same doses of 

Vibrio (105 CFU) but washed (treatment High) was smaller (30% mortality at day 11) and delayed. Finally in 

treatment Low, inoculations of washed Vibrio at the lowest dose (104 CFU) revealed a lack of pathogenic effect in 

juveniles throughout the experimental period. As for controls, all the animals were alive at day 11. The relative 

percent infection (RPI) at day 11 were 0, 30 and 70% for groups Low, High and High+, respectively. 

Challenge R: Incorporation of Vibrio anguillarum into rotifers 

Long term maintenance of rotifers in the presence of high doses of V. anguillarum (107-108 CFU ml-1; challenges R1 

and R2) resulted in a progressive mortality of the rotifers after 24 h. The initial numbers of rotifers were almost 



constant during the first day, but total numbers decreased to 40-60% in the following day. By day 3, only 10 and 

50% of rotifers remained alive in challenges R1 and R2, respectively. 

In Challenge R1 (initial axenic rotifers), bacteria numbers in rotifers were only analysed at day 3. By then, the level 

of V. anguillarum per rotifer was 6 x 105 CFU. In the water, V. anguillarum was able to maintain the initial levels 

for at least 3 days. 

In Challenge R2 (non-axenic rotifers), V. anguillarum was the dominant Vibrio in water at the beginning of the 

experiment and only one strain of Vibrio (Vibrio 2) was identified in rotifers. This strain was also present in water 

before V. anguillarum addition. V. anguillarum could only be identified in rotifers in samples taken 3 h after the 

beginning of the challenge. At this moment, this bacterium accounted for 70% and 95% of total Vibrio in water and 

rotifers, respectively. Another strain, Vibrio 3, accounted for the remaining percentage. V. anguillarum could not be 

identified, both in water and in rotifers, at 21 and 45 hours. By then, the dominance corresponded to Vibrio 2 and 3. 

V. anguillarum, Vibrio 2 and Vibrio 3 were differentiated morphologically when grown in TCBS. 

In challenge, R3, short-term incorporation of non-washed V. anguillarum in rotifers R+ was successful without 

rotifer mortality. V. anguillarum reached a level of 2 x 103 CFU rotifer-1, which corresponded to 99 and 61% of total 

Vibrio and total bacteria, respectively. Total numbers of bacteria in rotifers R+ was 2.6-folds higher than in rotifers 

enriched only on Isochrysis (Rotifer Control). 

Challenge S: Effect of the supernatant of V. anguillarum 

Thee lowest larval survival (35±2 % at day 10) was achieved when the larvae were fed on rotifers submitted to V. 

anguillarum with supernatant (treatment R+) (Fig. 1) (Table 2). Higher survivals (58±3) were obtained when V. 

anguillarum were delivered washed to rotifers (treatment R). Dry weights were also consistent with survivals. The 

use of V. anguillarum with supernatant resulted in lower growth. 

The microbiological analysis of water at day 9 posthatching showed similar levels of V. anguillarum in treatments R 

and R+. However, in larvae V. anguillarum was only found in tanks R+, where the highest mortality was recorded 

(Fig. 2). 

Challenge L: Experimental infections of turbot larvae 

In challenge L1, direct delivery of washed Vibrio to the water of the larval tanks conducted to high mortalities 

(Table 3) but with a high standard deviation of the mean (58 % ± 47) due to a crash in one of the tanks during the 

last night of the experiment. In the other tank, mortality was the same than in controls (about 20%). 



When the larvae received V. anguillarum with culture supernatant both via rotifers and via water of larval tanks 

(treatment R+W+ in challenge L2), mortality (Table 3) increased enormously (94 % ± 2 at day 9) as compared to 

controls or to larvae fed on infected rotifers only (treatment R+). 

