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ABSTRACT 27 

Lactococcus lactis UQ2 is a wild nisin A producer isolated from a Mexican cheese that grows 28 

poorly in milk. Conjugal matings with L. lactis NCDO712 to transfer the Lac+ Prt+ plasmid 29 

pLP712 and selection with nisin and lactose yielded L. lactis NCDO712 NisA+. Naturally 30 

rifampicin resistant L. lactis UQ2Rif was isolated to provide an additional selective marker. 31 

The identity of a transconjugant L. lactis UQ2Rif Lac+ was confirmed by RAPD-PCR 32 

fingerprinting, nisA PCR amplification, nisin production, presence of pLP712 and phospho-β-33 

galactosidase activity. This strain performed well in milk and synthesized 200 IU/mL nisin, 34 

40 times more than the original strain. 35 

 36 
 37 
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INTRODUCTION 40 

Food biopreservation relies on the use of microorganisms or their metabolites to inhibit the 41 

growth of food spoilage or pathogenic microorganisms. Lactic acid bacteria (LAB) have been 42 

used for centuries in food fermentations, not only to promote flavor and texture properties, but 43 

also seeking the ability of starter-derived inhibitors to maintain microbial food safety (Stiles 44 

1996). Many of these antimicrobial substances are thought to have potential applications as 45 

natural food preservatives. The antimicrobial peptide nisin, produced by several Lactococcus 46 

lactis ssp. lactis strains, shows inhibitory effect on spoilage and foodborne pathogenic 47 

microorganisms, it is widely used as biopreservative in the food industry and, currently, it is 48 

the only bacteriocin with a GRAS status in the USA (Federal Register 1988). 49 

An alternative strategy to bacteriocin supplementation is the incorporation of 50 

bacteriocin-producing starter strains. This has led to enhanced protection against undesirable 51 

microorganisms in a wide variety of food matrices (reviewed by Gálvez et al. 2007). 52 

Furthermore, use of bacteriocin producers isolated from traditional fermented products also 53 

contributes to maintain their typical organoleptic properties, highly demanded by today´s 54 

consumer. For instance, nisin Z producing strains such as L. lactis ssp. lactis IPLA 729, 55 

isolated from a raw milk cheese, efficiently inhibited Staphylococcus aureus and Clostridium 56 

tyrobutyricum while enhancing the sensory attributes of pasteurized milk cheeses (Rilla et al. 57 

2002; Rilla et al. 2004). 58 

The native strain L. lactis UQ2 has been isolated from a fresh Mexican style cheese, 59 

made from raw milk, and has been shown to synthesize nisin A (García-Almendárez et al. 60 

2008). However, L. lactis UQ2 growth and nisin production in milk were rather low, reaching 61 

a maximum population of 107 cfu/mL and producing only 3 to 5 IU/mL of nisin (García-Parra 62 

et al. 2009). As a result, pH was never low enough to promote casein coagulation and curd 63 

formation, preventing the use of this strain as an autochthonous nisin-producing starter for 64 
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traditional Mexican style cheese manufacture using pasteurized milk. Poor growth in milk is 65 

usually associated to the lack of the lactose fermenting ability and/or poor proteolytic activity. 66 

L. lactis NCDO712 contains the 56.5 kb pLP712 plasmid encoding the genes for lactose and 67 

protein utilization (Gasson 1983). This plasmid has been transferred by conjugation at 68 

relatively high frequencies to other L. lactis strains which were unable to utilize lactose (Lac-) 69 

or degrade casein (Prt-) from milk (O’Sullivan et al. 1998). 70 

Considering that gene transfer by conjugation is generally accepted to obtain food-grade 71 

modified strains (Toomey et al. 2009), the objective of this study was to improve growth of L. 72 

lactis UQ2 and nisin production in milk by conjugal matings with the Lac+ Prt+ L. lactis 73 

NCDO712 in order to encourage the use of this native strain as an autochthonous starter for 74 

traditional cheese manufacture. 75 

 76 

MATERIALS AND METHODS 77 

Microbial strains and culture conditions 78 

Strains used in this study are summarized in Table 1. All bacterial strains were grown at 30 ºC 79 

and stored at -80 ºC with 10% (v/v) glycerol. Lactococcus lactis UQ2, a native Mexican strain 80 

isolated from fresh Mexican style cheese made from unpasteurized milk, and L. lactis 81 

