Title: Maintenance of C sinks sustains enhanced C assimilation during long-term exposure to elevated [CO₂] in Mojave Desert shrubs

Authors: Iker Aranjuelo^{1,2*}, Allison L. Ebbets^{3,4*}, R. Dave Evans⁵, David T. Tissue^{6,7}, Salvador Nogués¹, Natasja van Gestel⁶, Paxton Payton⁶, Volker Ebbert⁸, Williams W. Adams III⁸, Robert S. Nowak², and Stanley D. Smith³

Author Affiliations: ¹ Unitat de Fisologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain; ² Department of Natural Resources and Environmental Science, University of Nevada Reno, Reno Nevada 89557, USA; ³School of Life Sciences, University of Nevada, Las Vegas, NV 89154-4004, USA; ⁴Stratus Consulting, Inc. 1881 Ninth St., Suite 201, Boulder, CO 80302, USA; ⁵School of Biological Sciences, Washington State University, Pullman Washington 99164, USA; ⁶Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA; ⁷Centre for Plants and the Environment, University of Western Sydney, Richmond, NSW, 2753 Australia; ⁸Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334.

Correspondence: Iker Aranjuelo, Unitat de Fisologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain, iker.aranjuelo@gmail.com, phone: +0034-934021465, fax: +0034-934112842

*These two authors contributed equally to this work.

1 Abstract

- 2 During the first few years of elevated atmospheric [CO₂] treatment at the Nevada Desert
- 3 FACE Facility, photosynthetic down-regulation was observed in desert shrubs grown
- 4 under elevated [CO₂], especially under relatively wet environmental conditions.
- 5 Nonetheless, those plants maintained increased A_{sat} (photosynthetic performance at
- 6 saturating light but treatment [CO₂]) under wet conditions but to a much lesser extent
- 7 under dry conditions. To determine if plants continued to down-regulate during long-term
- 8 exposure to elevated [CO₂], responses of photosynthesis to elevated [CO₂] was examined
- 9 in two dominant Mojave Desert shrubs, the evergreen *Larrea tridentata* and the drought-
- 10 deciduous *Ambrosia dumosa*, during the eighth full growing season of elevated [CO₂]
- 11 treatment at the NDFF. A comprehensive suite of physiological processes were
- 12 collected. Furthermore, we used C labeling of air to assess carbon allocation and
- 13 partitioning as measures of C sink activity. Results show that elevated [CO₂] enhanced
- 14 photosynthetic performance and plant water status in *Larrea*, especially during periods of
- 15 environmental stress, but not in *Ambrosia*. δ^{13} C analyses indicate that *Larrea* under
- 16 elevated $[CO_2]$ allocated a greater proportion of newly assimilated C to C sinks than
- 17 Ambrosia. Maintenance by Larrea of C sinks during the dry season partially explained
- 18 the reduced [CO₂] effect on leaf carbohydrate content during summer, which in turn
- 19 lessened carbohydrate build-up and feedback inhibition of photosynthesis. δ^{13} C results
- 20 also showed that in a year when plant growth reached the highest rates in 5 years, 4%
- 21 (Larrea) and 7% (Ambrosia) of C in newly emerging organs was remobilized from C that
- 22 was assimilated and stored for at least 2 years prior to the current study. Thus after eight
- 23 years of continuous exposure to elevated [CO₂], both desert perennials maintained
- 24 photosynthetic capacity under elevated [CO₂] We conclude that C storage,
- 25 remobilization, and partitioning influence responsiveness of these desert shrubs during
- 26 long-term exposure to elevated [CO₂].

Comentario [*2]: REF. 1.3.

- 27
- 28 Keywords: Ambrosia dumosa, C allocation/partitioning, Free-air CO₂ enrichment
- 29 (FACE), Larrea tridentata, photosynthetic down regulation

31 Introduction

- 32 Initial increases in net assimilation rates of vascular plants exposed to elevated
- 33 atmospheric [CO₂] may not be sustained over long time periods because of "a hierarchy
- 34 of increasingly complex processes controlling the production and allocation of end-
- 35 products" (Lemon 1983). For example, plants photosynthetically acclimate (*i.e.* down-
- 36 regulate) to growth in elevated [CO₂] through changes in the photosynthetic apparatus,
- 37 including lower light- and CO₂-saturated photosynthesis (A_{max}) as well as lower V_{cmax}
- 38 (maximum Rubisco carboxylation) and J_{max} (maximum electron transport) (Tissue et al.
- 39 1993, 2001). A second process that may impact the long-term enhancement of
- 40 photosynthesis under elevated [CO2] is reduced N availability, such as through re-
- 41 allocation of N within the plant to meet other growth needs (Theobald et al. 1998, Zhu et
- 42 al. 2009) or reduced N cycling in the ecosystem (Zak et al. 2000). Support for this
- 43 process comes from meta-analyses of both FACE (free-air carbon dioxide enrichment)
- 44 and OTC (open-top chamber) studies: some plants, but particularly woody species, that
- 45 exhibit photosynthetic acclimation also exhibit declines in leaf N and Rubisco content
- 46 (Long et al. 2004, Ainsworth and Long 2005). These trends also have been replicated in
- 47 comparative gas exchange studies across several FACE sites (Ellsworth et al. 2004).
- 48 Another process that may impact the long-term enhancement of photosynthesis under
- 49 elevated [CO₂] is feedback inhibition of photosynthesis by carbohydrate accumulation
- 50 (Moore et al. 1999, Jifon and Wolfe 2002). Meta-analyses also support this process:
- 51 many studies describe increased leaf starch or soluble sugars at elevated [CO₂] (Long et
- 52 al. 2004, Ainsworth and Long 2005). Thus over the long term, elevated CO_2 effects on
- 53 leaf C assimilation may be conditioned by an ecosystem's ability to provide adequate N
- 54 through changes in N cycling and by a plant's ability to develop new sinks (e.g. new
- 55 vegetative or reproductive structures) or to expand the storage capacity or growth rate of
- 56 existing sinks like shoots and roots (Lewis et al. 2002, Aranjuelo et al. 2009). Clearly,
- 57 these processes are not mutually exclusive. Nonetheless, understanding this "hierarchy
- 58 of increasingly complex processes" is critical to realistically predict long-term ecosystem
- 59 C assimilation from the atmosphere.

60	The Nevada Desert FACE Facility (NDFF) is an ideal system to investigate how plants
61	control photosynthesis during long-term exposure to elevated [CO2]. Nitrogen cycling at
62	the NDFF rapidly changed after initiation of elevated [CO ₂] treatments (Billings et al.
63	2002), increasing N availability (Billings et al. 2004) largely through shifts in soil
64	microbial activity (Jin and Evans 2007, 2010). Thus, mechanisms that cause
65	photosynthetic changes in plants at the NDFF should be influenced more by within-plant
66	processes, such as by N re-allocation within leaves or among tissues or by the size and
67	activity of C sinks, than by N availability through ecosystem N cycling. In the first five
68	years of the NDFF experiment, alterations in physiological processes due to elevated
69	[CO2] were observed in annual and perennial plants in the NDFF. For example, water
70	was severely limiting in most years such that differences in photosynthetic rates between
71	perennial plants growing in elevated versus ambient [CO2] were minimal, with
72	significant differences in photosynthesis only observed in years or seasons with adequate
73	or above-average rainfall (Naumburg et al. 2003). Similarly, photosynthetic down-
74	regulation – reductions in A_{max} (maximum net photosynthesis at saturating photosynthetic
75	photon flux density (PPFD) and [CO ₂]), V_{cmax} and J_{max} – was observed only in wet years
76	for plants grown in elevated [CO2] (Huxman et al. 1998, Hamerlynck et al. 2000b).
77	However, these previous studies, as well as those from other FACE experiments, did not
78	examine the relative importance of different processes, including leaf N and
79	carbohydrates and carbon management (allocation and partitioning), in regulating
80	photosynthetic performance during long-term elevated [CO ₂].
81	Another advantage of the NDFF and other FACE experiments is that use of a ^{13}C
82	depleted fossil fuel source to achieve elevated [CO2] treatments introduces C isotope
83	tracers into the system. These ${}^{13}C/{}^{12}C$ tracers provide an essential tool to study carbon
84	management in plants (Körner et al. 2005, von Felten et al. 2007, Aranjuelo et al. 2008a,
85	2009). Labelling with ${}^{13}C/{}^{12}C$ as tracers and characterization of the distribution of
86	labelled compounds into different plant organs has provided novel and relevant
87	information in studies determining the flow of C through plants grown in elevated [CO ₂]

- 88 (Aranjuelo et al. 2009). C allocation and partitioning can be studied further by analyzing
- 89 the isotopic composition of soluble sugars, especially sucrose, glucose, and fructose

- 90 (Körner et al. 2005, Kodama et al. 2010), which are anticipated to change under elevated
- 91 [CO₂] (Aranjuelo et al. 2009).
- 92 In this study, a comprehensive suite of physiological process and C balance data were
- 93 collected from plants during the eighth full growing season of continuous exposure to
- 94 elevated [CO₂] and used to examine the regulation of photosynthetic performance during
- 95 long-term exposure to elevated [CO₂] at the NDFF. Photosynthetic responses and carbon
- 96 allocation/partitioning patterns were measured for the two dominant shrub species of the
- 97 Mojave Desert, the evergreen *Larrea tridentata* and the drought deciduous *Ambrosia*
- 98 dumosa. Measurements were made throughout the growing season: from cooler, wetter
- 99 periods of peak growth in spring to hotter, drier periods of pronounced water stress in
- 100 summer. Specifically, we examined leaf gas exchange, leaf pigments, leaf N, and leaf
- 101 soluble sugars and starch to determine the extent that photosynthetic performance was
- 102 enhanced during long-term exposure to elevated [CO₂] and to test specific mechanisms
- 103 that may cause reduced photosynthetic performance. Because photosynthetic
- 104 performance is affected by leaf-level and plant-level C allocation, photoassimilate
- allocation and partitioning also were studied through the use of ${}^{13}C/{}^{12}C$ labeling. We
- 106 hypothesized that these desert species would down-regulate photosynthesis under
- 107 elevated [CO₂] during the moist, early portions of the growing season and that down-
- 108 regulation would be accompanied by altered leaf pigmentation, decreased leaf N, and
- 109 increased leaf starch and soluble sugars. Furthermore, we hypothesized that reduced
- 110 capacity of plants to allocate C away from leaves also would limit photosynthetic
- 111 performance under elevated [CO₂].
- 112

