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Abstract  1 

During the first few years of elevated atmospheric [CO2] treatment at the Nevada Desert 2 

FACE Facility, photosynthetic down-regulation was observed in desert shrubs grown 3 

under elevated [CO2], especially under relatively wet environmental conditions. 4 

Nonetheless, those plants maintained increased Asat (photosynthetic performance at 5 

saturating light but treatment [CO2]) under wet conditions but to a much lesser extent 6 

under dry conditions. To determine if plants continued to down-regulate during long-term 7 

exposure to elevated [CO2], responses of photosynthesis to elevated [CO2] was examined 8 

in two dominant Mojave Desert shrubs, the evergreen Larrea tridentata and the drought-9 

deciduous Ambrosia dumosa, during the eighth full growing season of elevated [CO2] 10 

treatment at the NDFF.  A comprehensive suite of physiological processes were 11 

collected. Furthermore,  we used C labeling of air to assess carbon allocation and 12 

partitioning as measures of C sink activity. Results show that elevated [CO2] enhanced 13 

photosynthetic performance and plant water status in Larrea, especially during periods of 14 

environmental stress, but not in Ambrosia. δ13C analyses indicate that Larrea under 15 

elevated [CO2] allocated a greater proportion of newly assimilated C to C sinks than 16 

Ambrosia. Maintenance by Larrea of C sinks during the dry season partially explained 17 

the reduced [CO2] effect on leaf carbohydrate content during summer, which in turn 18 

lessened carbohydrate build-up and feedback inhibition of photosynthesis. δ13C results 19 

also showed that in a year when plant growth reached the highest rates in 5 years, 4% 20 

(Larrea) and 7% (Ambrosia) of C in newly emerging organs was remobilized from C that 21 

was assimilated and stored for at least 2 years prior to the current study. Thus after eight 22 

years of continuous exposure to elevated [CO2], both desert perennials maintained 23 

photosynthetic capacity under elevated [CO2] We conclude that  C storage, 24 

remobilization, and partitioning influence responsiveness of these desert shrubs during 25 

long-term exposure to elevated [CO2

 27 

]. 26 

Keywords: Ambrosia dumosa, C allocation/partitioning, Free-air CO2
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 30 

Introduction 31 

Initial increases in net assimilation rates of vascular plants exposed to elevated 32 

atmospheric [CO2] may not be sustained over long time periods because of “a hierarchy 33 

of increasingly complex processes controlling the production and allocation of end-34 

products” (Lemon 1983).  For example, plants photosynthetically acclimate (i.e. down-35 

regulate) to growth in elevated [CO2] through changes in the photosynthetic apparatus, 36 

including lower light- and CO2-saturated photosynthesis (Amax) as well as lower Vcmax 37 

(maximum Rubisco carboxylation) and Jmax (maximum electron transport) (Tissue et al. 38 

1993, 2001).  A second process that may impact the long-term enhancement of 39 

photosynthesis under elevated [CO2] is reduced N availability, such as through re-40 

allocation of N within the plant to meet other growth needs (Theobald et al. 1998, Zhu et 41 

al. 2009) or reduced N cycling in the ecosystem (Zak et al. 2000). Support for this 42 

process comes from meta-analyses of both FACE (free-air carbon dioxide enrichment) 43 

and OTC (open-top chamber) studies: some plants, but particularly woody species, that 44 

exhibit photosynthetic acclimation also exhibit declines in leaf N and Rubisco content 45 

(Long et al. 2004, Ainsworth and Long 2005).  These trends also have been replicated in 46 

comparative gas exchange studies across several FACE sites (Ellsworth et al. 2004).  47 

Another process that may impact the long-term enhancement of photosynthesis under 48 

elevated [CO2] is feedback inhibition of photosynthesis by carbohydrate accumulation 49 

(Moore et al. 1999, Jifon and Wolfe 2002).  Meta-analyses also support this process: 50 

many studies describe increased leaf starch or soluble sugars at elevated [CO2] (Long et 51 

al. 2004, Ainsworth and Long 2005). Thus over the long term, elevated CO2

Comentario [*3]: REF. 1.4 

 effects on 52 

leaf C assimilation may be conditioned by an ecosystem’s ability to provide adequate N 53 

through changes in N cycling and by a plant’s ability to develop new sinks (e.g. new 54 

vegetative or reproductive structures) or to expand the storage capacity or growth rate of 55 

existing sinks like shoots and roots (Lewis et al. 2002, Aranjuelo et al. 2009).  Clearly, 56 

these processes are not mutually exclusive.  Nonetheless, understanding this “hierarchy 57 

of increasingly complex processes” is critical to realistically predict long-term ecosystem 58 

C assimilation from the atmosphere. 59 
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The Nevada Desert FACE Facility (NDFF) is an ideal system to investigate how plants 60 

control photosynthesis during long-term exposure to elevated [CO2].  Nitrogen cycling at 61 

the NDFF rapidly changed after initiation of elevated [CO2] treatments (Billings et al. 62 

2002), increasing N availability (Billings et al. 2004) largely through shifts in soil 63 

microbial activity (Jin and Evans 2007, 2010).  Thus, mechanisms that cause 64 

photosynthetic changes in plants at the NDFF should be influenced more by within-plant 65 

processes, such as by N re-allocation within leaves or among tissues or by the size and 66 

activity of C sinks, than by N availability through ecosystem N cycling.  In the first five 67 

years of the NDFF experiment, alterations in physiological processes due to elevated 68 

[CO2] were observed in annual and perennial plants in the NDFF.  For example, water 69 

was severely limiting in most years such that differences in photosynthetic rates between 70 

perennial plants growing in elevated versus ambient [CO2] were minimal, with 71 

significant differences in photosynthesis only observed in years or seasons with adequate 72 

or above-average rainfall (Naumburg et al. 2003).  Similarly, photosynthetic down-73 

regulation – reductions in Amax (maximum net photosynthesis at saturating photosynthetic 74 

photon flux density (PPFD) and [CO2]), Vcmax and Jmax – was observed only in wet years 75 

for plants grown in elevated [CO2] (Huxman et al. 1998, Hamerlynck et al. 2000b).  76 

However, these previous studies, as well as those from other FACE experiments, did not 77 

examine the relative importance of different processes, including leaf N and 78 

carbohydrates and carbon management (allocation and partitioning), in regulating 79 

photosynthetic performance during long-term elevated [CO2

Another advantage of the NDFF and other FACE experiments is that use of a 

]. 80 

13C 81 

depleted fossil fuel source to achieve elevated [CO2] treatments introduces C isotope 82 

tracers into the system.  These 13C/12C tracers provide an essential tool to study carbon 83 

management in plants (Körner et al. 2005, von Felten et al. 2007, Aranjuelo et al. 2008a, 84 

2009). Labelling with 13C/12C as tracers and characterization of the distribution of 85 

labelled compounds into different plant organs has provided novel and relevant 86 

information in studies determining the flow of C through plants grown in elevated [CO2

Comentario [*4]: REF. 1.5 

] 87 

(Aranjuelo et al. 2009). C allocation and partitioning can be studied further by analyzing 88 

the isotopic composition of soluble sugars, especially sucrose, glucose, and fructose 89 
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(Körner et al. 2005, Kodama et al. 2010), which are anticipated to change under elevated 90 