MG1614 were routinely grown in M17 broth (Oxoid, Basingstoke, England) supplemented 82 

with 0.5% (w/v) glucose (GM17). The other Lac+ Lactococcus strains shown in Table 1 were 83 

grown in M17 with 0.5% (w/v) lactose (LM17). Micrococcus luteus NCIB 8166 was grown in 84 

assay broth, containing (w/v): 1% bacteriological peptone (Oxoid), 0.3% meat extract 85 

(Bioxon, Cuautitlan, Mexico), 0.03% NaCl (Merck, Darmstadt, Germany), 0.4% yeast extract 86 

(Bioxon), 0.1% raw cane sugar (Dilis, Técnica Mexicana de Alimentación, Mexico). Lactose 87 

or glucose agar medium containing bromocresol purple dye (BCP-agar) was prepared by 88 

adding (w/v) 0.5% tryptone (Oxoid), 0.3% meat extract, 1% lactose or glucose, 0.004% 89 
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bromocresol purple (Merck) and 2% agar. When required, rifampicin or nisin were added at 90 

indicated concentrations. Rifampicin was purchased from Sigma and nisin from MP 91 

Biomedicals (Solon, OH, USA), with 2.5% (w/w) purity, where 1 µg = 1 international unit 92 

(IU). Commercial skim milk (Central Lechera Asturiana Light, Asturias, Spain) was used as 93 

model food, and was heat sterilized at 118 °C for 12 min before growth experiments. 94 

 95 

Selection of spontaneous rifampicin-resistant L. lactis UQ2  96 

One ml from an overnight culture was plated onto GM17 plates with 200 μg/mL of 97 

rifampicin, and incubated at 32°C for 24 h. Ten-fold dilutions were also plated onto GM17 98 

without antibiotic to estimate the frequency of RifR mutants. The frequency was defined as the 99 

population (colony forming units (cfu) per mL) in GM17Rif divided by that in GM17. 100 

Colonies capable of growing in GM17Rif were deemed as rifampicin resistant. A single 101 

colony was further streaked onto GM17 to obtain L. lactis UQ2Rif. 102 

 103 

Conjugation experiments 104 

The direct plate conjugation technique was used. Samples of 0.5 mL of overnight cultures of 105 

L. lactis UQ2Rif (receptor) and L. lactis NCDO712 (donor) in GM17 and LM17 broths, 106 

respectively, were centrifuged. Cells were re-suspended in GM17 broth, and mixed in 1:1 107 

(v/v) ratio in a final volume of 1 mL. This mixture (100 µL) was spread plated on GM17, and 108 

incubated at 30°C for 24 h. Cells were harvested with 2 mL of quarter-strength Ringer 109 

solution (Oxoid). Appropriate ten-fold dilutions were plated onto lactose-BCP agar with 110 

rifampicin (transconjugants selection), glucose-BCP plus rifampicin (receptor) and lactose-111 

BCP agar (donor). Strong yellow colonies on lactose-BCP were considered as lactose 112 

fermenting strains (Lac+). Transfer frequencies were expressed as the number of 113 

transconjugants per donor cells. 114 
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 115 

Plasmid isolation and stability of pLP712 116 

Plasmids were isolated according to O´Sullivan & Klaenhammer (1993). To evaluate the 117 

stability of the lactose pLP712 plasmid, L. lactis UQ2Rif Lac+ was sequentially inoculated in 118 

GM17 broth at 0.1% and incubated at 30°C for 16 h. After 10 and 20 passages, approximately 119 

100 and 200 generations, in the absence of lactose, an average of 135 colonies were streaked 120 

onto lactose-BCP and checked for their lactose fermentation ability (yellow color 121 

development) after incubation for 24 h at 30ºC. 122 

 123 

Growth of L. lactis UQ2 and L. lactis UQ2Rif Lac+ in skim milk 124 

Overnight cultures of L. lactis UQ2 in GM17 and L. lactis UQ2Rif Lac+ in LM17 were 125 

centrifuged for 2 min, resuspended in the same volume of Ringer solution, and adjusted to, 126 

approximately, 3.0 x 109 cfu/mL. Sterile skim milk (100 mL) was inoculated at 1.5% (v/v) 127 

and statically incubated at 30 °C. Ten mL samples were taken at 3 h intervals during 12 h, and 128 

a final sample was taken at 24 h. Lactic acid, lactose, cell counts, pH, and nisin activity were 129 

determined for every sample. Experiments were conducted in duplicate. pH was measured 130 

using a MicropH 2001 pH meter (Crison, Barcelona, Spain). Lactose and lactic acid 131 

concentrations were determined by HPLC as described by Cárcoba et al. (2000). 132 