113 Materials and Methods

- 114 Field site and C-labeling procedures
- 115 The Nevada Desert FACE Facility (NDFF) is located within the Nevada Test Site
- 116 $(36^{\circ}39'N, 122^{\circ}55'W, 960 \text{ m altitude})$. Three plots (23 m diameter; 415 m²) had the full
- 117 FACE apparatus (stand-pipes and blowers) and continuously exposed plants to elevated

- 118 [CO₂] (target of 550 µmol mol⁻¹; averaged over 2005, actual treatment was 521 µmol
- 119 mol⁻¹) and three plots had the FACE apparatus but blow air onto the plots at ambient
- 120 [CO₂] (measured during the 2005 growing season as 380 μ mol mol⁻¹). The NDFF
- 121 operated continuously (24 h per day, 365 d per year), with conditional shut-downs
- 122 occurring only when air temperature dropped below 4°C or when wind speed exceeded 7
- 123 m s⁻¹. The 2005 growing season was the eighth full year of operation for the NDFF. The
- 124 ecosystem within each plot was not disturbed during installation of the FACE apparatus
- 125 and represents the same functioning ecosystem as the surrounding landscape in the
- 126 northern Mojave Desert. The facility, vegetation, and soils are fully described in Jordan
- 127 et al. (1999).
- 128 Elevated [CO₂] was provided by supplementing ambient air with pure CO₂ to achieve the
- 129 desired CO₂ concentration. Prior to February 10, 2003, the pure CO₂ (supplied by BOC
- 130 Gases; Murray Hill, NJ, USA) was from a geologic source and had a CO₂ isotopic
- 131 composition (δ^{13} C) of -5.4 ‰, which diluted ambient air δ^{13} C (-8.0 ‰) to δ^{13} C of air
- above the elevated [CO₂] plots of -7.3 ‰ (Naumburg et al. 2003). On February 10, 2003,
- 133 we switched the source of pure CO₂ to fossil fuels, which had a more ¹³C depleted δ^{13} C
- 134 (-32.0 ‰), resulting in a δ^{13} C of CO₂ in air of -18.2 ± 1.9 ‰ for elevated [CO₂] plots
- 135 (Schaeffer 2005).

136 Plant material and sampling

- 137 The evergreen shrub Larrea tridentata (creosote bush) and the drought-deciduous shrub
- 138 Ambrosia dumosa (white bursage) were selected for study. New leaves on Larrea at the
- 139 NDFF emerge in late April or early May, with the majority of new growth occurring
- 140 between mid-May and mid-June (Housman et al. 2006). Individual leaves (leaflets) live
- 141 approximately 18 months (Sharifi et al. 1988). Ambrosia initiates a leaf canopy in early
- 142 spring and then loses all its leaves during the hot, dry summer months and remains
- 143 deciduous until the next year (Ackerman et al. 1980).
- 144 For Larrea and Ambrosia, leaves, shoots and roots that emerged during the current year
- 145 were harvested for C isotopic composition (δ^{13} C) and N in early morning. Leaves and

146	shoots were harvested monthly from April until July for both species and until August for	
147	Larrea. No data were presented for Ambrosia in August because those plants had entered	
148	their physiological dormancy period. In both cases, root sampling occurred only during	
149	April-June because new root formation did not occur in July or August for either species.	
150	Root samples were collected from root boxes located at the base of each shrub species	
151	(Clark et al. 2010). On each sampling date, harvests were from two plants per species in	
152	each of the three elevated and the three ambient [CO ₂] plots.	Comentario [BN7]: REF. 1.6
153	Samples for xylem water potential sugar content, and pigment analysis were all taken at	Comentario [*8]: REF. 2. 7:
154	pre-dawn, when plants were under minimal daily water stress. Starting approximately	
155	1.5 hours before sunrise on each sampling date, two terminal shoot (stem + leaves)	
156	samples were removed from each of two study plants per plot in each of the three	
157	elevated and three ambient [CO ₂] plots. Samples were placed in plastic bags, stored in a	Comentario [BN9]: REF. 1.6
158	cooler and moved to a field lab adjacent to the research plots where they were prepared	
159	and analyzed. Pigment samples (approximately 4-6 leaves) were removed from branches	
160	and quickly placed in liquid nitrogen. Plant water potential of the other intact shoot	
161	sample was determined using a Scholander-type pressure chamber (Soil Moisture Stress	
162	Inc., Santa Barbara, CA, U.S.A.). Sugar analyses required significantly larger samples;	Comentario [*10]: REF. 1.7
163	therefore, all the remaining leaves from water potential determinations were pooled.	
164	Leaves for sugar analyses were removed from the stems in the dark and placed in liquid	
165	nitrogen after harvest.	
166	Photosynthetic measurements	
167	Photosynthetic gas exchange was measured with a LI-6400 portable photosynthesis	
168	system (Li-Cor Inc., Lincoln, NE, USA) equipped with a CO ₂ control module and a red-	
169	blue light emitting diode light source (Model 6400-02B). For gas exchange	Comentario [*11]: REF. 2.8.
170	measurements, we sampled five plants from one elevated [CO ₂] ring and five plants from	Comentario [*12]: REF 2.5
171	one ambient [CO ₂] ring. Sampling from additional FACE rings was not logistically	
172	feasible in this study due to the requirement that plants be accessed from a pivoting	
173	walkway, so we maximized sample size within individual large plots. The two selected	
174	plots were paired plots (i.e. same watershed position) in the overall experimental site, and	

175	so had highly similar surface and soil characteristics. Also, previous studies confirmed	
176	that plot-based variation in plant physiological parameters was relatively low for both	
177	evergreen and deciduous shrubs. For the evergreen Larrea, using 18 different dates	
178	between 1998 and 2004 in which we had plot-replicate data from ACi curves (n = 36 with	
179	18 dates times the two [CO ₂] treatments), we found the following coefficients of	
180	variation (CV's): V_{cmax} plant-to-plant = 22.0, plot-to-plot = 18.2; J_{max} plant-to-plant =	
181	34.2, plot-to-plot = 25.7 . Therefore, whereas individual plant variation was large,	
182	variation was consistently lower between sampling plots than between individual plants.	
183	Furthermore, these photosynthetic parameters were not consistently higher in one plot	
184	than another for either ambient or elevated [CO2] treatments. Sampling two plots also	
185	allowed paired-in-time measurements at ambient and elevated [CO2] to occur at highly	
186	similar temperature and VPD conditions during the day. This requirement could not have	
187	been met if we sampled six separate plots (FACE rings) with a single plant in each plot	
188	due to the time required to move between plots.	
190	Distance that is $CO_{\rm constant} = c_{\rm constant} (AC_{\rm constant})$ where determined by measuring the measure	
100	Photosynthetic CO_2 response curves (AC_i) were determined by measuring the response	
190	of photosynthesis (A) to varying intercentular CO_2 concentration (C _i). External [CO_2]	
191	(C_a) was supplied in 8 steps, increasing from 120 to 1500 µmol [CO ₂] mol ⁻ air, with	
192	irradiance (Q) maintained at a saturating value of 1500 μ mol m ⁻² s ⁻¹ . Measurements were	
193	initiated after g_s reached steady state and then recorded automatically at each C_a set point	
194	when photosynthesis had equilibrated, which was typically less than 2 min. Foliage	
195	temperature during AC_i curves was maintained at ambient air temperature using	
196	thermoelectric coolers. Leaf-to-air vapor pressure deficit was generally between 1.5 and	
197	3.0 kPa, reflecting ambient conditions. Because both <i>Larrea</i> and <i>Ambrosia</i> have small,	
198	microphyllous leaves, more than one leaf (leaflets in Larrea) was inserted into the gas	
199	exchange cuvette. After the AC_i curve was generated, all material inside the cuvette was	Comentario [*14]: REF. 2.10
200	collected and leaf area was determined using a flatbed scanner and analyzed with	
201	software from Scion Imaging (Scion Corporation, Frederick, MD, USA). Leaves were	
202	subsequently dried at 60°C for at least 2 days and then weighed.	
203	$AC_{\rm c}$ data were analyzed using the photosynthetic biochemical model of Fargubar et al.	
203	(1980) to estimate two biochemical parameters potentially limiting to photosynthesis:	
204	(1700) to estimate two biochemical parameters potentiany minung to photosynthesis.	

205	$V_{\rm cmax}$ (maximum carboxylation rate of Rubisco) and $J_{\rm max}$ (maximum electron transport
206	rate), which were temperature corrected to 25°C (Bernacchi et al. 2001). We used the
207	Michaelis-Menten constants of Rubisco described in Harley et al. (1992) and used by
208	Wullschleger (1993), where K_c (Michaelis-Menten constant for RuBP carboxylation) =
209	16 Pa, K_o (Michaelis-Menten constant for oxygenation) = 37961 kPa, and τ (specificity
210	factor for Rubisco; Jordan and Ogren 1984) = 2823, for both species. Net photosynthesis
211	at saturating $Q(A_{sat})$ was taken directly from the AC_i curves at each growth [CO ₂].
212	Previous experiments have shown that for these species, mid-morning A_{sat} is a good
213	estimate of diurnal integrated [CO ₂] assimilation (A_{day} ; Naumburg et al. 2003). Net
214	photosynthesis at saturating [CO ₂] and saturating $Q(A_{max})$ was also determined from the
215	AC_i curves. The relative stomatal limitation to photosynthesis (L_s) was calculated using
216	the method of Farquhar and Sharkey (1982) as described in Tissue et al. (2005) using
217	CO_2 concentrations of 550 µmol mol ⁻¹ and 380 µmol mol ⁻¹ for elevated and ambient

[CO₂], respectively.

Comentario [*15]: REF 2.11.