The levels of V. anguillarum in water and turbot larvae are given in Table 4. In challenge L1, after a single addition 

of V. anguillarum to the water (106 CFU ml-1) at day 3 posthatching, the level of the pathogen in the water decreased 

continuously until its disappearance at day 7 posthatching. The numbers of total bacteria remained constant 

throughout the experiment (106 CFU ml-1). However, in challenge L2 the continuous addition of V. anguillarum 

both via rotifers and via water at days 3, 5 and 7, allowed the pathogen to maintain the level in water at 103 CFU ml-

1 at day 8 posthatching. In both challenges, V. anguillarum was found in larvae only at day 4 posthatching (101 CFU 

larva-1 in treatments W and R+W+ and 102 CFU larva-1 in treatment R+). 

Experimental infection model 

From the previous experiments, conditions for obtaining intermediate mortalities with low variability were 

established. Those conditions were: incorporation in rotifers of V. anguillarum with culture supernatant (treatment 

R+). Three challenges (L3a to L3c) were conducted under those conditions.  

Microbiological analysis in challenges L3a and L3b showed that there were no major differences between control 

tanks and treated tanks in the progress of the total bacteria and total Vibrio, both in water and in turbot larvae (data 

not shown). The levels of V. anguillarum in water and turbot larvae are given in Table 4. In water, the levels of V. 

anguillarum increased up to 3 x 103 CFU ml-1 until day 5 and remained constant thereafter. V. anguillarum was 

dominant among Vibrio but accounted for a low proportion of total bacteria. In larvae, V. anguillarum followed the 

pattern observed in water. However, the bacterium was not identified at day 5 in challenge L3b, probably due to the 

high amount of other Vibrio strains present in the samples which made difficult the isolation and identification of V. 

anguillarum. 

Although ages of larvae at the end of the experiments were different among challenges, mean final mortalities in 

challenged larvae were consistently higher than in unchallenged larvae, independently of the age of the larvae, 

accounting for 85-92%. These values represented 56-72% with respect to mortalities achieved in non-challenged 

larvae. Furthermore, final weights were also lower in challenged larvae although not statistically different from 

controls (Table 3). 



An overview on the effect of the model proposed is given in figure 3 with pooled data from challenges L2, L3a, L3b 

and L3c. The figure shows a linear relationship between the final survivals achieved in controls and in larvae 

challenged with V. anguillarum according to treatment R+. This relationship was found for both absolute and 

particularly relative to controls survivals. 

Mortality kinetic analysis 

Kinetics of larval mortalities presented sigmoid profiles with final asymptote at infinite time (Fig. 4). For the 

adjustment of these experimental data three different mathematical models were used: Gompertz, von Bertalanffy 

and logistic. The best correlation between expected and observed values (r=0·998-0·999) was found for the logistic 

model. Consequently, mortality kinetics of larvae were adjusted to a logistic model (Fig. 4): 

 trmbe
KM −+

=
1

 , where: (1) 

 M: mortality (percentage) of Scophthalmus maximus L. larvae. 

 K: maximum mortality (dimensions: M) 

 b: fitting parameter (dimensionless) 

 rm: maximum specific mortality rate (dimensions: t–1) 

 

For challenges L2, L3a, L3b and L3c, experimental means of unchallenged (C) and challenged (R+) larvae with 

their corresponding confidence intervals of the means (α=0·20; υ=3) and the asymptotic parameter or maximum 

mortality (K) are shown in figure 4. Patterns of accumulated mortalities obtained for the three challenges were very 

similar. A clear pathogenic effect of V. anguillarum was observed in larvae from 1-3 days after the first delivery of 

infected rotifers (days 5-7 posthatching) until the end of the experiments. In all cases, maximum mortalities and 

maximum specific mortality rates of challenged larvae (K(R+) and rm(R+), respectively) were higher than in 

controls  (K(C) and  rm(C), respectively).   

 

DISCUSSION 

Fish dead in the virulence challenge performed in turbot juveniles with V. anguillarum strain 90-11-287 serotype O1 

showed haemorrhagic lesions on the skin and at the base of the fins, similarly to the symptoms reported previously 

in flatfishes suffering vibriosis (Horne et al., 1977; Lupiani et al., 1989; Lee et al. 1991; Diggles et al., 2000). 