[CO2

In this study, a comprehensive suite of physiological process and C balance data were 92 

collected from plants during the eighth full growing season of continuous exposure to 93 

elevated [CO

] (Aranjuelo et al. 2009).  91 

2] and used to examine the regulation of photosynthetic performance during 94 

long-term exposure to elevated [CO2] at the NDFF. Photosynthetic responses and carbon 95 

allocation/partitioning patterns were measured for the two dominant shrub species of the 96 

Mojave Desert, the evergreen Larrea tridentata and the drought deciduous Ambrosia 97 

dumosa. Measurements were made throughout the growing season: from cooler, wetter 98 

periods of peak growth in spring to hotter, drier periods of pronounced water stress in 99 

summer.  Specifically, we examined leaf gas exchange, leaf pigments, leaf N, and leaf 100 

soluble sugars and starch to determine the extent that photosynthetic performance was 101 

enhanced during long-term exposure to elevated [CO2] and to test specific mechanisms 102 

that may cause reduced photosynthetic performance. Because photosynthetic 103 

performance is affected by leaf-level and plant-level C allocation, photoassimilate 104 

allocation and partitioning also were studied through the use of 13C/12C labeling. We 105 

hypothesized that these desert species would down-regulate photosynthesis under 106 

elevated [CO2] during the moist, early portions of the growing season and that down-107 

regulation would be accompanied by altered leaf pigmentation, decreased leaf N, and 108 

increased leaf starch and soluble sugars. Furthermore, we hypothesized that reduced 109 

capacity of plants to allocate C away from leaves also would limit photosynthetic 110 

performance under elevated [CO2

 112 

].  111 

Materials and Methods 113 

Field site and C-labeling procedures 114 

The Nevada Desert FACE Facility (NDFF) is located within the Nevada Test Site 115 

(36°39’N, 122°55’W, 960 m altitude).  Three plots (23 m diameter; 415 m2

Comentario [*5]: REF. 2.2; 2.3 

) had the full 116 

FACE apparatus (stand-pipes and blowers) and continuously exposed plants to elevated 117 



 6 

[CO2] (target of 550 μmol mol-1; averaged over 2005, actual treatment was 521 μmol 118 

mol-1) and three plots had the FACE apparatus but blow air onto the plots at ambient 119 

[CO2] (measured during the 2005 growing season as 380 μmol mol-1).  The NDFF 120 

operated continuously (24 h per day, 365 d per year), with conditional shut-downs 121 

occurring only when air temperature dropped below 4°C or when wind speed exceeded 7 122 

m s-1

Elevated [CO

.  The 2005 growing season was the eighth full year of operation for the NDFF.  The 123 

ecosystem within each plot was not disturbed during installation of the FACE apparatus 124 

and represents the same functioning ecosystem as the surrounding landscape in the 125 

northern Mojave Desert.  The facility, vegetation, and soils are fully described in Jordan 126 

et al. (1999). 127 

2] was provided by supplementing ambient air with pure CO2 to achieve the 128 

desired CO2 concentration. Prior to February 10, 2003, the pure CO2 (supplied by BOC 129 

Gases; Murray Hill, NJ, USA) was from a geologic source and had a CO2 isotopic 130 

composition (δ13C) of -5.4 ‰, which diluted ambient air δ13C (-8.0 ‰) to δ13C of air 131 

above the elevated [CO2] plots of -7.3 ‰ (Naumburg et al. 2003). On February 10, 2003, 132 

we switched the source of pure CO2 to fossil fuels, which had a more 13C depleted δ13C  133 

(-32.0 ‰), resulting in a δ13C of CO2 in air of -18.2 + 1.9 ‰ for elevated [CO2

Plant material and sampling 136 

] plots 134 

(Schaeffer 2005). 135 

The evergreen shrub Larrea tridentata (creosote bush) and the drought-deciduous shrub 137 

Ambrosia dumosa (white bursage) were selected for study. New leaves on Larrea at the 138 

NDFF emerge in late April or early May, with the majority of new growth occurring 139 

between mid-May and mid-June (Housman et al. 2006). Individual leaves (leaflets) live 140 

approximately 18 months (Sharifi et al. 1988). Ambrosia initiates a leaf canopy in early 141 

spring and then loses all its leaves during the hot, dry summer months and remains 142 

deciduous until the next year (Ackerman et al. 1980). 143 

For Larrea and Ambrosia, leaves, shoots and roots that emerged during the current year 144 

were harvested for C isotopic composition (δ13C) and N in early morning. Leaves and 145 
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shoots were harvested monthly from April until July for both species and until August for 146 

Larrea. No data were presented for Ambrosia in August because those plants had entered 147 

their physiological dormancy period. In both cases, root sampling occurred only during 148 

April-June because new root formation did not occur in July or August for either species. 149 

Root samples were collected from root boxes located at the base of each shrub species 150 

(Clark et al. 2010). On each sampling date, harvests were from two plants per species in 151 

each of the three elevated and the three ambient [CO2

Samples for xylem water potential, sugar content, and pigment analysis were all taken at 153 

pre-dawn, when plants were under minimal daily water stress.  Starting approximately 154 

1.5 hours before sunrise on each sampling date, two terminal shoot (stem + leaves) 155 

samples were removed from each of two study plants per plot in each of the three 156 

elevated and three ambient [CO

] plots. 152 

2

Photosynthetic measurements 166 

] plots.  Samples were placed in plastic bags, stored in a 157 

cooler and moved to a field lab adjacent to the research plots where they were prepared 158 

and analyzed. Pigment samples (approximately 4-6 leaves) were removed from branches 159 

and quickly placed in liquid nitrogen. Plant water potential of the other intact shoot 160 

sample was determined using a Scholander-type pressure chamber (Soil Moisture Stress 161 

Inc., Santa Barbara, CA, U.S.A.).   Sugar analyses required significantly larger samples; 162 

therefore, all the remaining leaves from water potential determinations were pooled.  163 

Leaves for sugar analyses were removed from the stems in the dark and placed in liquid 164 

nitrogen after harvest. 165 

Photosynthetic gas exchange was measured with a LI-6400 portable photosynthesis 167 

system (Li-Cor Inc., Lincoln, NE, USA) equipped with a CO2 control module and a red-168 

blue light emitting diode light source (Model 6400-02B).  For gas exchange 169 

measurements, we sampled five plants from one elevated [CO2] ring and five plants from 170 

one ambient [CO2

Comentario [*6]: REF 2.6 

] ring.  Sampling from additional FACE rings was not logistically 171 

feasible in this study due to the requirement that plants be accessed from a pivoting 172 

walkway, so we maximized sample size within individual large plots.  The two selected 173 

plots were paired plots (i.e. same watershed position) in the overall experimental site, and 174 
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so had highly similar surface and soil characteristics.  Also, previous studies confirmed 175 

that plot-based variation in plant physiological parameters was relatively low for both 176 

evergreen and deciduous shrubs.  For the evergreen Larrea, using 18 different dates 177 

between 1998 and 2004 in which we had plot-replicate data from ACi curves (n = 36 with 178 

18 dates times the two [CO2] treatments), we found the following coefficients of 179 

variation (CV’s): Vcmax plant-to-plant = 22.0, plot-to-plot = 18.2; Jmax plant-to-plant = 180 

34.2, plot-to-plot = 25.7.  Therefore, whereas individual plant variation was large, 181 

variation was consistently lower between sampling plots than between individual plants.  182 