219 Biochemical analyses

- 220 For sugar extraction, plant samples were lyophilized and then ground to a fine powder
- 221 ($<10 \,\mu$ m). About 50 mg of the fine powder was suspended in 1 mL of distilled water in
- 222 an Eppendorf tube (Eppendorf Scientific, Hamburg, Germany), mixed, and then
- 223 centrifuged at 12,000 g for 5 minutes at 5 °C. After centrifugation, the supernatant was
- 224 used for total soluble sugar quantification, whereas the pellet was stored at -80°C for the
- 225 starch analyses. Supernatant fraction was heat denatured at 100 °C for 3 minutes and
- 226 precipitated by centrifugation at 12,000 g during 5 minutes at 5 °C. The non-precipitated
- 227 phase then was used for sugar content analysis (Nogués et al. 2004). Starch samples were
- 228 purified and quantified through the elimination of the chlorophyllous pigments using
- 229 ethanol, followed by the starch solubilization step with HCl and its flocculation using
- 230 methanol (Duranceau et al. 1999).
- 231 Purification of soluble sugar samples used a solid phase extraction pre-column (Oasis
- 232 MCX 3cc, Waters). Sugar contents were analyzed using a Waters 600 high performance
- 233 liquid chromatograph (Waters Millipore Corp., Milford, MA, USA). The HPLC

- 234 refractive index detector (Waters 2414) was set at 37 °C. Samples were eluted from the
- 235 columns at 85 °C (Aminex HPX-87P and Aminex HPX-87C connected in series, 300 mm
- 236 x 7.8 mm; BioRad) with water at 0.6 mL min⁻¹ flow rate and 45 min retention time.
- 237 Sucrose, glucose, and fructose were collected and transferred to tin capsules for isotope
- analysis. The use of the purification pre-columns, together with the two Aminex columns
- 239 connected in series enabled the separation of sugars (sucrose, glucose and fructose),
- 240 avoiding possible contamination problems raised by Richter et al. (2009). Furthermore, as
- 241 an additional precaution, initial and final phases of peaks were discarded when collecting
- 242 the peaks. Although there is no specific technique to measure purified starch δ^{13} C, we
- 243 utilised a protocol (Richter et al. 2009) to analyze δ^{13} C of the HCl-hydrolysable C (HCl-
- 244 C), which is mainly composed of starch; subsequently, HCl-C was our surrogate for
- 245 starch C isotopic composition. δ^{13} C of individual sugars and HCl-C was analyzed by
- 246 isotope ratio mass spectrometry (Delta C, Finnigan Mat, Bremen, Germany) as described
- 247 by Nogués et al. (2008).
- 248 Leaf pigment samples were collected at pre-dawn, immediately frozen in liquid N and
- stored in an ultra-low freezer (-85 °C) prior to lyophilization. Before HPLC analysis, the
- 250 dry mass of each sample was determined and approximately 10 mg dry mass of leaf
- 251 material was used for pigment extraction. Samples were ground to a fine pulp in the dark
- in ice-cold 80% acetone (v/v) with an addition of MgCO₃ (spatula tip) using a tissue
- 253 grinder (Kontes Duall K885450-0021, Kontes, Vineland, NJ, USA). Following
- extraction, chlorophyll and carotenoid content and composition were determined by
- 255 HPLC using the method of Gilmore and Yamamoto (1991), as modified by Adams and
- 256 Demmig-Adams (1992).

257 Plant C and N content and C isotopic composition in total organic matter and air

- 258 Leaf, stem, and root samples were used for C and N content and for carbon isotope
- composition analyses. Six 1.5 mg replicates were analyzed for each sample.
- 260 Determinations were conducted at the Serveis Cientifico-Tecnics, University of
- 261 Barcelona using an elemental analyzer (EA1108, Series 1, Carbo Erba Instrumentazione,
- 262 Milan, Italy) coupled to an isotope ratio mass spectrometer (Delta C, Finnigan, Mat.,

263 Bremen Germany) operating in continuous flow mode. ${}^{13}C/{}^{12}C$ ratios were expressed in δ

$$\delta^{13}C(\%) = \left[\left(\frac{R_{sample}}{R_{standard}} \right) - 1 \right]$$

where R_{sample} refers to plant material and R_{standard} to Pee Dee Belemmnite (PDB) calcium
 carbonate.

269

270 Carbon isotope discrimination (Δ) was calculated as described by Farquhar et al. (1989): 271

$$\Delta = \frac{\delta_a - \delta_p}{\delta_p + 1}$$

272 where δ_a and δ_p denote air ($\delta^{13}C_a$) and plant ($\delta^{13}C_p$) isotopic composition, respectively.

273

274 The ${}^{13}C/{}^{12}C$ ratios (*R*) of air samples were determined at the University of Arkansas

275 (USA). Air δ^{13} C was determined through a trace gas condensing device (PreCon,

276 Finnigan MAT, Bremen, Germany) coupled to a Finnigan Delta+ mass spectrometer. Air

samples from all the treatment plots were collected by connecting a 100 mL air sampling

278 flask (Kimble Kontes, Vineland, NJ, USA) to the outlet stream of an infrared gas

analyzer (LiCor 6262, LiCor inc., Lincoln, NE, USA) located in a shed next to each plot.

280 On each sampling date, two samples were collected from each plot and three samples of

281 CO_2 were taken directly from the exhaust vent of the liquid CO_2 supply tank. Samples

282 were analyzed at the University of Arkansas Stable Isotope Facility.

283 New carbon in carbohydrates and total organic matter

- 284 The proportion of "new" carbon (C_{new}) in specific carbohydrate pools and in total organic
- 285 matter (TOM) represents the proportion of C present that was derived from C fixed

287 Nogués et al. (2004):

$$C_{new} \approx \frac{\delta^{13} C_E - \delta^{13} C_A}{\delta^{13} C_I - \delta^{13} C_A} x100$$

290

289

291

where $\delta^{13}C_E$ and $\delta^{13}C_A$ refers to the carbon isotopic compositions of plants grown at elevated and ambient [CO₂], respectively. $\delta^{13}C_L$ refers to the theoretical maximum isotopic composition of leaves, which is given by:

$$\delta^{13}C_{L} \approx \delta^{13}C_{air} -\Delta$$

296

297 A similar relationship was used to calculate the proportion of new carbon in

298 carbohydrates.

299 Statistical analyses

- 300 All data were log transformed prior to analyses. Because individual plants were
- 301 repeatedly measured over time, a repeated measures analysis of variance (RM ANOVA)
- 302 was used to determine the effects of elevated [CO₂] on physiology, leaf chemistry, and C
- 303 isotopic determinations of *Larrea* and *Ambrosia*. The sample dates, converted to Julian
- 304 date, were used as the within-subject factor, whereas [CO₂] treatment was used as the
- 305 between-subject factor. These analyses has 1 degree of freedom (df) for [CO₂] effect and
- 306 8 *dfs* for the error term (variability). A factorial analysis was also conducted with these
- 307 data, and results were similar to those obtained by the RM ANOVA; therefore we used
- 308 the more conservative RM ANOVA.. Because *Larrea* is an evergreen and *Ambrosia* is
- 309 drought-deciduous, the RM ANOVA's were performed separately for each species. There
- 310 were eight measurement dates for *Larrea*, and four measurement dates for *Ambrosia*.

- 311 Prior to running the RM ANOVA, a principal components analysis was conducted for
- 312 each species separately to determine the nature and strength of the correlations between
- 313 parameters. After these analyses showed strong correlations among the physiological
- 314 data, missing data (5% of total physiology data) were estimated with the maximum
- 315 likelihood estimation function utilizing a multivariate approach. A discriminant function
- 316 analysis (DFA) was used for each species to determine those variables which best
- 317 described differences between plants grown in elevated and ambient [CO₂]. All
- 318 multivariate analyses were conducted using MatLab (V.7.1, SP 3; The Mathworks Inc.,
- 319 Natick, MA, USA).
- 320 The RM ANOVA's were performed using the general linear model function in SYSTAT
- 321 (V12, Systat Software Inc., Chicago, IL, USA). Values were considered significantly
- 322 different if probabilities (P) were < 0.05.

323 Results

324 Environmental conditions

- 325 Temperatures during the 2005 growing season were typical of the Mojave Desert, with
- 326 the highest average monthly temperature occurring in July (Fig. 1A). The hydrologic
- 327 year (1 Oct to 30 Sep) for the Mojave Desert had above-average precipitation, with
- 328 significant amounts of rainfall occurring between October and March, followed by a dry
- 329 summer (Fig. 1B). Significant rainfall in the fall and mid-winter resulted in high soil
- 330 moisture content, with 0-50 cm soil moisture content consistently above 10% through
- 331 most of the spring (Fig. 1C). There were no plot (i.e., [CO₂]) differences in soil
- 332 moisture, as has been consistently observed at the NDFF (Nowak et al. 2004). Of note,
- 333 however, was that the average minimum temperature did not rise above freezing until late
- April (Fig. 1A); subsequently, the spring growing season was characterized by high soil
- 335 moisture but frequent freezing temperatures at night. The driest part of the year
- 336 corresponded with the hottest; although the summer was interrupted by several
- 337 significant rainfall events (Fig. 1B), integrated 0-20 and 0-50 cm soil moisture never
- 338 exceeded 5% during the summer months (Fig. 1C).

- 339 Physiology (A_{sat} , g_s , WUE, Ψ_{stem})
- 340 Elevated [CO₂] significantly increased A_{sat} (i.e. light-saturated photosynthesis measured
- 341 at growth [CO₂]) in *Larrea* (Fig. 2A), whereas elevated [CO₂] had no significant effect
- 342 on A_{sat} in Ambrosia (Fig. 2B). Ambrosia exhibited a mean growing season A_{sat} of 19.8

343 μ mol m⁻² s⁻¹, while during the same time period A_{sat} was 9.4 μ mol m⁻² s⁻¹ in *Larrea*.