Abdominal swelling was not observed. It was found that mortalities were dependent on the level of the dose as well 

as on the administration or not of the supernatant of the bacterial culture in the intraperitoneal injection. The lack of 

supernatant and the use of low doses of bacteria resulted in a decrease of mortality. The test finished at day 11 post-

inoculation and it is possible that higher mortalities could be achieved with longer periods of experimentation. The 

virulence of V. anguillarum was evident, with a final mortality of 70% (day 11) in fish challenged with 106 CFU ml-

1 of the bacteria with culture supernatant. Hjelm et al. (2004) reported up to 80% mortality in non-feeding turbot 

larvae exposed by immersion to the same isolate at concentrations ranging from 103 to 107 CFU ml-1. Therefore, the 

test fulfilled the EU guidelines with mortality above 70% in at least 28 days (EU, 1993). 

Supernatants of bacteria cultures include ECPs (extra cellular products) from the bacteria. It is known that ECPs 

from some Vibrio are toxic to some cellular lines (TV-1 and TF) in turbot (Villamil et al., 2003) and that ECPs from 

V. pelagius are highly toxic to turbot post-larvae (0.4 g) (Villamil, 2002). Similarly, it has been reported that V. 

anguillarum ECPs cause severe fish mortalities in Japanese eels and rainbow trout (De la Cruz and Muroga, 1989; 

Santos et al., 1992). The effect of ECPs can also be dependent on the variability between V. anguillarum isolates. In 

our laboratory, previous infections carried out with addition of a different strain of V. anguillarum (DC11R2) (106 

CFU ml-1), supernatant- free, into larval tanks of turbot induced to 100% mortality at day 10 (unpub. data). The 

challenge performed to verify the effect of supernatant of V. anguillarum cultures in turbot larvae (Challenge S) 

seems to show an additive effect of bacteria and supernatant. However, it should be considered that, removing 

supernatant implies centrifuging and washing of bacteria. This could induce stress to the bacterium and a potential 

loss of pathogenicity. 

Data from challenge L1 suggest that the delivery of supernatant-free V. anguillarum to the water of the rearing tanks 

could be sufficient to induce high mortalities. However, the high standard deviation observed when V. anguillarum 

was added only to water (Table 3) suggest a less reliable model than oral delivery through rotifers. In our study, 

performed on very early stages of turbot larvae, the highest mortalities were achieved when V. anguillarum was 

delivered to the water and the larvae were fed on rotifers containing bacteria (Challenge L2). Anyway, incorporation 

in rotifer of V. anguillarum reproduced an infection pattern with intermediate mortalities. 

There are several hypotheses about the route of entry of V. anguillarum in fish. Oral delivery of the pathogen by live 

food (Artemia) has been reported to induce high mortalities in turbot post-larvae (Chair et al., 1994; Grisez et al., 

1996). Grisez et al. (1996) reconstructed the infection route followed by the bacteria in oral challenge with turbot. 



According to these authors, the bacteria, previously incorporated in Artemia nauplii, were released in the anterior 

part of the intestine. There, bacteria were transported through the intestinal epithelium by endocytosis and released 

in the lamina propia. Ultimately, bacteria were transported by the blood to the different organs. However, these 

results seem to be somewhat conflicting with those of Olsson et al. (1996) in oral and rectal challenges performed in 

turbot fingerlings. These authors proposed that Vibrio cells penetrate the intestinal mucus but epithelial cell 

penetration or endocytosis was not evident. Another hypothesis is that V. anguillarum enters into the fish through 

the skin, the gills or the anus (Chart and Munn, 1980; Baudin-Laurencin and Germon, 1987; Kanno et al., 1989). 