 133 

Detection and quantification of nisin 134 

Nisin was extracted from milk samples by mixing with HCl 0.02 N in a 1:1 (v/v) ratio. The 135 

mixture was then centrifuged at 10,000 x g for 10 min at 4°C. The supernatant was boiled for 136 

5 min, followed by centrifugation for 2 min, and the resulting supernatant was adjusted to pH 137 

6.5, with NaOH 0.1 N, and filter-sterilized using 0.45 μm pore size Millipore (Ireland) 138 

membranes. Nisin concentration (IU/mL) was determined according to the British Standard 139 
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4020 (BS 1974), using M. luteus NCIB8166 as indicator strain. A standard curve using nisin 140 

at 0, 5, 10, 25, 50, 100, and 200 IU/mL, dissolved in skim milk and extracted as described 141 

above, established a linear relationship between log (nisin concentration) and diameter of the 142 

inhibition halo (in mm) with a determination coefficient (R2) of 0.95. For quick detection of 143 

nisin production, transconjugant cells were replicated onto GM17 plates freshly inoculated 144 

with 105 cfu/mL of L. lactis MG1614. Inhibition halos surrounding the colony were observed 145 

after overnight incubation at 30ºC.  146 

 147 

PCR 148 

DNA extracts were obtained from fresh single colonies (Ruiz-Barba et al. 2005). PCR was 149 

carried out with PuRe Taq Ready-to-go PCR Beads (GE Healthcare, Buckinghamshire, UK). 150 

The forward nisA-F (5’ GAGTACAAAAGATTTTAACTTGGATTTGG 3’) and the reverse 151 

nisA-R (5’ TTGGTTATTTGCTTACGTGAATACTAC 3’) primers were used to amplify the 152 

nisA gene. An initial denaturation step at 94 ºC/5 min was followed by 30 cycles of 94 ºC/0.5 153 

min, 58 ºC/0.5 min and 72 ºC/0.5 min and a final extension step at 72 °C for 10 min. Random 154 

Amplification of Polymorphic DNA (RAPD-PCR) was carried out with the primer OPL5 (5’ 155 

ACGCAGGCAC 3’) with the following conditions: one cycle of 94 °C/3 min, 15 cycles of 94 156 

°C/0.5 min, 30 °C/0.5 min, 72 °C/1 min, and 25 cycles of 94 °C/0.5 min, 30 °C/0.5 min, 72 157 

°C/1 minplus 15 s increment per cycle. PCR products were resolved by electrophoresis in 2% 158 

(w/v) agarose gels. 159 

 160 

Phospho-β-galactosidase activity 161 

Protein extracts were obtained from mid-log cultures of L. lactis UQ2, L. lactis UQ2Rif Lac+ 162 

and L. lactis NCDO712. After centrifugation at 10,000 x g for 15 min, cells were washed 163 

using Z-buffer (100 mM sodium phosphate buffer, pH 6.8, 10 mM KCl, and 1 mM 164 
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MgSO4·7H2O) and re-suspended in 1/10 of the initial volume. Cells were broken by two 165 

passages in a one-shot cell disruptor (Constant Systems, UK) at 255 Mpa. The cell lysate was 166 

centrifuged for 10 min at 12,000 x g to remove cell debris and unbroken cells. Protein 167 

concentration was determined using the bicinchoninic acid (BCA) assay (Pierce, Rockford, 168 