Furthermore, these photosynthetic parameters were not consistently higher in one plot 183 

than another for either ambient or elevated [CO2] treatments.  Sampling two plots also 184 

allowed paired-in-time measurements at ambient and elevated [CO2

Photosynthetic CO

] to occur at highly 185 

similar temperature and VPD conditions during the day.  This requirement could not have 186 

been met if we sampled six separate plots (FACE rings) with a single plant in each plot 187 

due to the time required to move between plots.  188 

2 response curves (ACi) were determined by measuring the response 189 

of photosynthesis (A) to varying intercellular CO2 concentration (Ci).  External [CO2] 190 

(Ca) was supplied in 8 steps, increasing from 120 to 1500 µmol [CO2] mol-1 air, with 191 

irradiance (Q) maintained at a saturating value of 1500 µmol m-2 s-1.  Measurements were 192 

initiated after gs reached steady state and then recorded automatically at each Ca set point 193 

when photosynthesis had equilibrated, which was typically less than 2 min.  Foliage 194 

temperature during ACi curves was maintained at ambient air temperature using 195 

thermoelectric coolers.  Leaf-to-air vapor pressure deficit was generally between 1.5 and 196 

3.0 kPa, reflecting ambient conditions.  Because both Larrea and Ambrosia have small, 197 

microphyllous leaves, more than one leaf (leaflets in Larrea) was inserted into the gas 198 

exchange cuvette. After the ACi

AC

 curve was generated, all material inside the cuvette was 199 

collected and leaf area was determined using a flatbed scanner and analyzed with 200 

software from Scion Imaging (Scion Corporation, Frederick, MD, USA). Leaves were 201 

subsequently dried at 60°C for at least 2 days and then weighed.  202 

i

Comentario [*13]: REF 2.9. 

 data were analyzed using the photosynthetic biochemical model of Farquhar et al. 203 

(1980) to estimate two biochemical parameters potentially limiting to photosynthesis: 204 

Comentario [*14]: REF. 2.10 



 9 

Vcmax (maximum carboxylation rate of Rubisco) and Jmax (maximum electron transport 205 

rate), which were temperature corrected to 25°C (Bernacchi et al. 2001).  We used the 206 

Michaelis-Menten constants of Rubisco described in Harley et al. (1992) and used by 207 

Wullschleger (1993), where Kc (Michaelis-Menten constant for RuBP carboxylation) = 208 

16 Pa, Ko (Michaelis-Menten constant for oxygenation) = 37961 kPa, and τ (specificity 209 

factor for Rubisco; Jordan and Ogren 1984) = 2823, for both species.  Net photosynthesis 210 

at saturating Q (Asat) was taken directly from the ACi curves at each growth [CO2].  211 

Previous experiments have shown that for these species, mid-morning Asat is a good 212 

estimate of diurnal integrated [CO2] assimilation (Aday; Naumburg et al. 2003).  Net 213 

photosynthesis at saturating [CO2] and saturating Q (Amax) was also determined from the 214 

ACi curves.  The relative stomatal limitation to photosynthesis (Ls) was calculated using 215 

the method of Farquhar and Sharkey (1982) as described in Tissue et al. (2005) using 216 

CO2 concentrations of 550 μmol mol-1 and 380 μmol mol-1 for elevated and ambient 217 

[CO2

Biochemical analyses  219 

], respectively. 218 

For sugar extraction, plant samples were lyophilized and then ground to a fine powder 220 

(<10 µm). About 50 mg of the fine powder was suspended in 1 mL of distilled water in 221 

an Eppendorf tube (Eppendorf Scientific, Hamburg, Germany), mixed, and then 222 

centrifuged at 12,000 g for 5 minutes at 5 ºC. After centrifugation, the supernatant was 223 

used for total soluble sugar quantification, whereas the pellet was stored at -80ºC for the 224 

starch analyses. Supernatant fraction was heat denatured at 100 ºC for 3 minutes and 225 

precipitated by centrifugation at 12,000 g during 5 minutes at 5 ºC. The non-precipitated 226 

phase then was used for sugar content analysis (Nogués et al. 2004). Starch samples were 227 

purified and quantified through the elimination of the chlorophyllous pigments using 228 

ethanol, followed by the starch solubilization step with HCl and its flocculation using 229 

methanol (Duranceau et al. 1999).  230 

Purification of soluble sugar samples used a solid phase extraction pre-column (Oasis 231 

MCX 3cc, Waters). Sugar contents were analyzed using a Waters 600 high performance 232 

liquid chromatograph (Waters Millipore Corp., Milford, MA, USA). The HPLC 233 

Comentario [*15]: REF 2.11.  
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refractive index detector (Waters 2414) was set at 37 ºC. Samples were eluted from the 234 

columns at 85 ºC (Aminex HPX-87P and Aminex HPX-87C connected in series, 300 mm 235 

x 7.8 mm; BioRad) with water at 0.6 mL min-1 flow rate and 45 min retention time. 236 

Sucrose, glucose, and fructose were collected and transferred to tin capsules for isotope 237 

analysis. The use of the purification pre-columns, together with the two Aminex columns 238 

connected in series enabled the separation of sugars (sucrose, glucose and fructose), 239 

avoiding possible contamination problems raised by Richter et al. (2009). Furthermore, as 240 

an additional precaution, initial and final phases of peaks were discarded when collecting 241 

the peaks. Although there is no specific technique to measure purified starch δ13C, we 242 

utilised a protocol (Richter et al. 2009) to analyze δ13C of the HCl-hydrolysable C (HCl-243 

C), which is mainly composed of starch; subsequently, HCl-C was our surrogate for 244 

starch C isotopic composition. δ13

Leaf pigment samples were collected at pre-dawn, immediately frozen in liquid N and 248 

stored in an ultra-low freezer (-85 °C) prior to lyophilization.  Before HPLC analysis, the 249 

dry mass of each sample was determined and approximately 10 mg dry mass of leaf 250 

material was used for pigment extraction.  Samples were ground to a fine pulp in the dark 251 

in ice-cold 80% acetone (v/v) with an addition of MgCO

C of individual sugars and HCl-C was analyzed by 245 

isotope ratio mass spectrometry (Delta C, Finnigan Mat, Bremen, Germany) as described 246 

by Nogués et al. (2008). 247 

3

Plant C and N content and C isotopic composition in total organic matter and air 257 

 (spatula tip) using a tissue 252 

grinder (Kontes Duall K885450-0021, Kontes, Vineland, NJ, USA).  Following 253 

extraction, chlorophyll and carotenoid content and composition were determined by 254 

HPLC using the method of Gilmore and Yamamoto (1991), as modified by Adams and 255 

Demmig-Adams (1992). 256 

Leaf, stem, and root samples were used for C and N content and for carbon isotope 258 

composition analyses. Six 1.5 mg replicates were analyzed for each sample. 259 

Determinations were conducted at the Serveis Cientifico-Tecnics, University of 260 

Barcelona using an elemental analyzer (EA1108, Series 1, Carbo Erba Instrumentazione, 261 

Milan, Italy) coupled to an isotope ratio mass spectrometer (Delta C, Finnigan, Mat., 262 
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Bremen Germany) operating in continuous flow mode. 13C/12

 265 

C ratios were expressed in δ 263 

notation:  264 

 266 

where Rsample refers to plant material and Rstandard

 269 

 to Pee Dee Belemmnite (PDB) calcium 267 

carbonate.  268 

Carbon isotope discrimination (Δ) was calculated as described by Farquhar et al. (1989):  270 

                                                     
271 

where δa and δp denote air (δ13Ca) and plant (δ13Cp

 273 

) isotopic composition, respectively.  272 

The 13C/12C ratios (R) of air samples were determined at the University of Arkansas 274 