In post-larvae (0.2 g) of turbot experimentally infected by bathing with V. pelagius, Villamil et al. (2003) observed 

swelling and necrosis of gill secondary lamellae, sloughing of intestinal mucosa and necrosis of haematopoietic 

tissue in the kidney. These observations seem to be a combination of the two preceding theories. In our study, V. 

anguillarum cells were located in the epidermis and gut of the larvae, associated to rotifers but not to the intestinal 

epithelium (Ø. Bergh, pers. comm.). The larvae showed little signs of enteritis, but the epidermis was severely 

affected. In severely affected larvae, bacteria in blood vessels were found demonstrating septicaemia. 

It is possible that the mode of action could be dependent on the age/gut development of the fish. Our results seem to 

confirm that mortality in very young larvae was higher when the pathogen was added to the water rather than by oral 

challenge. Nevertheless, in culture conditions the usual way of entry of Vibrio in larval tanks is live prey (Verdonck 

et al., 1997). Several studies have shown that the intestinal microflora of larvae from first feeding is more dependent 

on the microflora of the live food ingested than on the bacteria present in the water. This fact has been reported for 

turbot (Munro et al., 1993; Blanch et al., 1997; Reitan et al., 1998), Atlantic halibut (Hippoglossus hippoglossus) 

(Bergh, 1995), and sea bass (Sparus aurata) (Grisez et al., 1997). It is likely that Vibrio cells could proliferate in the 

faeces (digested and non digested rotifers) of the larvae, as reported by Olsson et al. (1998) in adults. Subsequently, 

the bacteria would increase the load of Vibrio in the water and penetrate into the skin and gills. However, other 

effects of the pathogen on the larval gut must not be discarded. 

Appearance of V. anguillarum and other Vibrio in rotifer production tanks is not exceptional. From rotifer 

productions in two marine fish hatcheries (Greece and Spain), Verdonck et al. (1997) isolated 93 strains of Vibrio, 

from which 28 were V. anguillarum strains. Although presence of some strains of V. anguillarum coincided with 

mass mortalities in larvae, information on mortalities of rotifers in production tanks was not provided by the authors. 

However, it is known that crashes in rotifer cultures can be caused by changes in the microbiota (Hino, 1993). Yu et 



al. (1990) reported that a toxin produced by a V. alginolyticus strain reduced rotifer survivals. Similarly, in the 

present study, long-term maintenance of rotifers in suspensions of V. anguillarum (107-108 CFU ml-1) with 

supernatant leaded to a progressive decrease of rotifer population (Challenges R1 and R2). This implies that if we 

want to use rotifers as vectors to introduce V. anguillarum to a larvae culture, the incubation of the bacteria with 

rotifers must be performed in short periods of time. Apparently, 24 h seems to be safe for the rotifer B. plicatilis, 

achieving a level of V. anguillarum of about 103 CFU rotifer-1. However, small rotifers (B. calcyflorus) were not 

able to survive under such conditions (100% mortality). A bath of 3 h can be considered safe for the rotifers during 

the bio-encapsulation, assuring high bacterial load. It is noteworthy that we did not observe mortalities of infected 

rotifers at a short or medium term in the larval rearing tanks, even when supernatant of bacteria was also delivered 

to those tanks (treatment W+). This can be masked to some extent by the partial water renewals applied, the 

consumption of rotifers by the larvae and the daily restitution of rotifer densities. Anyway, the levels of prey in the 

tanks were always adjusted in excess in order to make food available to larvae.  

The microbiological study of the model showed no correlation between larval survival rates and the number of total 

bacteria present in the larval microflora. Based on the challenges L3a and L3b, at day 3 posthatching (just before 

first feeding), total bacteria level were low (about 102 CFU larva-1). A progressive increase occurred with 

development, reaching levels of 105 CFU larva-1 in 9-days old larvae. These results are in accordance with the 

findings of other authors (Munro et al., 1993; Ringø and Vadstein, 1998; Makridis et al., 2000; Huys et al., 2001). It 

is known that Vibrio population is seriously underestimated plating directly onto TCBS agar. The counts of Vibrio 

on TCBS are much lower than the proportion of Vibrio identified from isolates on marine agar (Munro et al., 1993). 

This problem was solved in this study using a replica-plating method from MA onto TCBS plates (unpub. data). 