IL, USA), and bovine serum albumin as standard. The enzymatic reaction was conducted in 169 

microtiter plates using 50 µL of the protein extract (or dilutions in Z-buffer) and o-170 

nitrophenyl-galactopyranoside phosphate (ONPG-P) (Sigma) at 0.5 mM final concentration, 171 

in a total volume of 200 µL. The reaction was incubated at 37°C, and absorbance (A) was 172 

measured at 420 nm for 15 min, in a Benchmark Plus microplate reader (BioRad). Specific 173 

activity was calculated as ΔA420/[(min) (µg protein)]. Measurements for each strain were 174 

carried out in triplicate.  175 

 176 

RESULTS 177 

 178 

Growth of L. lactis UQ2 in milk supplemented with glucose and/or yeast extract 179 

We initially proceeded to determine the reason behind the low performance of L. lactis UQ2 180 

in milk previously reported (García-Parra et al. 2009). Poor growth in milk seemed to be 181 

mainly linked to the lack of lactose fermenting ability as well as to low proteolytic activity, as 182 

shown in Table 2. Compared to the control milk, and milk supplemented with either glucose 183 

or yeast extract, cultures with both supplements yielded higher nisin activity and lowered the 184 

pH low enough to coagulate milk. Since both metabolic activities are encoded in the plasmid 185 

pLP712, we attempted to transfer this plasmid by conjugation to L. lactis UQ2 in order to 186 

improve growth performance in milk and, presumably, reach higher nisin production levels. 187 

 188 
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Conjugal matings 189 

Prior to proceeding with conjugal matings, the nisin susceptibility of the donor strain L. lactis 190 

NCDO712 was determined to establish the suitable conditions to select L. lactis UQ2 Lac+ 191 

transconjugants and inhibit growth of the donor cells. A total of 4.8 x 107 cfu from an 192 

overnight culture of L. lactis NCDO712 were plated onto LM17 agar plates containing 193 

increasing nisin concentrations of 0, 5, 10, 20, and 40 IU/mL. After overnight incubation at 194 

30ºC, only 0.01% of the cells survived in the presence of 20 IU/mL, while complete inhibition 195 

was observed at 40 UI/ mL of nisin (data not shown). As expected, this nisin concentration 196 

did not have any inhibitory effect on the NisA+ recipient strain L. lactis UQ2 and, therefore, 197 

40 IU/mL of nisin were added to the selection plates. Initial conjugation experiments using 198 

lactose-BCP plus nisin yielded Lac+ NisR transconjugants at frequencies of 1.1 x 10-6 per 199 

donor cells. Inhibition zones on the nisin sensitive L. lactis MG1614 were detected with 225 200 

colonies, indicating the likely production of nisin by these transconjugants. Thirty three of 201 

these colonies were randomly selected and presence of the nisA gen was confirmed by PCR. 202 

However, according to the band pattern obtained by RAPD-PCR, these transconjugant 203 

colonies were identified as L. lactis NCDO712 (Figure1 and data not shown). Therefore, 204 

instead of transferring the Lac+ phenotype to L. lactis UQ2, it was L. lactis NCDO712 which 205 

acquired the Nis+ phenotype. 206 

To have an additional selection marker and avoid the recurrent isolation of L. lactis 207 

NCDO712 Nis+, a spontaneous rifampicin resistant (RifR) L. lactis UQ2Rif was selected to 208 

provide an additional selection marker for L. lactis UQ2 transconjugants. RifR mutants were 209 

isolated at a frequency of 6.6 x 10-5. A single colony was randomly selected and used as 210 

receptor in conjugal matings. The selection was performed in the presence of lactose plus 100 211 

µg/mL rifampicin. A frequency of Lac+ RifR transconjugants of 9.6 x 10-10 per donor cell was 212 

obtained. Control plates with only L. lactis NCDO712 donor cells yielded no colonies at all 213 
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(data not shown). Therefore, we presumed that all the Lac+ colonies on the selection plates 214 

should be L. lactis UQ2 transconjugants. 215 

 216 

Molecular characterization of L. lactis UQ2Rif Lac+ transconjugant 217 

A single colony from the selection lactose-BCP rifampicin plates was colony purified on 218 

LM17. RAPD-PCR fingerprinting demonstrated the identity of this transconjugant as L. lactis 219 

UQ2Rif Lac+ with a nearly identical band profile to the parental strain L. lactis UQ2 (Figure 220 