- 344 Stomatal conductance (g_s) was not affected by elevated $[CO_2]$ for either species (Fig 2C,
- 345 D). Significant date-by-species effects (p < 0.05) were observed such that g_s for both
- 346 species increased in March and May, with the greatest increase in Ambrosia in late April
- 347 (Fig. 2D), when g_s was 0.39 mmol m⁻² s⁻¹ compared to 0.10 mmol m⁻² s⁻¹ for *Larrea*.
- 348 Beginning in June, g_s in *Larrea* decreased over time (Fig. 2C), whereas *Ambrosia*
- became physiologically dormant for the remainder of the year.
- $A_{\text{sat}}/g_{\text{s}}$ (intrinsic WUE) was significantly higher in elevated [CO₂] in Larrea (Fig. 2E) but
- 351 not in Ambrosia (Fig. 2F). Overall, elevated [CO₂] increased WUE by 37% in Larrea
- 352 over the spring growing season (March to May) and by 46% over the entire year (March
- to October). A significant date-by- $[CO_2]$ effect for both species (p < 0.05) indicated that
- 354 WUE responses differed over time. Ambrosia exhibited a significant increase in WUE in
- 355 elevated [CO₂] plants in March, but no response thereafter (Fig 2F). In contrast, Larrea
- 356 exhibited higher WUE in elevated [CO₂] plants during the entire growing season, but the
- 357 greatest increase in WUE was at the end of the growing season (Fig 2E), when soil
- 358 moisture was low.
- 359 Stem water potential (Ψ_{stem}) was significantly higher in elevated [CO₂] in *Larrea* (Fig.
- 360 2G) but not in *Ambrosia* (Fig. 2H). In the early growing season, Ψ_{stem} was relatively
- 361 high and was not affected by elevated [CO₂] in either species, but later in the growing
- 362 season, Ψ_{stem} declined at a slower rate in *Larrea* at elevated [CO₂] compared to ambient
- 363 [CO₂]. For Ambrosia, Ψ_{stem} was significantly higher at elevated [CO₂] compared to
- ambient [CO₂] just before the plant became physiologically dormant in late May (Fig.
- 365 2H), whereas for *Larrea*, Ψ_{stem} was higher in elevated [CO₂] compared to ambient [CO₂]
- 366 from July onward (Fig. 2G). During the most active growing season (spring), Larrea had

- 367 a significantly lower average Ψ_{stem} (-2.3 MPa) than Ambrosia (-1.8 MPa) from mid-
- 368 March until the end of May (p < 0.001).
- 369 Photosynthetic capacity $(A_{\text{max}}, V_{\text{cmax}}, J_{\text{max}}, L_s)$
- 370 Elevated [CO₂] had no effect on A_{max} (i.e. maximum photosynthesis measured at both
- 371 saturating light and [CO₂] levels) in either species (Fig. 3A,B). In Ambrosia, average
- 372 A_{max} throughout the study was 30 µmol m⁻² s⁻¹, whereas in *Larrea* it was 23 µmol m⁻² s⁻¹.
- 373 For both species, A_{max} increased during the growing season until May, after which A_{max}
- declined for *Larrea*, while *Ambrosia* became physiologically dormant. Elevated [CO₂]
- had no effect on V_{cmax} (Fig. 3C,D) or J_{max} (Fig. 3E,F) in either species. For both species,
- 376 J_{max} increased during the growing season until May, after which J_{max} declined for
- 377 Larrea, while Ambrosia became physiologically dormant. Elevated [CO2] significantly
- 378 decreased the relative stomatal limitation to photosynthesis (L_s) for both species (Fig.
- 379 3G,H). For Larrea from early March until mid-October, mean L_s was 39% in ambient
- 380 [CO₂] and 29% in elevated [CO₂], whereas for Ambrosia from mid-March until late May,
- 381 mean L_s was 28% and 16% in ambient and elevated [CO₂], respectively.
- 382 Leaf pigment, N, C/N and carbohydrate concentration
- 383 Ambrosia chlorophyll a+b levels were 57% lower in elevated [CO₂] during the spring
- 384 growing season (Fig. 4B), but there was no $[CO_2]$ effect on chlorophyll a+b levels in
- 385 Larrea from March until mid-October (Fig. 4A). Elevated [CO₂] resulted in a greater
- 386 [(Z+A)/(chl a+b)] (*i.e.* the ratio of xanthophyll cycle pigments to chlorophyll a and b) in
- 387 late summer in Ambrosia only (Fig. 4C,D). The xanthophyll pool conversion state
- 388 [(Z+A)/(V+A+Z)] was significantly higher in elevated [CO₂] for Ambrosia but not in
- 389 Larrea (Fig. 4E,F). During the growing season, [(Z+A)/(chl a+b)] and
- (Z+A)/(V+A+Z) declined in both species (Fig. 4C,D,E,F)
- 391 In Larrea, elevated [CO₂] significantly decreased leaf N content (P<0.01) during the first
- 392 half of the growing season, but [CO₂] treatment effects on leaf N were significant only
- 393 during May for Ambrosia (Table 1). Significant effects of elevated [CO₂] on C/N ratios
- 394 in *Larrea* were limited to increased C/N ratios during May-June. During the rest of the

- 395 experiment, no significant differences were observed for Larrea (Table 1). In the case of
- 396 *Ambrosia*, with the exception of May (when C/N was higher in elevated [CO₂]), no
- $[CO_2]$ effect on C/N was observed.
- 398 In *Larrea*, the elevated [CO₂] effect on leaf sucrose, glucose and fructose concentration
- 399 was affected by sampling date (P< 0.01; P= 0.02; P= 0.09, respectively; Table 1). Larrea
- 400 grown under elevated [CO₂] had higher sucrose levels only during June, glucose levels
- 401 were increased during two sampling dates (April and June), and for fructose, the increase
- 402 extended from May until July. With the exception of April, starch content increased in
- 403 leaves exposed to elevated [CO₂] (Table 1). In *Ambrosia*, [CO₂] treatment effects on
- 404 sucrose, glucose and fructose also were mediated by sampling date (P< 0.01 for each
- 405 sugar, respectively; Table 2). During April, although fructose content increased under
- 406 elevated [CO₂], glucose was not affected and sucrose content diminished. During May,
- 407 the concentration of the three soluble sugars increased under elevated [CO₂]. However
- 408 during June, growth in elevated [CO2] increased sucrose content, whereas glucose and
- 409 fructose in Ambrosia were diminished (Table 1). In July, glucose levels increased in
- 410 Ambrosia exposed to elevated [CO2], but no [CO2] effect was observed in sucrose and
- 411 glucose levels. Elevated [CO₂] increased starch concentration during May-June in both
- 412 species, and additionally in August in *Larrea* (Table 1).
- 413 Proportion of new C in TOM and leaf soluble sugars
- 414 The proportion of newly fixed carbon (C_{new}) in different plant organs was similar
- 415 throughout the study (Table 2), with one exception. C_{new} was significantly lower in
- 416 Larrea leaves during July and August (Table 2) compared to earlier sampling dates (P<
- 417 0.01). On average, 4 and 7% of C present in the current year's total organic matter
- 418 (TOM) of *Larrea* and *Ambrosia*, respectively, came from CO₂ that was assimilated
- 419 before February 10, 2003 (i.e. >2 years prior to the current year), when the pure CO_2 for
- 420 the elevated CO₂ treatment was switched from a geologic to a fossil fuel source. No
- 421 significant variation in C_{new} was observed in shoots and roots of either species (Table 2).
- 422 The proportion of C_{new} in sucrose, glucose and fructose of *Larrea* leaves (Table 2)
- 423 exposed to elevated [CO₂] varied depending on time (P< 0.01 for each sugar,

- 424 respectively). For Larrea, the greatest C_{new} occurred during June, with C_{new} declining
- 425 during July and August. For Ambrosia, the proportion of Cnew in sugars of elevated
- 426 [CO₂] plants maintained similar levels from April through June, although C_{new} in
- 427 fructose levels declined in July (Table 2). C_{new} in HCl-hydrolysable C fraction (HCl-C),
- 428 which is mainly composed of starch, showed that in *Larrea*, ~96% was formed by
- 429 recently assimilated C, and no significant differences were observed throughout the
- 430 study. In the case of Ambrosia, average C_{new} was ~89% and reached the largest values
- 431 during May.

432 Multivariate analyses

- 433 In the principal components analysis (PCA; Fig. 5A,C), we observed species differences
- 434 and correlations between the various physiological parameters. First, Ambrosia had
- 435 stronger stomatal control of photosynthesis than did *Larrea* (r = 0.93 and 0.84,
- 436 respectively). Also, g_s was more strongly correlated with J_{max} and V_{cmax} in Ambrosia (r
- 437 = 0.79 and 0.55, respectively) compared to Larrea (r = 0.50 and 0.17, respectively). In
- 438 Larrea, xylem water potential showed a stronger negative correlation with photosynthetic
- 439 rates than in Ambrosia (r = 0.43 and 0.09, respectively). Finally, as xylem water potential
- 440 seasonally declined in both species, sugar levels increased.
- 441 In the discriminant function analysis (DFA; Fig. 5B,D), we observed trends in various
- 442 functional parameters in elevated versus ambient [CO2]. WUE increased at elevated
- 443 [CO₂] in both species, particularly in *Larrea*, and L_s decreased in both species. We also
- 444 observed differential effects of elevated [CO₂] on several other functional parameters
- 445 with this analysis: (1) sugar levels (fructose and glucose) decreased in Larrea, while
- 446 fructose, glucose and sucrose all increased in *Ambrosia*; (2) chlorophyll a + b decreased
- 447 in Ambrosia but not in Larrea; and (3) xanthophyll cycle pigments increased in Ambrosia
- 448 but not in *Larrea*.
- 449 Discussion
- 450 *Regulation of photosynthetic performance under elevated* [CO₂]

- 451 Photosynthetic down-regulation (typically indicated by reductions in A_{max} , V_{cmax} , and
- 452 J_{max}) during the eighth growing season of long-term exposure to elevated [CO₂] at the
- 453 Nevada Desert FACE Facility was not observed in either Larrea tridentata or Ambrosia
- 454 *dumosa* (Figs. 3A-F). These results differ from earlier studies at the NDFF in that
- 455 photosynthetic down-regulation was previously observed in Larrea (Huxman et al. 1998,
- 456 Hamerlynck et al. 2000b) and a drought-deciduous shrub Lycium andersonii
- 457 (Hamerlynck et al. 2002) in the first two years of elevated [CO₂] exposure at the NDFF,
- 458 especially during the cool, moist early spring when plants are not generally water
- 459 stressed. Based upon our results and those of Naumburg et al. (2004), the desert
- 460 perennials Larrea and Ambrosia appear to have photosynthetically equilibrated to
- 461 elevated [CO2] and maintained biochemical capacity over the long-term.
- 462 Although neither Larrea tridentata nor Ambrosia dumosa show evidence for
- 463 photosynthetic down-regulation, only Larrea had increased photosynthetic performance
- 464 (i.e. A_{sat} , light-saturated A at growth [CO₂]) during continuous, long-term exposure to
- 465 elevated [CO₂] (Fig. 2A). A_{sat} for Ambrosia was not significantly different between
- 466 [CO₂] treatments throughout the entire growing season (Fig. 2B). These results for
- 467 *Larrea* are similar to earlier studies at the NDFF but differ for *Ambrosia*: earlier, both
- 468 species had increased photosynthetic performance under elevated [CO₂] (Naumberg et al.
- 469 2003, Ellsworth et al. 2004, Housman et al. 2006), although elevated [CO₂] effects were
- 470 greatly reduced during dry portions of the year or during years with below-average
- 471 precipitation. Below, we first examine processes that may not account for how
- 472 photosynthetic performance of Larrea may differ from that of Ambrosia under elevated
- 473 [CO₂], and then examine those that may.
- 474 The difference in photosynthetic performance between the two species under elevated
- 475 [CO₂] was not due to partial stomatal closure (Fig. 2C, D), reduced carboxylation activity
- 476 $(V_{\text{cmax}}, \text{Fig. 3C, D})$, nor to reduced electron transport $(J_{\text{max}}, \text{Fig. 3E, F})$. In all cases, these
- 477 processes were not significantly different between ambient and elevated [CO₂]
- 478 treatments. In addition, both species also had reduced L_s under elevated [CO₂], as has
- 479 been commonly observed in long-term field studies (Tissue et al. 2001). Although
- 480 treatment effects on leaf N and carbohydrate concentrations differed between Larrea and