Applying this method, it was observed in challenges L3a and L3b, that Vibrio species were the dominant bacteria in 

the larval microbiota both in challenged and unchallenged larvae. It is in agreement with the observations of Munro 

et al. (1993) and Blanch et al. (1997). In addition, high mortalities in challenged larvae (treatment R+) were found to 

occur about days 5-7, when the level of V. anguillarum in the larvae was noticeable. 

The parameters obtained from the adjustment of the pooled data from experiments L2, L3a, L3b and L3c to the 

proposed logistical model confirmed the effectiveness of the model for experimental infections with V. anguillarum 

in turbot larvae (Fig. 4). The value of the asymptote or maximum final mortality in larvae infected with Vibrio was 

higher (K(R+)=72.70%) than in controls (K(C)=41.57%). The same applies to specific mortality rates (rm (R+)=1.34 



and rm (C)=1.16 days-1, respectively). It is important to point out that despite the fact that the present study has been 

focussed on one serotype of V. anguillarum, the model of infection has also been successfully applied for 

experimental infections of turbot larvae with V. splendidus DMC-1 (H. Birkbeck, pers. comm.). 

Other authors have used axenic rotifers as a tool for oral challenges with pathogens in turbot larvae (Munro et al., 

1995). Our study is the first one in which first feeding turbot larvae were challenged with V. anguillarum under 

normal (non-axenic) hatchery conditions. The model proposed here for in vivo infections of turbot larvae with non-

washed V. anguillarum (bacteria + supernatant) through short-term incorporation in rotifers, is satisfactory for 

experimental purposes.  The delivery of rotifers infected with V. anguillarum reproduced a typical mortality pattern 

in larvae (Person le Ruyet, 1989). with final mortalities ranging from 56 and 72 % with respect to unchallenged 

larvae. This range is reasonable adequate since very high mortalities are not convenient to assure the viability of the 

experiments. However, the model can be modified according to the experimental needs. Delivery of the bacteria 

both into the water and rotifers would increase mortalities whereas a reduction in the number of deliveries of 

infected rotifers would increase survivals.  
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Table 1: Challenge L. Experimental conditions of the challenges performed for infection of turbot larvae with V. 
anguillarum. Control: No bacteria added. W: Vibrio added into the water of the larval tanks. W+: Vibrio and 
supernatant added into the water. R+: Rotifers bathed in Vibrio and supernatant. First feeding of larvae: day 3 post 
hatching. 
 

 Delivery of Vibrio anguillarum to turbot larvae 
Treatments  via rotifers  Days  via water  Days 

Challenge L1       
Control       
W     106 CFU ml-1 * 3 

Challenge L2       
Control       
R+   108 CFU ml-1 ** 3, 5, 7    
R+W+   108 CFU ml-1 ** 3, 5, 7     107 CFU ml-1 ** 3, 5, 7 

Challenge L3a-L3c       
Control       
R+   108 CFU ml-1 ** 4, 6, 8    

* Vibrio cells only; ** Vibrio cells and supernatant.  
 
 
 
 
 
 
 
 
 
Table 2: Challenge S - Survivals and final dry weights (µg larva-1) at day 10 in the challenge performed to verify 
the effect of supernatant of V. anguillarum cultures in turbot larvae. Control: No bacteria added. R: Rotifers bathed 
in Vibrio. R+: Rotifers bathed in Vibrio and supernatant. First feeding: day 3 post hatching. Means ± SD. Different 
letters mean significant differences (SNK test: p<0.05) between treatments (ANOVA: survival p=0.001, weight 
p=0.049). 
 

 
Treatments 

% SURVIVAL 
Absolute 

% SURVIVAL 
Relative to control

DRY WEIGHT 
µg/larva 

Control  79±6 a  100  92±3 a 
R  58±3 b 73  95±14 a 
R+  35±2 c 44  70±1 b 

 
 
 
 
 
 
 
 
 
 



 
Table 3: Challenge L - Survivals and final dry weights (µg larva-1) in the challenges performed for infection of 
turbot larvae with V. anguillarum. First feeding: day 3 post hatching. Control: No bacteria added. W: Vibrio added 
into the water of the larval tanks. W+: Vibrio and supernatant added into the water. R+: Rotifers bathed in Vibrio 
and supernatant. Means ± SD. Within each challenge, different letters mean significant differences (SNK test: 
p<0.05) between treatments. 
 