1a). There was only an extra DNA band, also present in L. lactis NCDO712, which might be 221 

associated to the newly acquired DNA. The presence of the nisA gene was confirmed by PCR 222 

as well (Figure 1b). An additional plasmid band corresponding to the expected size of pLP712 223 

was also present in the transconjugant L. lactis UQ2Rif Lac+ confirming the conjugation 224 

event (Figure 1c). 225 

The plasmid pLP712 was relatively stable in L. lactis UQ2Rif. After 100 generations 226 

growing in glucose, approximately 14% of the cells had lost the Lac+ phenotype. However, 227 

after 200 generations only 3% retained the lactose fermenting ability (data not shown).  228 

The presence and functionality of the phospho-ß-galactosidase gene (lacG) encoded by 229 

the lactose plasmid pLP712 of L. lactis NCDO712 (Maeda and Gasson 1985) in L. lactis 230 

UQ2Rif Lac+ was also tested. Phospho-ß-galactosidase activity from both L. lactis UQ2Rif 231 

Lac+ and L. lactis NCDO712 cell free extracts was very similar, as shown in Table 3, while 232 

the activity of L. lactis UQ2 was undetectable. 233 

 234 

Growth performance of L. lactis UQ2Rif and the transconjugant L. lactis UQ2Rif Lac+ 235 

in milk 236 

To assess if the newly lactose fermenting ability acquired by the transconjungant L. lactis 237 

UQ2Rif Lac+ implied a better growth performance in milk than its parent, viable counts, pH, 238 
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lactose consumption and lactic acid production in milk were monitored and displayed in 239 

Figure 2. Both strains reached the stationary phase after 12 h of incubation at 30 ºC. Notably, 240 

the Lac+ strain population (1.6 x 109 cfu/mL) doubled that of the native L. lactis UQ2Rif (8 x 241 

108 cfu/mL) (Figure 2a). Lactose consumption, as well as the concomitant increase of lactic 242 

acid, was only detected in the L. lactis UQ2Rif Lac+ cultures (Figure 2b). Accordingly, the 243 

fermented milk reached a pH of 4.75 after 12 h, while hardly any pH decrease was recorded in 244 

the L. lactis UQ2Rif cultures (Figure 2a). These results further confirmed that the lack of 245 

lactose fermenting ability and the low protease activity of L lactis UQ2 clearly hindered 246 

proper performance in milk. 247 

 248 

Nisin production in milk 249 

The presence of nisin was also followed along the growth of L. lactis UQ2Rif Lac+ in 250 

milk and compared to the parental strain L. lactis UQ2Rif as shown in Figure 3. Maximal 251 

nisin production was detected at the beginning of the stationary phase and was kept during 24 252 

h in both strains. However, nearly 200 IU/mL of nisin were synthesized by the transconjugant 253 

in contrast to 5-7 IU/mL obtained by L. lactis UQ2Rif. Therefore, nisin production was 254 

improved by a factor of 40. 255 

 256 

DISCUSSION 257 

Lactose and casein are, respectively, the main carbon and nitrogen sources present in milk. 258 

Hence, the ability to ferment lactose and degrade casein are two essential attributes of dairy 259 

cheese starters in order to produce enough lactic acid and reach the pH that leads to milk 260 

clotting. Our preliminary growth experiments in milk clearly indicated that the nisin 261 

producing L. lactis UQ2 strain was unable to metabolize lactose and had a low proteinase 262 

activity. The pH hardly changed unless milk was supplemented with glucose and yeast 263 
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extract. The Lac- phenotype was further confirmed by the absence of phospho-ß-galactosidase 264 

activity in L. lactis UQ2 cell free extracts. On the other hand, based on the fact that nisin 265 

production is growth-associated (De Vuyst and Vandamme 1992), it could be anticipated that 266 

poor growth in milk would result in low nisin production by L. lactis UQ2. According to this, 267 

milk supplementation also increased nisin activity. These results indicated that in order to use 268 

this strain as an autochthonous nisin producing starter, metabolic traits such as lactose 269 

catabolism and proteolytic activity had to be gained. 270 

An alternative to improve growth of L. lactis UQ2 in milk was to transfer the plasmid 271 

pLP712 by conjugation. The presence of this plasmid was already proved to be sufficient for 272 

proper growth of L. lactis in milk (Gasson 1983), and conjugal transfer of this plasmid has 273 

already been shown, although at low frequencies (Gasson and Davies 1980; O’Sullivan et al., 274 

