BENTHIC NUTRIENT RECYCLING IN THE NORTHEASTERN SHELF OF THE GULF OF CÁDIZ (SW IBERIAN PENINSULA)

Ferrón, S.^{1,*}, Alonso-Pérez, F.², Anfuso, E.¹, Murillo, F. J.³, Ortega, T.¹, Castro C.G.², Forja, J.M.¹

¹ Departamento de Química Física. Facultad de Ciencias del Mar y Ambientales. Universidad de Cádiz. Campus Río San Pedro, s/n. 11510. Puerto Real, Cádiz.

² Departamento de Oceanografía. Instituto de Investigaciones Marinas. CSIC. c/ Eduardo Cabello 6, 36208. Vigo, Pontevedra, Spain.

³ Departamento de Zooloxía e Antropoloxía Física. Facultade de Bioloxía. Universidade de Santiago de Compostela. Campus Sur.15782. Santiago de Compostela, A Coruña, Spain.

* Corresponding author.

Now at Department of Oceanography, University of Hawaii. 1000 Pope Road, Honolulu, Hawaii 96822, USA.

Tel: +1-808-956-7072

E-mail: sferron@hawaii.edu

1 ABSTRACT

Benthic fluxes of nutrients and dissolved nitrous oxide (N₂O) were determined by benthic 2 chamber incubations in two regions on the northeastern near-shore continental shelf of the 3 4 Gulf of Cádiz (depth range: 8 - 34 m), one off the Guadalquivir River mouth and the other in the Bay of Cádiz and its neighboring shelf. A total of 25 in situ benthic chamber incubations 5 were performed during June 2006, November 2006 and February 2007 in order to investigate 6 7 the main factors controlling benthic nutrient recycling and its significance in the study site. Nutrient benthic fluxes varied between -0.9-1.0 mmol NO₃⁻ m⁻² d⁻¹, -0.3-0.3 mmol NO₂⁻ m⁻² d⁻¹ 8 ¹, -1.2-3.5 mmol NH₄⁺ m⁻² d⁻¹, -0.04-0.22 mmol HPO₄²⁻ m⁻² d⁻¹ and 0.2-2.9 mmol Si(OH)₄ m⁻² 9 d^{-1} . Benthic fluxes of N₂O, ranging from -1.2 to 10.4 µmol N-N₂O m⁻² d⁻¹, accounted on 10 average for less than 1% of total inorganic nitrogen fluxes. The regeneration of NH_4^+ and 11 12 Si(OH)₄ was mainly influenced by organic carbon oxidation rates and bulk organic carbon in surface sediments, whereas HPO_4^{2-} regeneration was mostly influenced by bottom water 13 14 oxygen concentration and water depth. Denitrification was estimated to account for between 9 15 and 13% of organic matter remineralization and for a loss of between 57 and 67% of potentially recyclable nitrogen. Overall, benthic remineralization was estimated to account 16 for about 47% of overlying primary production, supplying about 15 and 12% of the 17 18 phytoplankton N and P requirements, respectively.

19

Keywords: benthic fluxes, nutrient regeneration, denitrification, nitrous oxide, macrofauna,
coastal sediments, Gulf of Cádiz.

1 INTRODUCTION

2 Continental shelf sediments are important sites for organic matter remineralization and 3 nutrient recycling to the water column and, therefore, play a key role in controlling the 4 biogeochemistry of these systems (e.g. Berelson et al. 1998, 2003, Hopkinson et al. 2001). In spite of their modest surface area, continental shelves are biogeochemically very active sites, 5 6 receive large amounts of dissolved and particulate terrestrial matter, and serve as a connection 7 between the continents and the open ocean. About 25% of total oceanic primary production 8 occurs in the continental shelves (Wollast 2002). Due to their shallowness, a large proportion 9 of the autochthonous and allochthonous organic matter reaches the sediments, where it suffers 10 a vertical sequence of fermentative and respiratory microbial processes that progressively use the oxidants that yield the greatest free energy $(O_2, Mn^{4+}, NO_3^-, Fe^{3+}, SO_4^-, HCO_3^-)$. The 11 12 presence of benthic fauna deeply impacts the spatial distribution of microbial biogeochemical 13 zones, altering the physical and chemical properties of marine sediments and enhancing 14 benthic remineralization processes (Aller & Aller 1998, Mortimer et al. 1999, Wenzhofer & 15 Glud 2004). Organic matter degradation in coastal sediments and the associated release of 16 nutrients often provide a considerable fraction of phosphorus and nitrogen requirements for phytoplankton and can stimulate pelagic primary production (Nixon 1981, Cowan & Boynton 17 1996, Herbert 1999, Gibbs et al. 2005). 18