- 481 Ambrosia during the growing season (Table 1), the direction of these differences was not 482 consistent with the observed treatment effects on photosynthetic performance. Larrea 483 plants under elevated [CO₂] had more consistent decreases in leaf N versus Ambrosia 484 plants (Table 1). Although greater decreases in leaf N for Larrea would be expected to 485 result in greater decreases in photosynthetic performance because of the close 486 relationship between leaf N and Asat (Ellsworth et al. 2004), in fact Larrea had greater 487 increases in Asat under elevated [CO2]. Sugar and starch concentrations under elevated 488 [CO₂] were often significantly greater than those under ambient [CO₂] (Table 1), which 489 indicated that both species had greater potential for feedback inhibition of net 490 assimilation by carbohydrate accumulation under elevated $[CO_2]$. Although exceptions 491 do occur for both species (e.g., glucose in April for Larrea and sucrose in April for
- 492 Ambrosia), these exceptions occur slightly more frequently for Ambrosia, suggesting
- 493 photosynthetic performance of Ambrosia would have benefited more under elevated
- 494 [CO₂] because of less frequent feedback inhibition. However, this prediction of greater
- 495 performance of *Ambrosia* under elevated [CO₂] also is contrary to observations.
- 496 As with leaf N and carbohydrates, the effects of elevated [CO₂] on pigment
- 497 characteristics (Fig. 4) differed substantially between the two shrub species, but these
- 498 pigment differences also were not consistent with differences in photosynthetic
- 499 performance. Pigments are functional components of the photosynthetic machinery,
- 500 providing information about biochemical investment and stress in the photosystems. The
- 501 evergreen Larrea did not adjust pigment allocation in response to elevated [CO2], as was
- 502 documented for the evergreen tree loblolly pine after 8 years in FACE (Logan et al.,
- 503 2009). In the deciduous Ambrosia, plants growing under elevated [CO₂] reduced
- 504 chlorophyll *a* and *b* throughout the growing season, suggesting that less light absorbing
- and processing capabilities may be part of the reason why A_{sat} under elevated [CO₂] was
- 506 not as high as expected for that species. However, desert plants typically are not light
- 507 limited (Smith et al. 1997), and thus lower chlorophyll under elevated [CO₂] may at best
- 508 be only a minor contribution towards lower than expected A_{sat} under elevated [CO₂] in
- 509 *Ambrosia*. Generally, photoinhibition is a greater concern in high-light environments
- 510 (Hymus et al. 1999, Aranjuelo et al. 2008b), but the pigment data indicate that increased
- 511 protective pigment concentrations only occurred in Ambrosia. Photoprotection was

- 512 presumably employed to the level necessary during exposure to excess light each day, as
- 513 violaxanthin was converted to zeaxanthin and the latter employed in thermal energy
- 514 dissipation to avoid photodamage (Adams et al. 2006, Demmig-Adams and Adams
- 515 2006). Nonetheless, these differences were reduced during the peak growing season,
- 516 when high photoprotection may be more important as sink activity increases (Adams et
- al. 2006) and into the summer dry season as drought-induced photoinhibition becomes
- 518 more frequent. Thus, the greater ability to avoid photoinhibition in Ambrosia was not
- 519 sufficient to improve photosynthetic performance under elevated [CO₂] over that under
- 520 ambient [CO₂].
- 521 The lack of increased photosynthetic performance in Ambrosia after long-term exposure
- 522 to elevated [CO₂] may reflect differences between *Larrea* and *Ambrosia* in allocation to
- 523 C sinks and utilization of stored C pools. Larrea had greater percentages of newly fixed
- 524 C in the current year's growth of leaves, shoots, and roots under elevated [CO₂] than
- 525 Ambrosia (Table 2), suggesting Larrea maintained sufficient C sinks and hence enabled
- 526 greater photosynthetic performance. Furthermore, the greatest enhancement of
- 527 photosynthetic performance under elevated [CO₂] occurred in summer for *Larrea* (Fig.
- 528 2A), when carbohydrate concentrations were most similar between elevated and ambient
- 529 [CO₂] treatments. Other studies have related photosynthetic performance under elevated
- 530 [CO₂] to the ability of plants to develop new C sinks or expand the existing ones
- 531 (Ceulemans, 1997) and suggested that down-regulation was the consequence of an
- 532 insufficient sink plant capacity (Morgan et al. 2001, Ainsworth et al. 2004, Aranjuelo et
- al., 2009). Furthermore, when plants exposed to elevated CO₂ exhibited limited capacity
- 534 to increase C sink strength, plants decreased their photosynthetic activity to balance C
- source activity and sink capacity (Thomas and Strain 1991).
- 536 Improved plant water relations in elevated [CO₂], indicated by higher WUE and higher
- 537 Ψ_{stem} (Fig. 2), also helped maintain A_{sat} in *Larrea* during the driest part of the summer. In
- 538 contrast, growth in elevated [CO₂] did not improve WUE or plant water relations in the
- 539 drought-deciduous Ambrosia. During drought periods, plants may partially alleviate
- 540 water stress by accumulating osmolytes (e.g. sugars) to increase cellular water uptake. In
- 541 Ambrosia, sugars and starch were higher in elevated [CO₂], but there was no

542	commensurate increase in Ψ_{stem} in elevated [CO_2] plants during the hotter, drier period of	
543	the growing season. In Larrea, sucrose, glucose and fructose content increased in	
544	elevated [CO2] during spring whereas few significant differences were detected during	
545	summer (July-August), suggesting that changes in soluble sugars were probably not	
546	significant contributors to higher Ψ_{stem} in elevated [CO ₂] plants. However, soluble	
547	sugars were generally much higher in Larrea than Ambrosia during all periods of the	
548	growing season. Therefore, the maintenance of physiological activity in Larrea into the	
549	hottest and driest periods of the growing season, when Ambrosia drops its leaves and	
550	becomes inactive, may be partially attributed to greater access to osmolytes in Larrea	
551	(Smith et al. 1997).	
552	Long-term C storage and C allocation patterns	
553	Modification of atmospheric δ^{13} C in concert with experimental CO ₂ exposure enabled the	
554	characterization of C allocation and partitioning of Larrea and Ambrosia under varying	
555	seasonal growth conditions. In Larrea and Ambrosia plants grown under elevated [CO2],	
556	organs developed during the experimental period were partly (4% and 7%, respectively)	
557	constructed from "old" C (i.e. C that was assimilated prior to the beginning of the	
558	labeling period two years earlier; February 10, 2003) when the source of CO_2 for	
559	elevated plots was switched to fossil-fuel-derived CO2. Thus, most C utilized in plant	
560	growth was derived from "new" C in Larrea (96%) and Ambrosia (93%). Similar results	
561	were described by Körner et al. (2005), where after two years of labeling, 82-89 % of C	
562	present in newly formed shoots and leaves (respectively) for Quercus, Fagus, Acer,	Comentario [*17]: REF 2.12
563	Carpinus, and Tilia trees grown under elevated [CO ₂] was from C assimilated during the	
564	last two years. von Felten et al. (2007) also reported that after two years of C labeling and	
565	exposure to elevated [CO2], 46 % and 42 % of C present in new Larix decidua and Pinus	
566	uncinatus (respectively) shoots was C fixed prior to the labeling period. As observed in	
567	other slow-growing plants, after a long term ¹² CO ₂ enriched labeling period (Aranjuelo et	
568	al. 2009), our results suggest that in a high growth year, both species remobilized stored	
569	C to develop new biomass. Long-term storage and remobilization of C reserves has been	
570	observed in other woody species growing in ambient [CO2] conditions (Lacointe et al.	
571	1993).	

- 572 Both species have main roots (Wallace et al. 1974) that play essential roles in C storage
- 573 during stressful growth conditions (Chaves et al., 1995). As recently observed by
- 574 Franklin et al. (2009) and Crous et al. (2010) in long-term FACE experiments, larger
- 575 investment of C resources in root development will affect leaf N and photosynthetic
- 576 activity in elevated [CO₂] environments. For Mojave Desert shrubs such as Larrea and
- 577 Ambrosia, roots represent a large proportion of plant biomass and consequently an
- 578 important C storage organ (Wallace et al. 1974). Unfortunately, the long-term nature of
- 579 the Nevada Desert FACE experiment precluded harvesting main roots, and thus we were
- 580 not able to verify mobilization of stored C in the main roots of Larrea and Ambrosia.
- 581 The low variation in δ^{13} C and C_{new} for newly-formed organs of *Larrea* and of *Ambrosia*
- 582 throughout the study revealed that export of C to other organs also was fairly constant.
- 583 However for *Larrea*, water stress and elevated temperature (mainly July and August)
- 584 decreased C_{new} in leaves, which suggests that greater amounts of "old" C were allocated
- 585 to new leaf growth during the summer dry season. Regardless of seasonality, shoots and
- 586 roots had constant C_{new}, which suggests that these organs were effective sinks for C.
- 587 When analyzing seasonal fluctuations, it should be noted that C labeling, and
- 588 consequently leaf % of C_{new} in soluble sugars, will be affected by: (1) plant assimilation
- 589 rate; (2) respiration; and (3) translocation to other organs (shoots and roots) (Aranjuelo et
- al. 2009). No significant photosynthetic decrease was observed under elevated [CO₂]
- 591 during June and July, although diminished photosynthesis and lower soluble sugar
- 592 content during August could have contributed to the decrease in C_{new} for fructose in
- 593 Larrea. We also note that in addition to recently formed photoassimilates, C in sucrose,
- 594 glucose, and fructose can be derived through sugar formation during degradation of
- starch reserves (Farrar et al. 2000), and thus variations in starch δ^{13} C also could affect
- 596 δ^{13} C of sucrose (Tcherkez et al. 2003). However, C_{new} in HCl-hydrolyzable C fraction
- 597 (mainly as starch; Richter et al. 2009) was constant in Larrea, and thus this fraction was
- 598 apparently not involved in the decrease in C_{new} of soluble sugars. For Ambrosia,
- 600 storage organs.