  
Days 

 
Treatments 

% SURVIVAL 
Absolute 

% SURVIVAL 
Relative to control

DRY WEIGHT 
µg/larva 

Challenge L1 3-10 Control  80±4 a  100  97±5 a 
  W  42±47 a 52  88±19 a 

Challenge L2 3-9 Control  57±26 a  100  69±10 a 
  R+  24±5 a 42  64±3 a 
  R+W+  6±2 b 11  56±5 a 

Challenge L3a 3-14 Control  34±13 a  100  337±13 a 
  R+  15±8 a 44  388±110 a 

Challenge L3b 3-8 Control  29±1 a  100  40±3 a 
  R+  8±0 b 28  37±2 a 

Challenge L3c 3-10 Control  32±1 a  100  121±0 a 
  R+  10±0 b 31  101±9 a 

 
 
 
 
Table 4: Challenge L - Changes with time in the level of Vibrio anguillarum in the water of the larval rearing tanks 
(log CFU ml-1) and in turbot larvae (log CFU larva-1). W: Vibrio added into the water of the larval tanks. W+: Vibrio 
and supernatant added into the water. R+: Rotifers bathed in Vibrio and supernatant. First feeding of larvae: day 3 
post hatching. 
 
 

  WATER (log cfu ml-1)  LARVAE (log cfu larvae-1) 
 Day W R+ R+W+  W R+ R+W+ 

Challenge L1 3 6.0    0.0   

 4 3.5    0.9   

 6 1.4    0.0   

 7 0.0    0.0   

 9 0.0    0.0   

Challenge L2 3  0.0 7.0   0.0 0.0 
 4  3.8 5.3   1.8 1.1 
 6  0.0 3.7   0.0 0.0 
 8  0.0 2.9   0.0 0.0 

Challenge L3a 3  0.0    0.0  

 5  4.0    2.9  

 7  2.6    2.9  

 9  3.6    2.9  

Challenge L3b 3  0.0    0.0  

 5  3.2    0.0  

 7  3.6    2.9  
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Fig. 1 Challenge S - Accumulated mortalities in the challenge performed to verify the effect of the supernatant of V. 
anguillarum cultures in turbot larvae. Control: No bacteria added. R: Rotifers bathed in Vibrio. R+: Rotifers bathed 
in Vibrio and supernatant. First feeding: day 3 posthatching. Means ± SD. 
 
Fig. 2 Challenge S - Total bacteria, total Vibrio and V. anguillarum in the water of larval rearing tanks and in turbot 
larvae (day 9 posthatching). Control: No bacteria added. R: Rotifers bathed in Vibrio. R+: Rotifers bathed in Vibrio 
and supernatant. First feeding: day 3 posthatching. Means (2 parallel tanks) ± SD. 
 
Fig. 3 Relationship between the final survivals in not infected larvae (control) and in larvae infected with Vibrio + 
supernatant via rotifers (R+). Survivals of challenged larvae are absolute or relative to controls (%). Data from 
challenges L2, 3a, 3b and 3c. 
 
Fig. 4 Challenges L2, L3a, 3b and 3c – Above: Cumulative mortalities of turbot larvae. Control: black symbols. 
Infected larvae: white symbols. Means ± SD. Original data fitted to a modified logistic model (continuous line). 
Below: Experimental means (pooled data of all challenges) with confidence intervals (α=0·20; υ=3). First feeding: 
day 3 posthatching. C: control (no bacteria added). R+: Rotifers bathed in Vibrio and supernatant. K (maximum 
mortality). 
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y = 2.3x - 39.0
R2 = 0.9316
p<0.05
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