Nitrogen cycling is especially critical in marine sediments due to denitrification, the anaerobic microbial reduction of nitrate (NO_3^-) to nitrous oxide (N_2O) and dinitrogen gas (N_2). More than 50% of nitrogen inputs to the ocean may be removed by benthic denitrification in continental margins (Christensen 1994). Nitrate for denitrification can either be supplied directly from the overlying water column or through sedimentary aerobic nitrification of ammonium (coupled nitrification/denitrification) (Seitzinger 1988). N₂O, a potent atmospheric greenhouse gas (Rodhe 1990) which is also involved in the depletion of

stratospheric ozone (Cruzten & Schmailzl 1983), is mainly produced in aquatic environments as an obligate intermediate during denitrification and as a by-product in the first step of nitrification. Several authors have pointed out the importance of sediments as a major source of N₂O in coastal systems (Robinson et al. 1998, Seitzinger et al. 2000, Bange 2006). About 13% of global N₂O emission to the atmosphere occurs in the oceans (Khalil & Ramussen 1992), of which 35% to 60% is attributed to estuaries and near-shore coastal environments.

7 This work reports the results derived from *in situ* benthic chamber incubations performed in 8 near-shore sediments of the northeastern shelf of the Gulf of Cádiz (SW Iberian Peninsula), 9 during three periods of the year, corresponding to summer, autumn and winter. Documented nutrient benthic flux measurements in this region have only been performed in shallower 10 11 littoral sediments such as the inner Bay of Cádiz (Gómez-Parra & Forja 1993, Forja et al. 1994, Ferrón et al. 2009) where nutrient benthic fluxes were in the range of: 3-24 mmol NH_4^+ 12 $m^{-2}d^{-1}$, 0.2-7.8 mmol HPO₄²⁻ $m^{-2}d^{-1}$ and 1-28 mmol Si(OH)₄ $m^{-2}d^{-1}$. The main goals of this 13 14 research are to analyze the main factors controlling benthic organic matter decomposition and 15 nutrient recycling in continental shelf sediments of the Gulf of Cádiz and to examine the 16 significance of benthic nutrient regeneration in this system.

17

18

19

1 MATERIAL AND METHODS

2 Study site

3 The study was performed in the near-shore northeastern shelf of the Gulf of Cádiz (SW 4 Iberian Peninsula), which is a wide basin between the Iberian Peninsula and the African 5 continent where the North Atlantic Ocean and the Mediterranean Sea meet through the Strait 6 of Gibraltar (Fig. 1). In particular, the northeastern shelf of the gulf receives freshwater inputs 7 from several rivers (such as Guadiana, Guadalquivir, Tinto and Odiel), and its circulation is 8 mainly controlled by the North Atlantic Surface Water (NASW), which flows towards the 9 east and southeast to the Strait of Gibraltar, as well as by an intermittent counter current 10 system which seems to be closely linked to the wind regime (Lobo et al. 2004). 11 Phytoplankton distribution is tightly coupled to meteorological and hydrodynamic conditions in this sector of the gulf, which presents the highest primary production within the basin 12 13 (Navarro & Ruiz 2006). Predominance of westerly winds favors the generation of upwelling 14 events and therefore an increase in primary production, whereas easterlies lead to a decrease 15 in phytoplankton (Navarro & Ruiz 2006). 16 Nine sites were selected in near-shore waters close to the mouth of the Guadalquivir River (GL1-GL4) and the Bay of Cádiz (BC1-BC5) (Fig. 1). The Guadalquivir River is the main 17 fluvial source draining into the Gulf of Cádiz, with an annual water discharge of 160 m³ s⁻¹ 18 19 (Van Geen et al. 1977). The river is 560 km long and its drainage basin covers an area of approximately 58000 km². The estuary is characterized by an irregular river discharge, which 20 21 is relatively low for most of the year and considerably higher during the rainy season 22 (February–March) (de la Paz et al. 2007). The hydrodynamics in the estuary is mainly 23 controlled by the tidal regime. On the other hand, the Bay of Cádiz is a shallow environment 24 divided into two basins: the southern and shallower inner bay, and the northern and deeper 25 external bay (88 km²), which is connected to the gulf through a 13.5 km-long mouth. The bay is surrounded by an extensive salt marsh area and several towns and cities, with a total
population of about 700000 inhabitants. The 157-km long Guadalete River, which receives
the effluent of the wastewater treatment plant of Jerez de la Frontera (200000 inhabitants) and
the drainage from agricultural cultivations, flows into the external bay. Nearby, a shallow
tidal creek (Río San Pedro), affected by the discharges from surrounding aquaculture
installations (Tovar et al. 2000), also flows into the bay.