601 Conclusions

- 602 This study was conducted during the eighth full growing season of [CO₂] treatment at the
- 603 NDFF, thereby providing insight into the long-term physiological responses of two
- 604 perennial shrubs, Larrea tridentata and Ambrosia dumosa, to elevated [CO₂]. In the
- 605 evergreen shrub Larrea, plants under elevated [CO₂] enhanced photosynthetic
- 606 performance (A_{sat}), maintained C sinks, and improved plant water status (higher WUE
- and Ψ_{stem}), especially during periods of environmental stress in the later part of the
- 608 growing season. In contrast, the drought-deciduous shrub Ambrosia did not increase A_{sat},
- 609 WUE, or Ψ_{stem} under elevated [CO₂]. Surprisingly, we found that g_s and photosynthetic
- 610 capacity (A_{max} , V_{cmax} , J_{max}) were not affected by elevated [CO₂] in either species.
- 611 Although increases in photoprotective pigments were observed in Ambrosia under
- 612 elevated [CO₂], photoprotection was not sufficient to increase photosynthetic
- 613 performance in Ambrosia. On average, 96% and 93% of C present in new growth and
- 614 soluble sugars of *Larrea* and *Ambrosia*, respectively, was recently assimilated C, which
- 615 implies that in this year (2005) when plant growth was strongly increased, plants
- 616 mobilized stored C to fulfill new organ formation requirements. Furthermore, Larrea
- 617 utilized a greater fraction of new C to grow new organs and sustained these sinks for
- 618 longer during the growing season than Ambrosia, indicating that maintenance of C sinks
- 619 by Larrea helps that shrub maintain increased photosynthetic performance during long-
- 620 term exposure to elevated [CO₂] at the Nevada Desert FACE Facility. Thus, although the
- 621 early biochemical adjustments that we observed at the FACE site (i.e. down-regulation of
- 622 photosynthesis) have abated under longer-term exposure to elevated [CO₂], these
- 623 physiological characteristics of Larrea should significantly enhance carbon gain under
- 624 elevated [CO₂] on an annual basis over the long-term.

625 Acknowledgements

- 626 Special thanks to Dene Charlet for substantial logistical and data management support.
- 627 The authors gratefully acknowledge grant support from the Department of Energy's
- 628 Terrestrial Carbon Processes Program (DE-FG02-03ER63650, DE-FG02-03ER63651),
- 629 NSF Ecosystem Studies Program (DEB-0212812), the Nevada Agricultural Experiment

- 630 Station, and the Spanish Education and Science Ministry (BFI-2003-09680, PR2008-
- 631 0247, CGL2009-13079-CO2-02) and Generalitat de Catalunya (BE-11007). Iker
- 632 Aranjuelo was the recipient of a Juan de la Cierva Research Grant from the Spanish
- 633 Education and Science Ministry. We also thank the DOE-NTS Operations Office and
- 634 Bechtel Nevada for site support. Naomi Clark, David Barker, Beth Newingham, and
- 635 Amrita de Soyza provided assistance with data collection, Lynn Fenstermaker and Eric
- 636 Knight with site logistical support, and Jim Raymond with sample preparation and
- 637 processing. Natasja van Gestel acknowledges a scholarship from the Achievement
- 638 Rewards for College Scientists (ARCS) Foundation, Lubbock Chapter.

640 **References**

- 641 Ackerman TL, Romney EM, Wallace A, Kinnear JE (1980) Phenology of desert shrubs
- 642 in southern Nye County, Nevada. Great Basin Nat Memoirs 4:4-23
- 643 Adams WW III, Demmig-Adams B (1992) Operation of the xanthophyll cycle in higher
- 644 plants in response to diurnal changes in incident sunlight. Planta 186:390-398
- 645 Adams WW III, Zarter CR, Mueh KE, Amiard V, Demmig-Adams B (2006) Energy
- dissipation and photoinhibition: a continuum of photoprotection. In: Demmig-Adams B,
- 647 Adams WW III, Matoo AK (eds) Photoprotection, photoinhibition, gene regulation, and
- environment. Advances in Photosynthesis and Respiration, Vol 21, Springer, Dordrecht,pp 49-64
- 650 Ainsworth EA, Rogers A, Nelson R, Long SP (2004) Testing the "source-sink"
- hypothesis of down-regulation of photosynthesis in elevated [CO₂] in the field with
 single gene substitution in *Glycine max*. Agr. Forest Meteorol 122:85-94
- Ainsworth EA, Long SP (2005) Tansley Review: What have we learned from 15 years of
- 654 free-air CO₂ enrichment (FACE)? A meta-analytic review of the responses of
- photosynthesis, canopy properties and plant production to rising CO₂. New Phytol165:351-372
- 657 Aranjuelo I, Irigoyen JJ, Sánchez-Díaz M, Nogués S (2008a) Carbon partitioning in N2
- 658 fixing *Medicago sativa* plants exposed to different CO₂ and temperature conditions.
- 659 Funct Plant Biol 35:306-317
- 660 Aranjuelo I, Erice G, Nogués S, Morales F, Irigoyen JJ, Sánchez-Díaz M (2008b) The
- 661 mechanism(s) involved in the photoprotection of PSII at elevated CO₂ in nodulated
- alfalfa plants. Env Exp Bot 64: 295-236
- 663 Aranjuelo I, Pardo T, Biel C, Savé R, Azcón-Bieto J, Nogués S (2009) Leaf carbon
- management in slow-growing plants exposed to elevated CO₂. Global Change Biol 15:
- 665 97-109

- 666 Beatley JC (1974) Effects of rainfall and temperature on the distribution and behavior of
- 667 Larrea tridentata (Creosote-Bush) in the Mojave Desert of Nevada. Ecology 55:245-261
- 668 Bernacchi CJ, Singsaas EL, Pimentel C, Portis Jr AR, Long SP (2001) Improved
- temperature reponse functions for models of Rubisco-limited photosynthesis. Plant Cell
- 670 Environ 24:253-259
- 671 Billings SA, Schaeffer SM, Zitzer S, Charlet T, Smith SD, Evans RD (2002) Alterations
- 672 of nitrogen dynamics under elevated carbon dioxide in an intact Mojave Desert
- 673 ecosystem: evidence from nitrogen-15 natural abundance. Oecol 131:463-467
- 674 Billings SA, Schaeffer SM, Evans RD (2004) Soil microbial activity and N availability
- 675 with elevated CO₂ in Mojave Desert soils. Glob Biogeo Cycl 18: 1011-1022
- 676 Ceulemans R (1997) Direct impacts of CO₂ and temperature on physiological processes
- 677 in trees. In: Mohren GMJ, Kramer K, Sabaté S (ed) Impacts of global change on tree
- 678 physiology and forest ecosystems. Kluwer Academic Publishers, Dordrecht-Boston-
- 679 London, pp 3-14
- 680 Chaves MM, Pereira JS, Cerasoli S, Clifton-Brown J, Miglietta F, Raschi A (1995) Leaf
- 681 metabolism during summer drought in *Quercus ilex* trees with lifetime exposure to
- 682 elevated CO₂. J Biogeogr 22:255-259
- 683 Chew RM, Chew AE (1965) The primary productivity of a desert shrub (Larrea
- 684 tridentata) community. Ecol Mono 35: 355-375
- 685 Clark NM, Apple ME, Nowak RS (2010) The effects of elevated CO_2 on root respiration
- rates of two Mojave Desert shrubs. Global Change Biol 16:1566-1575
- 687 Crous K, Reich PB, Hunter MD, Ellsworth DS (2010) Maintenance of leaf N controls the
- 688 photosynthetic CO₂ response of grassland species exposed to 9 years of free-air CO₂
- 689 enrichment. Global Change Biol 16:2076-2088

- 690 Demmig-Adams B, Adams WW III (2006) Tansley Review: Photoprotection in an
- 691 ecological context: the remarkable complexity of thermal dissipation. New Phytol
- 692 172:11-21
- 693 Duranceau M, Ghashghaie J, Badeck F, Deléens E, Cornic G (1999) δ^{13} C of CO₂ respired
- 694 in the dark in relation to δ^{13} C of leaf carbohydrates in *Phaseolus vulgaris* L. under
- 695 progressive drought. Plant Cell Environ 22:515-523.
- 696 Ellsworth DS, Reich PB, Naumburg ES, Koch GW, Kubiske ME, Smith SD (2004)
- 697 Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO₂
- across four free-air CO₂ enrichment experiments in forest, grassland and desert. Global
- 699 Change Biol 10:2121-2138
- 700 Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev
- 701 Plant Physiol 33:317-345
- 702 Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of
- 703 photosynthetic CO₂ assimilation in leaves of C₃ species. Planta 149:78-90
- 704 Farquhar GD, Hubick KT, Condon AG, Richards RA (1989) Carbon isotope fractionation
- and water-use efficiency. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes
- in ecological research, vol. 68, Ecological Studies. Springer-Verlag, Berlin, Germany, pp21-40
- 708 Farrar J, Pollock C, Gallagher J (2000) Sucrose and the integration of metabolism in
- 709 vascular plants. Plant Sci 154:1-11
- 710 Felten S von, Hättenschwiler S, Saurer M, Siegwolf R (2007) Carbon allocation in shoots
- 711 of alpine treeline conifers in a CO₂ enriched environment. Trees 21:283-294
- 712 Franklin O, McMurtrie R, Iversen CM, Crous KY, Finzi A, Tissue DT, Ellsworth DS,
- 713 Oren R, Norby RJ (2009) Forest fine-root production and nitrogen use under elevated
- 714 CO₂: contrasting responses in evergreen and deciduous trees explained by a common
- 715 principle. Global Change Biol 15: 132-144