(USA). Air δ13C was determined through a trace gas condensing device (PreCon, 275 

Finnigan MAT, Bremen, Germany) coupled to a Finnigan Delta+ mass spectrometer. Air 276 

samples from all the treatment plots were collected by connecting a 100 mL air sampling 277 

flask (Kimble Kontes, Vineland, NJ, USA) to the outlet stream of an infrared gas 278 

analyzer (LiCor 6262, LiCor inc., Lincoln, NE, USA) located in a shed next to each plot. 279 

On each sampling date, two samples were collected from each plot and three samples of 280 

CO2 were taken directly from the exhaust vent of the liquid CO2

New carbon in carbohydrates and total organic matter 283 

 supply tank. Samples 281 

were analyzed at the University of Arkansas Stable Isotope Facility. 282 
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during the labeling period (2003-2005). Cnew

 288 

 of samples was calculated as described by 286 

Nogués et al. (2004):  287 

 289 

                                                 290 

 291 

where δ13CE and δ13CA refers to the carbon isotopic compositions of plants grown at 292 

elevated and ambient [CO2], respectively. δ13CL

 295 

 refers to the theoretical maximum 293 

isotopic composition of leaves, which is given by:  294 

 296 

A similar relationship was used to calculate the proportion of new carbon in 297 

carbohydrates.  298 

Statistical analyses 299 

All data were log transformed prior to analyses.  Because individual plants were 300 

repeatedly measured over time, a repeated measures analysis of variance (RM ANOVA) 301 

was used to determine the effects of elevated [CO2] on physiology, leaf chemistry, and C 302 

isotopic determinations of Larrea and Ambrosia.  The sample dates, converted to Julian 303 

date, were used as the within-subject factor, whereas [CO2] treatment was used as the 304 

between-subject factor.  These analyses has 1 degree of freedom (df) for [CO2

1001313

1313

x
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CCCnew

AL

AE

δδ
δδ

−
−

≈ 1001313

1313

x
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CCCnew
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δδ
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−
−

≈

] effect and 305 

8 dfs for the error term (variability). A factorial analysis was also conducted with these 306 

data, and results were similar to those obtained by the RM ANOVA; therefore we used 307 

the more conservative RM ANOVA.. Because Larrea is an evergreen and Ambrosia is 308 

drought-deciduous, the RM ANOVA’s were performed separately for each species. There 309 

were eight measurement dates for Larrea, and four measurement dates for Ambrosia. 310 

CC air
13

L
13 ∆−δδ ≈ CC 1313 ∆−δδ ≈ CC air

13
L

13 ∆−δδ ≈ CC 1313 ∆−δδ ≈ CC air
13

L
13 ∆−δδ ≈ CC 1313 ∆−δδ ≈ CC air

13
L

13 ∆−δδ ≈ CC 1313 ∆−δδ ≈
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Prior to running the RM ANOVA, a principal components analysis was conducted for 311 

each species separately to determine the nature and strength of the correlations between 312 

parameters.  After these analyses showed strong correlations among the physiological 313 

data, missing data (5% of total physiology data) were estimated with the maximum 314 

likelihood estimation function utilizing a multivariate approach.  A discriminant function 315 

analysis (DFA) was used for each species to determine those variables which best 316 

described differences between plants grown in elevated and ambient [CO2

The RM ANOVA’s were performed using the general linear model function in SYSTAT 320 

(V12, Systat Software Inc., Chicago, IL, USA).  Values were considered significantly 321 

different if probabilities (P) were < 0.05. 322 

].  All 317 

multivariate analyses were conducted using MatLab (V.7.1, SP 3; The Mathworks Inc., 318 

Natick, MA, USA). 319 

Results 323 

Environmental conditions 324 

Temperatures during the 2005 growing season were typical of the Mojave Desert, with 325 

the highest average monthly temperature occurring in July (Fig. 1A).  The hydrologic 326 

year (1 Oct to 30 Sep) for the Mojave Desert had above-average precipitation, with 327 

significant amounts of rainfall occurring between October and March, followed by a dry 328 

summer (Fig. 1B).  Significant rainfall in the fall and mid-winter resulted in high soil 329 

moisture content, with 0-50 cm soil moisture content consistently above 10% through 330 

most of the spring (Fig. 1C).  There were no plot (i.e., [CO2]) differences in soil 331 

moisture, as has been consistently observed at the NDFF (Nowak et al. 2004).  Of note, 332 

however, was that the average minimum temperature did not rise above freezing until late 333 

April (Fig. 1A); subsequently, the spring growing season was characterized by high soil 334 

moisture but frequent freezing temperatures at night.  The driest part of the year 335 

corresponded with the hottest; although the summer was interrupted by several 336 

significant rainfall events (Fig. 1B), integrated 0-20 and 0-50 cm soil moisture never 337 

exceeded 5% during the summer months (Fig. 1C). 338 
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Physiology (Asat, gs, WUE, Ψstem

Elevated [CO

) 339 

2] significantly increased Asat (i.e. light-saturated photosynthesis measured 340 

at growth [CO2]) in Larrea (Fig. 2A), whereas elevated [CO2] had no significant effect 341 

on Asat in Ambrosia (Fig. 2B).  Ambrosia exhibited a mean growing season Asat of 19.8 342 

µmol m-2 s-1, while during the same time period Asat was 9.4 µmol m-2 s-1

Stomatal conductance (g

 in Larrea. 343 

s) was not affected by elevated [CO2] for either species (Fig 2C, 344 

D). Significant date-by-species effects (p < 0.05) were observed such that gs for both 345 

species increased in March and May, with the greatest increase in Ambrosia in late April 346 

(Fig. 2D), when gs was 0.39 mmol m-2 s-1 compared to 0.10 mmol m-2 s-1 for Larrea.  347 

Beginning in June, gs

A

 in Larrea decreased over time (Fig. 2C), whereas Ambrosia 348 

became physiologically dormant for the remainder of the year. 349 

sat/gs (intrinsic WUE) was significantly higher in elevated [CO2] in Larrea (Fig. 2E) but 350 

not in Ambrosia (Fig. 2F). Overall, elevated [CO2] increased WUE by 37% in Larrea 351 

over the spring growing season (March to May) and by 46% over the entire year (March 352 

to October).  A significant date-by-[CO2] effect for both species (p < 0.05) indicated that 353 

WUE responses differed over time.  Ambrosia exhibited a significant increase in WUE in 354 

elevated [CO2] plants in March, but no response thereafter (Fig 2F).  In contrast, Larrea 355 

exhibited higher WUE in elevated [CO2

Stem water potential (Ψ

] plants during the entire growing season, but the 356 

greatest increase in WUE was at the end of the growing season (Fig 2E), when soil 357 

moisture was low. 358 

stem) was significantly higher in elevated [CO2] in Larrea (Fig. 359 

2G) but not in Ambrosia (Fig. 2H).  In the early growing season, Ψstem was relatively 360 

high and was not affected by elevated [CO2] in either species, but later in the growing 361 

season, Ψstem declined at a slower rate in Larrea at elevated [CO2] compared to ambient 362 

[CO2].  For Ambrosia, Ψstem was significantly higher at elevated [CO2] compared to 363 

ambient [CO2] just before the plant became physiologically dormant in late May (Fig. 364 

2H), whereas for Larrea, Ψstem was higher in elevated [CO2] compared to ambient [CO2] 365 

from July onward (Fig. 2G).  During the most active growing season (spring), Larrea had 366 
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a significantly lower average Ψstem