1998). Moreover, conjugation is a food-grade event accepted to genetically enhance starter 275 

strains used in the food industry. The first conjugation matings yielded, at least at higher 276 

frequency, L. lactis NCDO712 Nis+ when using nisin and lactose as selection markers. These 277 

transconjugants were able to grow in the presence of 40 IU/mL of nisin which was proved to 278 

be inhibitory for the donor strain. They also produced inhibition halos on L. lactis MG1614, 279 

the nisA gene was amplified by PCR and the RAPD-PCR profile was the same as L. lactis 280 

NCDO712. These results revealed L. lactis UQ2 as a good donor of the nisin biosynthesis 281 

machinery. The nisin A cluster is located in a 70 kb transposon, which belongs to conjugative 282 

class I (Rauch and de Vos 1992; Rauch et al. 1994). Conjugation frequency of the nisin 283 

cluster from L. lactis UQ2 was 10-6, which is similar to that previously reported (Blaiotta et 284 

al. 2000; Broadbent and Kondo 1991). These authors accomplished nisin transfer from L. 285 

lactis ssp. lactis ATCC11454 to other L. lactis strains, at a frequency ranging 10-9-10-6. 286 

Nevertheless, results may also vary depending on the mating technique (Toomey et al. 2009). 287 
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Since the use of nisin as selection marker was not effective, spontaneous mutants 288 

resistant to rifampicin were selected. Resistance to rifampicin is due to point mutations in 289 

rpoB, the gene that codes for the β subunit of the RNA polymerase (Telenti et al. 1993), and 290 

the possibility of horizontal transmission is very low. Nevertheless, this resistance could 291 

preclude the use of this strain for certain food applications. The use of rifampicin in the 292 

selection plates facilitated the isolation of the L. lactis UQ2Rif Lac+ transconjugant. The 293 

conjugation frequency of the plasmid pLP712 (10-9) was very low compared to that reported 294 

for the pLP712 plasmid using other Lactococcus strains as recipients (Gasson and Davies 295 

1980). Among all the variables involved in efficient DNA transfer, it should be considered 296 

that L. lactis UQ2 is a wild isolate that carries several cryptic plasmids which may interfere 297 

with pLP712 replication, unless there is a strong selection pressure. In fact, the plasmid was 298 

lost in most of the cells after 200 generations in the absence of lactose as a carbon source. 299 

Transfer of pLP712 resulted in the strain L. lactis UQ2Rif Lac+ able to multiply 300 

efficiently in milk, decreasing the pH to values resembling those reported by other L. lactis 301 

used as starter cultures in the manufacture of traditional Afuega’l Pitu cheese (Cárcoba et al. 302 

2000). Low pH occurred concomitantly with lactose consumption and production of lactic 303 

acid. Growth of the parent strain L. lactis UQ2Rif in milk occurred likely at expense of small 304 

amounts of glucose present in milk (0.06 mg/mL). Glucose was not detected after3 h in L. 305 

lactis UQ2Rif cultures while glucose consumption by L. lactis UQ2Rif Lac+ was slower (data 306 

not shown). Nevertheless, the available glucose was clearly not enough to support high nisin 307 

production levels like those reached by the transconjugant. Our results showed that transfer of 308 

pLP712 to L. lactis UQ2Rif enhanced nisin production by a factor of 40. Based on the many 309 

variables involved in bacteriocin production (Parente and Ricciardi 1999), it should still be 310 

possible to further optimize and increase nisin production. Jozala et al. (2005) reported up to 311 

16,320 IU/mL of nisin by L. lactis ATCC11454 growing in milk as substrate. This is among 312 
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the highest nisin levels using milk as substrate. Other strategies encompass genetic 313 

engineering on the nisin biosynthetic cluster increasing the copy number of the immunity and 314 

regulation genes (Kim et al. 1998; Cheigh et al. 2005). 315 

Producers of traditional fresh Mexican cheese prefer the organoleptic quality of those 316 

produced using raw over pasteurized milk (Renye et al. 2007). Fresh cheese made from 317 

pasteurized milk may benefit from the use of L. lactis UQ2Rif Lac+ as starter or adjunct 318 

culture to help preserving the traditional characteristics of raw milk cheeses, while assuring 319 

the safety of these products. Therefore, this strain may have a promising future as a dairy 320 

starter for traditional Mexican cheese manufacture. There are, however, other relevant 321 

features which should be better characterized, such as phage resistance, production of volatile 322 

compounds and the possible inhibitory effect on other dairy starters when used in mixed 323 

starter cultures. 324 

 325 
CONCLUSIONS 326 

This study has shown that the low nisin production levels in milk by the wild isolate L. lactis 327 