- 716 Gilmore AM, Yamamoto HY (1991) Resolution of lutein and zeaxanthin using a non-
- 717 encapped, lightly carbon-loaded C18 high-performance liquid chromatographic column. J
- 718 Chromatography 543:137-145
- 719 Hamerlynck EP, Huxman TE, Charlet TN, Smith SD (2002) Effects of elevated CO₂
- 720 (FACE) on the functional ecology of the drought-deciduous Mojave Desert shrub,
- 721 Lycium andersonii. Environ Exp Bot 48:93-106
- 722 Hamerlynck EP, Huxman TE, Loik ME, Smith SD (2000a) Effects of extreme high
- 723 temperature, drought, and elevated CO₂ on photosynthesis of the Mojave Desert
- 724 evergreen shrub, Larrea tridentata. Plant Ecol 148:185-195
- 725 Hamerlynck EP, Huxman TE, Nowak RS, Redar S, Loik ME, Jordan DN, Zitzer SF,
- 726 Coleman JS, Seemann JR, Smith SD (2000b) Photosynthetic responses of Larrea
- 727 tridentata to a step-increase in atmospheric CO₂ at the Nevada Desert FACE Facility. J
- 728 Arid Environ 44:425-436
- 729 Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modelling photosynthesis of
- cotton grown in elevated CO₂. Plant Cell Environ 15:271-282
- 731 Housman DC, Naumburg E, Huxman TE, Charlet TN, Nowak RS, Smith SD (2006)
- 732 Increases in desert shrub productivity under elevated CO₂ vary with water availability.
- 733 Ecosystems 9:374-385
- 734 Hymus GJ, Ellsworth DS, Baker NR, Long SP (1999) Does free-air carbon dioxide
- random reaction of the seasons? A enrichment affect photochemical energy use by evergreen trees in different seasons? A
- chlorophyll fluorescence study of mature loblolly pine. Plant Physiol. 120: 1183–1191
- 737 Huxman TE, Hamerlynck EP, Moore BD, Smith SD, Jordan DN, Zitzer SF, Nowak RS,
- 738 Coleman JS, Seemann JR (1998) Photosynthetic down-regulation in Larrea tridentata
- range exposed to elevated atmospheric CO₂: interaction with drought under glasshouse and
- 740 field (FACE) exposure. Plant Cell Environ 21:1153-1161

- 741 Intergovernmental Panel on Climate Change (2007) Climate Change 2007: The physical
- 742 scientific basis: working group I contribution to the fourth assessment report of the
- 743 Intergovernmental Panel on Climate Change. Cambridge Univ Press, Cambridge, UK
- 744 Jifon JL, Wolfe DW (2002) Photosynthetic acclimation to elevated CO₂ in *Phaseolus*
- vulgaris L. is altered by growth response to nitrogen supply. Glob Change Biol 8: 1018–
 1027
- 747 Jin V, Evans RD (2007) Elevated CO₂ affects microbial carbon substrate use and N
- 748 cycling in Mojave Desert soils. Glob Change Biol 13:1-12
- 749 Jin V, Evans RD (2010) Microbial 13C utilization patterns via stable isotope probing of
- 750 phospholipid biomarkers in Mojave Desert soils exposed to ambient and elevated
- 751 atmospheric CO₂. Glob Change Biol 16: 2334-2344
- Jordan DB, Ogren WL (1984) The CO₂/O₂ specificity of ribulose-1,5-bisphosphate
- 753 carboxylase/oxygenase. Dependence on ribulose-bisphosphate concentration, pH and
- temperature. Planta 161:308-313
- 755 Jordan DN, Zitzer SF, Hendrey GR, Lewin KF, Nagy J, Nowak RS, Smith SD, Coleman
- 756 JS, Seemann JR (1999) Biotic, abiotic and performance aspects of the Nevada Desert
- 757 Free-Air CO₂ Enrichment (FACE) Facility. Global Change Biol 6:659-668
- 758 Kodama N, Ferrio JP, Brüggemann N, Gessler A (2010) Short-term dynamics of the
- $\label{eq:carbon isotope composition of CO_2 emitted from a wheat agroecosystem-physiological$
- and environmental controls. Plant Biol, doi. 10.1111/j.1438-8677.2010.00329
- 761 Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S,
- 762 Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees
- responsed to elevated CO₂. Science 309: 1360-1362
- Lemon, ER (1983) CO₂ and plants: The response of plants to rising levels of atmospheric
- 765 carbon dioxide. AAAS Selected Symposium 84. Washington, DC, USA.

- 766 Lewis, JD, Wang XZ, Griffin KL, Tissue DT (2002) Effects of age and ontogeny on
- photosynthetic responses of a determinate annual plant to elevated CO₂ concentrations.
- 768 Plant Cell Environ 25: 359–368
- 769 Logan BA, Combs A, Myers K, Kent R, Stanley L, Tissue DT (2009) Seasonal response
- of photosynthetic electron transport and energy dissipation in the eighth year of exposure
- to elevated atmospheric CO₂ (FACE) in *Pinus taeda* (loblolly pine). Tree Physiol
- 29:789-797
- 773 Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide:
- Plants FACE the future. Annu Rev Plant Biol 55:591-628
- 775 Morgan JA, Skinner RH, Hanson JD (2001) Nitrogen and CO₂ affect regrowth and
- biomass partitioning differently in forage of three functional groups. Crop Sci 41: 78-86
- 777 Mooney HA, Björkman O, Collatz GJ. 1978. Photosynthetic acclimation to temperature
- 778 in the desert shrub, Larrea divaricata. I. Carbon dioxide exchange characteristics of
- 779 intact leaves. Plant Physiol 61:406-410
- 780 Moore BD, Cheng SH, Sims D, Seemann JR (1999) The biochemical and molecular basis
- for photosynthetic acclimation to elevated atmospheric CO₂. Plant, Cell Environ 22: 567582
- 783 Naumburg E, Housman DC, Huxman TE, Charlet TN, Loik ME, Smith SD (2003)
- 784 Photosynthetic responses of Mojave Desert shrubs to free air CO₂ enrichment are greatest
- 785 during wet years. Global Change Biol 9:276-285
- 786 Naumburg E, Loik ME, Smith SD (2004) Photosynthetic responses of Larrea tridentata
- 787 to seasonal temperature extremes under elevated CO₂. New Phytol 162:323-330
- 788 Nogués S, Tcherkez G, Cornic G, Ghashghaie J (2004) Respiratory carbon metabolism
- following illumination in intact French bean leaves using ${}^{13}C/{}^{12}C$ isotope labeling. Plant
- 790 Physiol 136:3245-3254

- 791 Nogués S, Aranjuelo I, Pardo T, Azcón-Bieto J (2008) Assessing the stable-carbon
- isotopic composition of intercellular CO₂ in a CAM plant at two CO₂ levels. Rapid
- 793 Comm Mass Spectr 22:1017-1022
- 794 Nowak RS, DeFalco LA, Wilcox CS, Jordan DN, Coleman JS, Seemann JR, Smith SD
- 795 (2001) Leaf conductance decreased under free-air CO₂ enrichment (FACE) for three
- perennials in the Nevada desert. New Phytol 150:449-458
- 797 Nowak RS, Zitzer SF, Babcock D, Smith-Longozo V, Charlet TN, Coleman JS, Seemann
- 798 JR, Smith SD (2004) Elevated atmospheric CO₂ does not conserve soil moisture in the
- 799 Mojave Desert. Ecology 85:93-99
- 800 Ogle K, Reynolds JF (2002) Desert dogma revisited: coupling of stomatal conductance
- and photosynthesis in the desert shrub, *Larrea tridentata*. Plant Cell Environ 25:909-921
- 802 O'Neal ME, Landis DA, Isaacs R (2002) An inexpensive, accurate method for measuring
- leaf area and defoliation through digital analysis. J Econ Entomol 95:1190-1194
- 804 Pockman WT, Sperry JS (1997) Freezing-induced xylem cavitation and the northern limit
- 805 of Larrea tridentata. Oecologia 109:19-27
- 806 Richter A, Wanek W, Werner RA, Ghashghaie J, Jäggi M, Gessler A, Brugnoli E,
- 807 Hettmann E, Göttlicher SG, Salmon Y, Bathellier C, Kodama N, Nogués S, Søe A,
- 808 Volders F, Sörgel K, Blöchl A, Siegwolf RTW, Buchmann N, Gleixner G (2009)
- 809 Preparation of starch and soluble sugars of plant material for the analyses of carbon
- 810 isotope composition: a comparison of methods. Rapid Comm Mass Spectr 23:2476-2488
- 811 Schaeffer SM (2005) Determining the effects of global change on soil nitrogen cycling in
- 812 arid ecosystems. PhD thesis. University of Arkansas.
- 813 Sharifi MR, Meinzer FC, Nilsen ET, Rundel PW, Virginia RA, Jarrell WM, Herman DJ,
- 814 Clark PC (1988) Effects of manipulation of water and nitrogen supplies on the
- 815 quantitative phenology of Larrea tridentata (creosote bush) in the Sonoran Desert of
- 816 California. Am J Bot 75:1163-1174.