Photosynthetic capacity (A

 (-2.3 MPa) than Ambrosia (-1.8 MPa) from mid-367 

March until the end of May (p < 0.001).  368 

max, Vcmax, Jmax, Ls

Elevated [CO

) 369 

2] had no effect on Amax (i.e. maximum photosynthesis measured at both 370 

saturating light and [CO2] levels) in either species (Fig. 3A,B). In Ambrosia, average 371 

Amax throughout the study was 30 µmol m-2 s-1, whereas in Larrea it was 23 µmol m-2 s-1.  372 

For both species, Amax increased during the growing season until May, after which Amax 373 

declined for Larrea, while Ambrosia became physiologically dormant. Elevated [CO2] 374 

had no effect on Vcmax (Fig. 3C,D) or Jmax (Fig. 3E,F) in either species. For both species, 375 

Jmax increased during the growing season until May, after which Jmax declined for 376 

Larrea, while Ambrosia became physiologically dormant. Elevated [CO2] significantly 377 

decreased the relative stomatal limitation to photosynthesis (Ls) for both species (Fig. 378 

3G,H).  For Larrea from early March until mid-October, mean Ls was 39% in ambient 379 

[CO2] and 29% in elevated [CO2], whereas for Ambrosia from mid-March until late May, 380 

mean Ls was 28% and 16% in ambient and elevated [CO2

Leaf pigment, N, C/N and carbohydrate concentration  382 

], respectively.  381 

Ambrosia chlorophyll a+b levels were 57% lower in elevated [CO2] during the spring 383 

growing season (Fig. 4B), but there was no [CO2] effect on chlorophyll a+b levels in 384 

Larrea from March until mid-October (Fig. 4A). Elevated [CO2] resulted in a greater 385 

[(Z+A)/(chl a+b)] (i.e. the ratio of xanthophyll cycle pigments to chlorophyll a and b) in 386 

late summer in Ambrosia only (Fig. 4C,D). The xanthophyll pool conversion state 387 

[(Z+A)/(V+A+Z)] was significantly higher in elevated [CO2

In Larrea, elevated [CO

] for Ambrosia but not in 388 

Larrea (Fig. 4E,F).  During the growing season, [(Z+A)/(chl a+b)] and 389 

[(Z+A)/(V+A+Z)] declined in both species (Fig. 4C,D,E,F) 390 

2] significantly decreased leaf N content (P<0.01) during the first 391 

half of the growing season, but [CO2] treatment effects on leaf N were significant only 392 

during May for Ambrosia (Table 1). Significant effects of elevated [CO2] on C/N ratios 393 

in Larrea were limited to increased C/N ratios during May-June. During the rest of the 394 
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experiment, no significant differences were observed for Larrea (Table 1). In the case of 395 

Ambrosia, with the exception of May (when C/N was higher in elevated [CO2]), no 396 

[CO2

In Larrea, the elevated [CO

] effect on C/N was observed.  397 

2] effect on leaf sucrose, glucose and fructose concentration 398 

was affected by sampling date (P< 0.01; P= 0.02; P= 0.09, respectively; Table 1). Larrea 399 

grown under elevated [CO2] had higher sucrose levels only during June, glucose levels 400 

were increased during two sampling dates (April and June), and for fructose, the increase 401 

extended from May until July. With the exception of April, starch content increased in 402 

leaves exposed to elevated [CO2] (Table 1). In Ambrosia, [CO2] treatment effects on 403 

sucrose, glucose and fructose also were mediated by sampling date (P< 0.01 for each 404 

sugar, respectively; Table 2). During April, although fructose content increased under 405 

elevated [CO2], glucose was not affected and sucrose content diminished. During May, 406 

the concentration of the three soluble sugars increased under elevated [CO2]. However 407 

during June, growth in elevated [CO2] increased sucrose content, whereas glucose and 408 

fructose in Ambrosia were diminished (Table 1). In July, glucose levels increased in 409 

Ambrosia exposed to elevated [CO2], but no [CO2] effect was observed in sucrose and 410 

glucose levels. Elevated [CO2

Proportion of new C in TOM and leaf soluble sugars 413 

] increased starch concentration during May-June in both 411 

species, and additionally in August in Larrea (Table 1).  412 

The proportion of newly fixed carbon (Cnew) in different plant organs was similar 414 

throughout the study (Table 2), with one exception. Cnew was significantly lower in 415 

Larrea leaves during July and August (Table 2) compared to earlier sampling dates (P< 416 

0.01). On average, 4 and 7% of C present in the current year’s total organic matter 417 

(TOM) of Larrea and Ambrosia, respectively, came from CO2 that was assimilated 418 

before February 10, 2003 (i.e. >2 years prior to the current year), when the pure CO2 for 419 

the elevated CO2 treatment was switched from a geologic to a fossil fuel source. No 420 

significant variation in Cnew

The proportion of C

 was observed in shoots and roots of either species (Table 2). 421 

new in sucrose, glucose and fructose of Larrea leaves (Table 2) 422 

exposed to elevated [CO2] varied depending on time (P< 0.01 for each sugar, 423 
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respectively). For Larrea, the greatest Cnew occurred during June, with Cnew declining 424 

during July and August. For Ambrosia, the proportion of Cnew in sugars of elevated 425 

[CO2] plants maintained similar levels from April through June, although Cnew in 426 

fructose levels declined in July (Table 2). Cnew in HCl-hydrolysable C fraction (HCl-C), 427 

which is mainly composed of starch, showed that in Larrea, ~96% was formed by 428 

recently assimilated C, and no significant differences were observed throughout the 429 

study. In the case of Ambrosia, average Cnew

Multivariate analyses 432 

 was ~89% and reached the largest values 430 

during May. 431 

In the principal components analysis (PCA; Fig. 5A,C), we observed species differences 433 

and correlations between the various physiological parameters.  First, Ambrosia had 434 

stronger stomatal control of photosynthesis than did Larrea (r = 0.93 and 0.84, 435 

respectively).  Also, gs was more strongly correlated with Jmax and Vcmax

In the discriminant function analysis (DFA; Fig. 5B,D), we observed trends in various 441 

functional parameters in elevated versus ambient [CO

 in Ambrosia (r 436 

= 0.79 and 0.55, respectively) compared to Larrea (r = 0.50 and 0.17, respectively).  In 437 

Larrea, xylem water potential showed a stronger negative correlation with photosynthetic 438 

rates than in Ambrosia (r = 0.43 and 0.09, respectively).  Finally, as xylem water potential 439 

seasonally declined in both species, sugar levels increased. 440 

2].  WUE increased at elevated 442 

[CO2] in both species, particularly in Larrea, and Ls decreased in both species.  We also 443 

observed differential effects of elevated [CO2

Discussion  449 

] on several other functional parameters 444 

with this analysis: (1) sugar levels (fructose and glucose) decreased in Larrea, while 445 

fructose, glucose and sucrose all increased in Ambrosia; (2) chlorophyll a + b decreased 446 

in Ambrosia but not in Larrea; and (3) xanthophyll cycle pigments increased in Ambrosia 447 

but not in Larrea. 448 

Regulation of photosynthetic performance under elevated [CO2] 450 
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Photosynthetic down-regulation (typically indicated by reductions in Amax, Vcmax, and 451 

Jmax) during the eighth growing season of long-term exposure to elevated [CO2] at the 452 