UQ2 was due to the lack of the lactose fermenting and protein degradation phenotype. Nisin 328 

production in milk could be enhanced by improving growth performance in milk which was 329 

achieved by conjugal transfer of the Lac+ Prt+ plasmid pLP712. The transconjugant was able 330 

to acidify milk properly and nisin production was increased 40 times. On the other hand, L. 331 

lactis UQ2 turned out to be an efficient donor of the nisin transposon and might be used to 332 

transfer the NisA+ phenotype to other dairy strains of interest.  333 
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FIGURE LEGENDS 416 

 417 

Figure 1. Molecular characterization of Lactococcus lactis strains. (a) RAPD-PCR profile. (b) 418 

nisA PCR amplification. (c) Plasmid profile. The arrows point to the expected 168 bp PCR 419 

product of the nisA gene (in b) and the conjugative plasmid pLP712 (in c). L. lactis UQ2 (lane 420 

1), L. lactis UQ2Rif (lane 2), L. lactis UQ2Rif Lac+ (lane 3), L. lactis NCDO712 (lane 4). M: 421 

Molecular weight marker, EZ Load 500 bp (in a), EZ Load 100 bp (in b) (BioRad), and Bac-422 

tracker supercoiled DNA ladder (in c) (Epicentre, Madison, USA). 423 

 424 

Figure 2. Growth performance in milk at 30ºC of Lactococcus lactis UQ2Rif (closed 425 

symbols) and its transconjugant L. lactis UQ2Rif Lac+ (open symbols). (a) Colony forming 426 

units (squares) and pH evolution (circles). (b) Lactose consumption (triangles) and lactic acid 427 

production (diamonds). 428 

 429 

Figure 3. Nisin production by L. lactis UQ2Rif (closed circles) and its transconjugant L. lactis 430 

UQ2Rif Lac+ (open circles) growing in milk at 30ºC. 431 

 432 

433 
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Table 1. Bacterial strains used in this study. 434 

Strain Observations Reference 

Lactococcus lactis UQ2 Wild isolate Lac- Prt- NisA+ García-Almendárez et al. (2008) 

L. lactis NCDO712 Lac+ Prt+, donor of pLP712 Gasson and Davies (1980) 

L. lactis UQ2Rif Spontaneous rifampicin resistant L. 

lactis UQ2  

This study 

L. lactis UQ2Rif Lac+ Transconjugant NisA+Lac+ This study 

L. lactis MG1614 Nisin sensitive Gasson (1983) 

Micrococcus luteus NCIB8166 Indicator for nisin quantification BS 4020 (1974) 

NisA: nisin A production; Lac: lactose fermenting strain; Prt: proteolytic activity 435 

 436 

 437 

Table 2. Nisin production and pH of L. lactis UQ2 in supplemented milk incubated at 30ºC 438 

for 12 h. 439 

Skim milk (+ supplement) pH Inhibition halo (mm) 

Control (no supplement) 6.3 ND 

+ Glucose 0.5% 5.5 11 

+ Yeast extract 0.25% 6.3 7 

+ Glucose 0.5% + Yeast extract 0.25%  4.6 14 

Inhibitory activity was determined by the agar diffusion test using L. lactis MG1614 as 440 

indicator. ND: not detected. 441 

 442 

 443 
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Table 3. Phospho-β-galactosidase activity of L. lactis UQ2, L. lactis UQ2Rif Lac+, and L. 444 

lactis NCDO712. Mean values of three replicates ± standard deviation. 445 

Strain  
Phospho β-galactosidase activity 

(ΔA420nm /min µg protein) 

L. lactis UQ2 ND 

L. lactis UQ2Rif Lac+ 4.33 ± 0.78 

L. lactis NCDO712 4.50 ± 1.58 

ND: Not detected. 446 

 447 

448 



22 
 

Figure 1 449 
 450 
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Figure 2. 454 
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