- 817 Smith SD, Monson RK, Anderson JE (1997) Physiological ecology of North American
- 818 desert plants. Springer-Verlag, Berlin, Germany
- 819 Smith SD, Nowak RS (1990) Ecophysiology of plants in the intermountain lowlands. In:
- 820 Osmond CB, Pitelka LF, Hidy GM (eds) Plant biology of the Basin and Range. Springer-
- 821 Verlag, New York, NY, USA, pp 182-196
- 822 Tcherkez G, Nogues S, Bleton J, Cornic G, Badeck F, Ghashghaie J (2003) Metabolic
- 823 origin of carbon isotope composition of leaf dark-respired CO_2 in French bean. Plant
- 824 Physiol 131:237-244
- 825 Theobald JC, Mitchell RAC, Parry MAJ, Lawlor DW (1998) Estimating the excess
- 826 investment in ribulose-1,5-bisphosphate carboxylase/oxygenase in leaves of spring wheat
- 827 grown under elevated CO₂. Plant Physiol 118: 945-955
- 828 Thomas RB, Strain BR (1991) Root restriction as a factor in photosynthetic acclimation
- 829 of cotton seedlings grown in elevated carbon dioxide. Plant Physiol 96: 627-634
- 830 Tissue DT, Griffin KL, Turnbull MT, Whitehead D (2001) Canopy position and needle
- age affect photosynthetic response in field-grown *Pinus taeda* after five years exposure to
- 832 elevated carbon dioxide partial pressure. Tree Physiol 21:915-923
- 833 Tissue DT, Griffin KL, Turnbull MH, Whitehead D (2005) Stomatal and non-stomatal
- 834 limitations to photosynthesis in four tree species in a temperate rainforest dominated by
- 835 Dacrydium cupressinum in New Zealand. Tree Physiol 25:447-456
- 836 Tissue DT, Thomas RB, Strain BR (1993) Long-term effects of elevated CO₂ and
- 837 nutrients on photosynthesis and rubisco in loblolly pine seedlings. Plant Cell Environ
- 838 16:859-865
- 839 Wallace A, Bamberg SA, Cha JW (1974) Quantitative studies of roots of perennial plants
- 840 in the Mojave Desert. Ecology 55:1160-1162
- 841 Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J,
- 842 Huxman TE, Knapp AK, Lin G, Pockman WT, Shaw MR, Small EE, Smith MD, Smith

- 843 SD, Tissue DT, Zak JC (2003) Assessing the response of terrestrial ecosystems to
- 844 potential changes in precipitation. BioScience 53:941-952
- 845 Wullschleger SD (1993) Biochemical limitations to carbon assimilation in C3 plants a
- retrospective analysis of the AC_i curves from 109 species. J Exp Bot 44:907-920
- 847 Wullschleger SD, Tschaplinski TJ, Norby RJ (2002) Plant water relations at elevated
- 848 CO₂: implications for water-limited environments. Plant Cell Environ 25:319-331
- 849 Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO₂, fine
- roots and the response of soil microorganisms: a review and hypothesis. New Phytol
- 851 147:201-222
- 852 Zhu C, Zhu J, Zeng Q, Liu G, Xie Z, Tang H, Cao J, Zhao X (2009) Elevated CO₂
- accelerates flag senescence in wheat due to ear photosynthesis which causes greater ear
- 854 nitrogen sink capacity and ear carbon sink limitation. Funct Plant Biol 36:291-299

Table 1. Elevated CO₂ exposure (ambient CO₂ *versus* elevated CO₂) effect in terms of N (%), C/N ratio, sucrose (mg g⁻¹DM), glucose (mg g⁻¹DM), fructose (mg g⁻¹DM), and starch (mg g⁻¹DM)of *Larrea tridentata* and *Ambrosia dumosa* leaves. Parameters that differed significantly due to [CO₂] were highlighted in bold. Each value represents the mean \pm standard deviation.

Larrea April tridentata		May		June		July		August		
	Ambient	Elevated	Ambient	Elevated	Ambient	Elevated	Ambient	Elevated	Ambient	Elevated
N	2.1±0.1	1.8±0.1	1.9±0.1	1.6±0.1	2.2±0.1	1.8±0.2	1.9±0.2	1.7±0.2	2.0±0.05	1.9±0.2
C/N	23.8±0.2	25.6±1.8	26.3±0.9	30.5±2.9	23.3±0.0	27.2±2.0	29.7±5.4	25.9±1.7	25.0±1.0	27.1±1.0
Sucrose	13.3±0.7	10.3±0.6	16.2±1.3	18.8±0.1	18.8±0.3	25.2±0.2	4.7±0.6	4.8±0.02	0.9±0.2	1.8±0.0
Glucose	10.4±0.9	7.2±0.8	11.7±1.4	9.7±0.1	5.4±0.2	10.4±0.0	2.3±0.0	1.2±0.0	1.6±0.0	1.4±0.0
Fructose	9.2±0.5	11.2±1.0	8.1±1.1	15.9±0.1	6.4±0.3	13.3±0.24	2.5±0.0	5.4±0.1	1.7±0.0	3.0±0.1
Starch	223.6±17.8	225.4±19.4	109.6±21.6	165.8±23.2	83.7±7.2	112.7±11.7	70.7±8.9	92.1±11.9	24.7±4.7	64.6±6.8

Ambrosia dumosa	Ap	oril	M	ay	June		July	
	Ambient	Elevated	Ambient	Elevated	Ambient	Elevated	Ambient	Elevated
Ν	4.6±0.0	3.6±0.1	3.2±0.2	2.2±0.1	2.4±0.1	2.4±0.1	1.8±0.1	1.7±0.1
C/N	9.5±0.1	11.7±0.4	13.5±0.6	20.4±2.7	20.7±1.4	18.1±1.1	23.9±0.9	24.6±0.8
Sucrose	23.3±1.0	15.4±0.9	22.9±0.8	48.9±1.1	14.4±0.2	23.7±0.6	4.9±0.1	13.4±0.0
Glucose	5.6±0.7	7.3±0.1	6.1±0.0	9.8±0.8	4.4±0.1	2.1±0.0	2.8±0.2	4.9±0.1
Fructose	3.6±0.1	8.7±0.3	5.9±0.3	13.8±0.1	7.8±0.1	2.8±0.1	1.5±0.3	3.4±0.0
Starch	44.9±5.9	58.9±9.1	57.5±4.6	98.6±15.0	56.8±3.2	78.4±8.7	39.2±3.8	46.1±6.1

- **Table 2.** Elevated CO₂ exposure effect in terms of % of new C (C_{new}) in leaf shoot, root total organic matter (TOM) and C_{new} in leaf
- 863 sucrose, glucose, fructose and starch (HCl-C) for *Larrea tridentata* and *Ambrosia dumosa*. Each value represents the mean ± standard

864 deviation.

Larrea tridentata	April	May	June	July	August
Leaf C _{new}	96.21±0.82	96.17±0.3	97.04±0.17	93.04±0.23	94.71±0.24
Shoot C _{new}	96.97±0.36	96.53±0.15	96.50±1.49	95.89±1.24	95.92±0.11
Root C _{new}	92.15±0.50	92.41±0.17	93.78±0.13	No sample	No sample
Sucrose C _{new}	94.00±0.45	94.95±0.77	96.14±	92.21±0.17	93.68±0.01
Glucose C _{new}	93.89±0.25	95.79±0.35	95.91±0.42	87.79±0.23	89.90±0.14
Fructose C _{new}	92.76±0.21	93.08±0.25	94.58±0.16	90.39±0.11	87.80±0.16
Starch (HCl-C) C _{new}	95.57±0.24	95.79±0.11	96.07±0.09	95.81±1.02	95.82±0.95

Ambrosia dumosa	April	May	June	July
Leaf C _{new}	92.89±0.7	92.94±0.16	95±0.67	94.50±0.69
Shoot C _{new}	93.11±0.20	93.03±0.37	94.13±0.23	93.29±0.30
Root C _{new}	92.63±0.20	91.77±0.18	90.81±0.51	No sample
Sucrose C _{new}	93.60±0.41	95.11±0.53	94.69±0.37	92.970.28
Glucose C _{new}	92.01±0.12	92.66±0.14	92.01±0.23	90.28±0.07
Fructose C _{new}	90.23±0.54	93.27±0.13	94.02±0.03	88.40±0.26
Starch (HCl-C) C _{new}	86.52±0.30	92.00±0.53	88.25±0.32	84.78±0.83

868 Figure Legends

- 869 Fig. 1 Average monthly maximum and minimum temperature (A), daily precipitation (B),
- and volumetric soil water content at 0-30 and 0-50 cm depths (C) during 2005 at the
- 871 Nevada Desert FACE Facility. There were no soil moisture differences between ambient
- and elevated [CO₂] plots for either depth.
- Fig. 2 Plant physiological performance at ambient (filled symbols; 380 μmol mol⁻¹)
- 874 *versus* elevated (open symbols; 550 μmol mol⁻¹) atmospheric [CO₂] measured as: (A,B)
- 875 A_{sat} (light-saturated net assimilation rate, A_{net}); (C,D) stomatal conductance (g_s); (E,F)
- 876 Water-Use Efficiency (WUE) calculated as A_{sat}/g_s ; and (G,H) pre-dawn water potential
- 877 (Ψ) for Larrea tridentata (left panels) and Ambrosia dumosa (right panels). Vertical bars
- 878 represent \pm one standard deviation.
- Fig. 3 Mechanistic photosynthesis at ambient versus elevated [CO₂] in Larrea tridentata
- 880 and Ambrosia dumosa measured as: (A,B) maximum (CO₂-saturated) assimilation rate
- 881 (A_{max}) ; (C,D) maximum carboxylation rate of Rubisco (V_{cmax}) ; (E,F) maximum electron
- transport rate (J_{max}) and (G,H) relative stomatal limitation (L_s) . All symbols are as in Fig. 2.
- 884 Fig. 4. Photosynthetic pigments at ambient versus elevated [CO₂] in Larrea tridentata
- and Ambrosia dumosa measured as: (A,B) chlorophyll a+b; (C,D) the ratio of
- 886 xanthophyll cycle pigments to chlorophyll a+b; and (E,F) the xanthophyll pool
- 887 conversion state ((Z+A)/(V+A+Z)) All symbols are as in Fig. 2.
- 888 Fig. 5. Results of principal components analysis (PCA) displayed as vector correlations
- 889 among variables for Larrea tridentata (A) and Ambrosia dumosa (C) for the first and
- second principal components (PC1 and PC2). The length and angle between a pair of
- 891 vectors is an indication of the strength and nature, repectively, of their correlations.
- 892 Results of discriminant function analysis (DFA) in vector format show the direction of
- 893 responses of Larrea (B) and Ambrosia (D) to ambient and elevated [CO₂] treatments.
- 894 The direction of the vector is an indication of whether an increase or decrease was
- 895 observed in a particular variable, with vectors to the right indicating a positive response

- to elevated [CO₂], and the length of the vector is an indication of the strength of the
- 897 response. Plant variables used in this analysis: A_{max} ; A_{sat} ; g_s ; L_s ; WUE; V_{cmax} ; J_{max} ;
- 898 F_vF_m ; plant Ψ ; Chl a + b; [Z+A]/[V+A+Z]; [Z+A]/[Chl a + b] (plant variables as
- 899 described in previous figure legends).

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.