Nevada Desert FACE Facility was not observed in either Larrea tridentata or Ambrosia 453 

dumosa (Figs. 3A-F). These results differ from earlier studies at the NDFF in that 454 

photosynthetic down-regulation was previously observed in Larrea (Huxman et al. 1998, 455 

Hamerlynck et al. 2000b) and a drought-deciduous shrub Lycium andersonii 456 

(Hamerlynck et al. 2002) in the first two years of elevated [CO2

Although neither Larrea tridentata nor Ambrosia dumosa show evidence for 462 

photosynthetic down-regulation, only Larrea had increased photosynthetic performance 463 

(i.e. A

] exposure at the NDFF, 457 

especially during the cool, moist early spring when plants are not generally water 458 

stressed. Based upon our results and those of Naumburg et al. (2004), the desert 459 

perennials Larrea and Ambrosia appear to have photosynthetically equilibrated to 460 

elevated [CO2] and maintained biochemical capacity over the long-term. 461 

sat, light-saturated A at growth [CO2]) during continuous, long-term exposure to 464 

elevated [CO2] (Fig. 2A). Asat for Ambrosia was not significantly different between 465 

[CO2] treatments throughout the entire growing season (Fig. 2B). These results for 466 

Larrea are similar to earlier studies at the NDFF but differ for Ambrosia: earlier, both 467 

species had increased photosynthetic performance under elevated [CO2] (Naumberg et al. 468 

2003, Ellsworth et al. 2004, Housman et al. 2006), although elevated [CO2] effects were 469 

greatly reduced during dry portions of the year or during years with below-average 470 

precipitation. Below, we first examine processes that may not account for how 471 

photosynthetic performance of Larrea may differ from that of Ambrosia under elevated 472 

[CO2

The difference in photosynthetic performance between the two species under elevated 474 

[CO

], and then examine those that may. 473 

2] was not due to partial stomatal closure (Fig. 2C, D), reduced carboxylation activity 475 

(Vcmax, Fig. 3C, D), nor to reduced electron transport (Jmax, Fig. 3E, F).  In all cases, these 476 

processes were not significantly different between ambient and elevated [CO2] 477 

treatments.  In addition, both species also had reduced Ls under elevated [CO2], as has 478 

been commonly observed in long-term field studies (Tissue et al. 2001).   Although 479 

treatment effects on leaf N and carbohydrate concentrations differed between Larrea and 480 
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Ambrosia during the growing season (Table 1), the direction of these differences was not 481 

consistent with the observed treatment effects on photosynthetic performance.  Larrea 482 

plants under elevated [CO2] had more consistent decreases in leaf N versus Ambrosia 483 

plants (Table 1).  Although greater decreases in leaf N for Larrea would be expected to 484 

result in greater decreases in photosynthetic performance because of the close 485 

relationship between leaf N and Asat (Ellsworth et al. 2004), in fact Larrea had greater 486 

increases in Asat under elevated [CO2].  Sugar and starch concentrations under elevated 487 

[CO2] were often significantly greater than those under ambient [CO2] (Table 1), which 488 

indicated that both species had greater potential for feedback inhibition of net 489 

assimilation by carbohydrate accumulation under elevated [CO2].  Although exceptions 490 

do occur for both species (e.g., glucose in April for Larrea and sucrose in April for 491 

Ambrosia), these exceptions occur slightly more frequently for Ambrosia, suggesting 492 

photosynthetic performance of Ambrosia would have benefited more under elevated 493 

[CO2] because of less frequent feedback inhibition.  However, this prediction of greater 494 

performance of Ambrosia under elevated [CO2

As with leaf N and carbohydrates, the effects of elevated [CO

] also is contrary to observations. 495 

2] on pigment 496 

characteristics (Fig. 4) differed substantially between the two shrub species, but these 497 

pigment differences also were not consistent with differences in photosynthetic 498 

performance.  Pigments are functional components of the photosynthetic machinery, 499 

providing information about biochemical investment and stress in the photosystems.  The 500 

evergreen Larrea did not adjust pigment allocation in response to elevated [CO2], as was 501 

documented for the evergreen tree loblolly pine after 8 years in FACE (Logan et al., 502 

2009). In the deciduous Ambrosia, plants growing under elevated [CO2] reduced 503 

chlorophyll a and b throughout the growing season, suggesting that less light absorbing 504 

and processing capabilities may be part of the reason why Asat under elevated [CO2] was 505 

not as high as expected for that species.  However, desert plants typically are not light 506 

limited (Smith et al. 1997), and thus lower chlorophyll under elevated [CO2] may at best 507 

be only a minor contribution towards lower than expected Asat under elevated [CO2] in 508 

Ambrosia.  Generally, photoinhibition is a greater concern in high-light environments 509 

(Hymus et al. 1999, Aranjuelo et al. 2008b), but the pigment data indicate that increased 510 

protective pigment concentrations only occurred in Ambrosia.  Photoprotection was 511 
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presumably employed to the level necessary during exposure to excess light each day, as 512 

violaxanthin was converted to zeaxanthin and the latter employed in thermal energy 513 

dissipation to avoid photodamage (Adams et al. 2006, Demmig-Adams and Adams 514 

2006).  Nonetheless, these differences were reduced during the peak growing season, 515 

when high photoprotection may be more important as sink activity increases (Adams et 516 

al. 2006) and into the summer dry season as drought-induced photoinhibition becomes 517 

more frequent.  Thus, the greater ability to avoid photoinhibition in Ambrosia was not 518 

sufficient to improve photosynthetic performance under elevated [CO2] over that under 519 

ambient [CO2

The lack of increased photosynthetic performance in Ambrosia after long-term exposure 521 

to elevated [CO

]. 520 

2] may reflect differences between Larrea and Ambrosia in allocation to 522 

C sinks and utilization of stored C pools.  Larrea had greater percentages of newly fixed 523 

C in the current year’s growth of leaves, shoots, and roots under elevated [CO2] than 524 

Ambrosia (Table 2), suggesting Larrea maintained sufficient C sinks and hence enabled 525 

greater photosynthetic performance.  Furthermore, the greatest enhancement of 526 

photosynthetic performance under elevated [CO2] occurred in summer for Larrea (Fig. 527 

2A), when carbohydrate concentrations were most similar between elevated and ambient 528 

[CO2] treatments. Other studies have related photosynthetic performance under elevated 529 

[CO2] to the ability of plants to develop new C sinks or expand the existing ones 530 

(Ceulemans, 1997) and suggested that down-regulation was the consequence of an 531 

insufficient sink plant capacity (Morgan et al. 2001, Ainsworth et al. 2004, Aranjuelo et 532 

al., 2009). Furthermore, when plants exposed to elevated CO2

Improved plant water relations in elevated [CO

 exhibited limited capacity 533 

to increase C sink strength, plants decreased their photosynthetic activity to balance C 534 

source activity and sink capacity (Thomas and Strain 1991).  535 

2], indicated by higher WUE and higher 536 

Ψstem (Fig. 2), also helped maintain Asat in Larrea during the driest part of the summer. In 537 

contrast, growth in elevated [CO2] did not improve WUE or plant water relations in the 538 

drought-deciduous Ambrosia.  During drought periods, plants may partially alleviate 539 

water stress by accumulating osmolytes (e.g. sugars) to increase cellular water uptake.  In 540 

Ambrosia, sugars and starch were higher in elevated [CO2], but there was no 541 
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commensurate increase in Ψstem in elevated [CO2] plants during the hotter, drier period of 542 

the growing season.  In Larrea, sucrose, glucose and fructose content increased in 543 

elevated [CO2] during spring whereas few significant differences were detected during 544 

summer (July-August), suggesting that changes in soluble sugars were probably not 545 

significant contributors to higher Ψstem in elevated [CO2

Long-term C storage and C allocation patterns 552 

] plants.  However, soluble 546 

sugars were generally much higher in Larrea than Ambrosia during all periods of the 547 

growing season.  Therefore, the maintenance of physiological activity in Larrea into the 548 

hottest and driest periods of the growing season, when Ambrosia drops its leaves and 549 

becomes inactive, may be partially attributed to greater access to osmolytes in Larrea 550 

(Smith et al. 1997). 551 

Modification of atmospheric δ13C in concert with experimental CO2 exposure enabled the 553 

characterization of C allocation and partitioning of Larrea and Ambrosia under varying 554 

seasonal growth conditions. In Larrea and Ambrosia plants grown under elevated [CO2], 555 

organs developed during the experimental period were partly (4% and 7 %, respectively) 556 

constructed from “old” C (i.e. C that was assimilated prior to the beginning of the 557 

labeling period two years earlier; February 10, 2003) when the source of CO2 for 558 

elevated plots was switched to fossil-fuel-derived CO2. Thus, most C utilized in plant 559 

growth was derived from “new” C in Larrea (96%) and Ambrosia (93%). Similar results 560 

were described by Körner et al. (2005), where after two years of labeling, 82-89 % of C 561 

present in newly formed shoots and leaves (respectively) for Quercus, Fagus, Acer, 562 

Carpinus, and Tilia trees grown under elevated [CO2] was from C assimilated during the 563 

last two years. von Felten et al. (2007) also reported that after two years of C labeling and 564 

exposure to elevated [CO2], 46 % and 42 % of C present in new Larix decidua and Pinus 565 

uncinatus (respectively) shoots was C fixed prior to the labeling period. As observed in 566 

other slow-growing plants, after a long term 12CO2 enriched labeling period (Aranjuelo et 567 

al. 2009), our results suggest that in a high growth year, both species remobilized stored 568 

C to develop new biomass. Long-term storage and remobilization of C reserves has been 569 

observed in other woody species growing in ambient [CO2

Comentario [*16]: REF. 2.12 

] conditions (Lacointe et al. 570 

1993). 571 

Comentario [*17]: REF 2.12 
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Both species have main roots (Wallace et al. 1974) that play essential roles in C storage 572 

during stressful growth conditions (Chaves et al., 1995). As recently observed by 573 

Franklin et al. (2009) and Crous et al. (2010) in long-term FACE experiments, larger 574 

investment of C resources in root development will affect leaf N and photosynthetic 575 

activity in elevated [CO2

The low variation in δ

] environments. For Mojave Desert shrubs such as Larrea and 576 

Ambrosia, roots represent a large proportion of plant biomass and consequently an 577 

important C storage organ (Wallace et al. 1974). Unfortunately, the long-term nature of 578 

the Nevada Desert FACE experiment precluded harvesting main roots, and thus we were 579 

not able to verify mobilization of stored C in the main roots of Larrea and Ambrosia. 580 

13C and Cnew for newly-formed organs of Larrea and of Ambrosia 581 

throughout the study revealed that export of C to other organs also was fairly constant. 582 

However for Larrea, water stress and elevated temperature (mainly July and August) 583 

decreased Cnew in leaves, which suggests that greater amounts of “old” C were allocated 584 

to new leaf growth during the summer dry season. Regardless of seasonality, shoots and 585 

roots had constant Cnew

When analyzing seasonal fluctuations, it should be noted that C labeling, and 587 

consequently leaf % of C

, which suggests that these organs were effective sinks for C. 586 

new in soluble sugars, will be affected by: (1) plant assimilation 588 

rate; (2) respiration; and (3) translocation to other organs (shoots and roots) (Aranjuelo et 589 

al. 2009). No significant photosynthetic decrease was observed under elevated [CO2] 590 

during June and July, although diminished photosynthesis and lower soluble sugar 591 

content during August could have contributed to the decrease in Cnew for fructose in 592 

Larrea. We also note that in addition to recently formed photoassimilates, C in sucrose, 593 

glucose, and fructose can be derived through sugar formation during degradation of 594 

starch reserves (Farrar et al. 2000), and thus variations in starch δ13C also could affect 595 

δ13C of sucrose (Tcherkez et al. 2003). However, Cnew in HCl-hydrolyzable C fraction 596 

(mainly as starch; Richter et al. 2009) was constant in Larrea, and thus this fraction was 597 

apparently not involved in the decrease in Cnew of soluble sugars. For Ambrosia, 598 

diminishment in Cnew

Comentario [*18]: REF. 2.12 

 during July also suggests a remobilization of pre-labelled C from 599 

storage organs. 600 
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Conclusions 601 

This study was conducted during the eighth full growing season of [CO2] treatment at the 602 

NDFF, thereby providing insight into the long-term physiological responses of two 603 

perennial shrubs, Larrea tridentata and Ambrosia dumosa, to elevated [CO2].  In the 604 

evergreen shrub Larrea, plants under elevated [CO2] enhanced photosynthetic 605 

performance (Asat), maintained C sinks, and improved plant water status (higher WUE 606 

and Ψstem), especially during periods of environmental stress in the later part of the 607 

growing season.  In contrast, the drought-deciduous shrub Ambrosia did not increase Asat, 608 

WUE, or Ψstem under elevated [CO2].  Surprisingly, we found that gs and photosynthetic 609 

capacity (Amax, Vcmax, Jmax) were not affected by elevated [CO2] in either species.  610 

Although increases in photoprotective pigments were observed in Ambrosia under 611 

elevated [CO2], photoprotection was not sufficient to increase photosynthetic 612 

performance in Ambrosia.  On average, 96% and 93% of C present in new growth and 613 

soluble sugars of Larrea and Ambrosia, respectively, was recently assimilated C, which 614 

implies that in this year (2005) when plant growth was strongly increased, plants 615 

mobilized stored C to fulfill new organ formation requirements. Furthermore, Larrea 616 

utilized a greater fraction of new C to grow new organs and sustained these sinks for 617 

longer during the growing season than Ambrosia, indicating that maintenance of C sinks 618 

by Larrea helps that shrub maintain increased photosynthetic performance during long-619 

term exposure to elevated [CO2] at the Nevada Desert FACE Facility.  Thus, although the 620 

early biochemical adjustments that we observed at the FACE site (i.e. down-regulation of 621 

photosynthesis) have abated under longer-term exposure to elevated [CO2], these 622 

physiological characteristics of Larrea should significantly enhance carbon gain under 623 

elevated [CO2
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Table 1. Elevated CO2 exposure (ambient CO2 versus elevated CO2) effect in terms of N (%), C/N ratio, sucrose (mg g-1DM), glucose 856 

(mg g-1DM), fructose (mg g-1DM), and starch (mg g-1DM)of Larrea tridentata and Ambrosia dumosa leaves. Parameters that differed 857 

significantly due to [CO2

Larrea 
tridentata 

] were highlighted in bold. Each value represents the mean ± standard deviation.  858 

April May June July August 

 Ambient Elevated Ambient Elevated Ambient Elevated Ambient Elevated Ambient Elevated 
  N 2.1±0.1 1.8±0.1 1.9±0.1 1.6±0.1 2.2±0.1 1.8±0.2 1.9±0.2 1.7±0.2 2.0±0.05 1.9±0.2 

  C/N 23.8±0.2 25.6±1.8 26.3±0.9 30.5±2.9 23.3±0.0 27.2±2.0 29.7±5.4 25.9±1.7 25.0±1.0 27.1±1.0 

  Sucrose 13.3±0.7 10.3±0.6 16.2±1.3 18.8±0.1 18.8±0.3 25.2±0.2 4.7±0.6 4.8±0.02 0.9±0.2 1.8±0.0 

  Glucose 10.4±0.9 7.2±0.8 11.7±1.4 9.7±0.1 5.4±0.2 10.4±0.0 2.3±0.0 1.2±0.0 1.6±0.0 1.4±0.0 

  Fructose 9.2±0.5 11.2±1.0 8.1±1.1 15.9±0.1 6.4±0.3 13.3±0.24 2.5±0.0 5.4±0.1 1.7±0.0 3.0±0.1 

  Starch 223.6±17.8 225.4±19.4 109.6±21.6 165.8±23.2 83.7±7.2 112.7±11.7 70.7±8.9 92.1±11.9 24.7±4.7 64.6±6.8 
 859 

Ambrosia 
dumosa 

April May June July 

 Ambient Elevated Ambient Elevated Ambient Elevated Ambient Elevated 
  N 4.6±0.0 3.6±0.1 3.2±0.2 2.2±0.1 2.4±0.1 2.4±0.1 1.8±0.1 1.7±0.1 

  C/N 9.5±0.1 11.7±0.4 13.5±0.6 20.4±2.7 20.7±1.4 18.1±1.1 23.9±0.9 24.6±0.8 

  Sucrose 23.3±1.0 15.4±0.9 22.9±0.8 48.9±1.1 14.4±0.2 23.7±0.6 4.9±0.1 13.4±0.0 
  Glucose 5.6±0.7 7.3±0.1 6.1±0.0 9.8±0.8 4.4±0.1 2.1±0.0 2.8±0.2 4.9±0.1 
  Fructose 3.6±0.1 8.7±0.3 5.9±0.3 13.8±0.1 7.8±0.1 2.8±0.1 1.5±0.3 3.4±0.0 
  Starch 44.9±5.9 58.9±9.1 57.5±4.6 98.6±15.0 56.8±3.2 78.4±8.7 39.2±3.8 46.1±6.1 
 860 

 861 
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Table 2. Elevated CO2 exposure effect in terms of % of new C (Cnew) in leaf shoot, root total organic matter (TOM) and Cnew

Larrea tridentata 

 in leaf 862 

sucrose, glucose, fructose and starch (HCl-C) for Larrea tridentata and Ambrosia dumosa. Each value represents the mean ± standard 863 

deviation. 864 

April May June July August 
  Leaf C 96.21±0.82 new 96.17±0.3 97.04±0.17 93.04±0.23 94.71±0.24 

  Shoot C 96.97±0.36 new 96.53±0.15 96.50±1.49 95.89±1.24 95.92±0.11 

  Root C 92.15±0.50 new 92.41±0.17 93.78±0.13 No sample No sample 

  Sucrose C 94.00±0.45 new 94.95±0.77 96.14± 92.21±0.17 93.68±0.01 
  Glucose C 93.89±0.25 new 95.79±0.35 95.91±0.42 87.79±0.23 89.90±0.14 

  Fructose C 92.76±0.21 new 93.08±0.25 94.58±0.16 90.39±0.11 87.80±0.16 

  Starch (HCl-C) C 95.57±0.24 new 95.79±0.11 96.07±0.09 95.81±1.02 95.82±0.95 

 865 

Ambrosia dumosa April May June July 
  Leaf C 92.89±0.7 new 92.94±0.16 95±0.67 94.50±0.69 

  Shoot C 93.11±0.20 new 93.03±0.37 94.13±0.23 93.29±0.30 

  Root C 92.63±0.20 new 91.77±0.18 90.81±0.51 No sample 

  Sucrose C 93.60±0.41 new 95.11±0.53 94.69±0.37 92.970.28 
  Glucose C 92.01±0.12 new 92.66±0.14 92.01±0.23 90.28±0.07 

  Fructose C 90.23±0.54 new 93.27±0.13 94.02±0.03 88.40±0.26 

  Starch (HCl-C) C 86.52±0.30 new 92.00±0.53 88.25±0.32 84.78±0.83 

 866 

 867 
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Figure Legends  868 

Fig. 1 Average monthly maximum and minimum temperature (A), daily precipitation (B), 869 

and volumetric soil water content at 0-30 and 0-50 cm depths (C) during 2005 at the 870 

Nevada Desert FACE Facility. There were no soil moisture differences between ambient 871 

and elevated [CO2

Fig. 2 Plant physiological performance at ambient (filled symbols; 380 μmol mol

] plots for either depth. 872 

-1) 873 

versus elevated (open symbols; 550 μmol mol-1) atmospheric [CO2] measured as: (A,B) 874 

Asat (light-saturated net assimilation rate, Anet); (C,D) stomatal conductance (gs); (E,F) 875 

Water-Use Efficiency (WUE) calculated as Asat/gs

Fig. 3  Mechanistic photosynthesis at ambient versus elevated [CO

; and  (G,H) pre-dawn water potential 876 

(Ψ) for Larrea tridentata  (left panels) and Ambrosia dumosa (right panels). Vertical bars 877 

represent ± one standard deviation. 878 

2] in Larrea tridentata 879 

and Ambrosia dumosa measured as: (A,B) maximum (CO2-saturated) assimilation rate 880 

(Amax); (C,D) maximum carboxylation rate of Rubisco (Vcmax); (E,F) maximum electron 881 

transport rate (Jmax) and (G,H) relative stomatal limitation (Ls

Fig. 4. Photosynthetic pigments at ambient versus elevated [CO

). All symbols are as in Fig. 882 

2. 883 

2

Fig. 5. Results of principal components analysis (PCA) displayed as vector correlations 888 

among variables for Larrea tridentata (A) and Ambrosia dumosa (C) for the first and 889 

second principal components (PC1 and PC2). The length and angle between a pair of 890 

vectors is an indication of the strength and nature, repectively, of their correlations. 891 

Results of discriminant function analysis (DFA) in vector format show the direction of 892 

responses of Larrea (B) and Ambrosia (D) to ambient and elevated [CO

] in Larrea tridentata  884 

and Ambrosia dumosa measured as: (A,B) chlorophyll a+b; (C,D) the ratio of 885 

xanthophyll cycle pigments to chlorophyll a+b; and (E,F) the xanthophyll pool 886 

conversion state ((Z+A)/(V+A+Z)) All symbols are as in Fig. 2. 887 

2] treatments. 893 

The direction of the vector is an indication of whether an increase or decrease was 894 

observed in a particular variable, with vectors to the right indicating a positive response 895 



 37 

to elevated [CO2], and the length of the vector is an indication of the strength of the 896 

response. Plant variables used in this analysis: Amax; Asat; gs; Ls; WUE; Vcmax; Jmax; 897 

FvFm

 900 

; plant Ψ; Chl a + b; [Z+A]/[V+A+Z]; [Z+A]/[Chl a + b] (plant variables as 898 

described in previous figure legends).  899 
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Figure 4. 
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Figure 5. 


	where Rsample refers to plant material and Rstandard to Pee Dee Belemmnite (PDB) calcium carbonate. 
	Carbon isotope discrimination (Δ) was calculated as described by Farquhar et al. (1989): 