7 The data reported in this work were collected during 3 cruises on board R/V Mytilus, covering 8 three seasonal periods: June 2006, November 2006 and February 2007. At each site, CTD 9 casts were performed at the beginning of the chamber incubations in order to obtain the 10 vertical profiles of temperature, salinity, pressure, dissolved oxygen and fluorescence, by 11 means of a Seabird CTD probe coupled to a Seatech fluorometer and a Seabird 43 (SBE-43) 12 dissolved oxygen sensor. Surface and bottom waters were sampled for analysis of nutrients, 13 chlorophyll a and nitrous oxide. The surface sediment was sampled at the beginning of each 14 incubation by means of a box-corer (15x10 cm) to measure total C and N composition and 15 organic carbon content in the top centimeter, and with a Van Veen drag to measure grain size 16 distribution.

17 In situ benthic flux measurements

The fluxes of nutrients and nitrous oxide were measured by in situ benthic chamber 18 19 incubations, using an opaque cylindrical stirred chamber (0.8 m inner diameter, 0.28 m height) that covers 0.50 m² of sea-bottom and approximately 140 L of overlying water (Ferrón 20 21 et al. 2008). Stirring of the water phase is achieved by means of three centrifugal pumps. 22 Inside the chamber, sensors for temperature (SBE-39), pH (SBE-18), oxygen (SBE-43) and 23 turbidity (Seapoint Turbidity Meter) give a continuous recording of these variables during the 24 incubations. Real time monitoring and data acquisition is achieved by means of a two-way radio communication system (SATELLINE-3AS, SATEL). A multiple water sampler 25

provided with 12 syringes (KC-Denmark) collects discrete 50 mL samples at pre-set time intervals. The chamber was slowly lowered to the bottom from the ship with a crane. The incubations were performed during the day and lasted for approximately 8 hours. Nutrient samples were filtered (Polycarbonate, 0.45 μm) and kept frozen until subsequent analysis. Samples for N₂O measurements were carefully drawn in 25 mL air-tight glass bottles, preserved with saturated mercuric chloride and sealed with Apiezon® grease and stored in the dark until analysis in the laboratory.

8 Analytical methods

9 Nitrate, nitrite, ammonium, phosphate and silicate were determined by segmented flow analysis with Alpkem autoanalyzers following Hansen & Grassoff (1983), with some 10 11 improvements (Mouriño & Fraga 1985). The storage of silicate samples by freezing is 12 satisfactory for samples with a silicate content below 50 umol/L (Koroleff 1983). Silicon 13 tends to polymerize when stored frozen and hence samples must be allowed to stand for at 14 least 3 hours after thawing, and were shaken vigorously before analysis. The analytical errors were $\pm 0.05 \,\mu$ mol kg⁻¹ for nitrate, ammonium and silicate, $\pm 0.02 \,\mu$ mol kg⁻¹ for nitrite and \pm 15 $0.01 \ \mu mol \ kg^{-1}$ for phosphate. 16

17 Dissolved N₂O concentrations were determined with a gas chromatograph (Varian CX 3600).

18 In-syringe head space equilibration was used to extract the dissolved gas from the water

19 samples. The temperature of equilibration (± 0.1 °C) was registered by a thermometer (P500

20 Dostman electronic). A mixture of Ar/CH₄ (95% / 5%) was used as carrier gas (30 mL min⁻¹),

gases were separated by a 2.5 x 1/8-in stainless steel Porapack N column (80/10), and N_2O

22 was detected by a ⁶³Ni Electron Capture Detector (ECD), operated at 300°C. The detector was

23 calibrated using three standard gas mixtures distributed and certified by Air Liquide (France),

24 with certified N₂O concentrations of 0.264, 0.840 and 1.55 ppmv. The precision of the

25 method, including the equilibration step was 6.6%, expressed as the variation coefficient of

1	based on replicate analysis (n = 25) of a seawater sample saturated with N_2O The
2	concentration of N_2O in the water samples was calculated from the concentration measured in
3	the head space, using Bunsen solubility equations given by Weiss & Price (1980).
4	Chlorophyll a concentrations in water column samples were measured by fluorimetry, using
5	90% acetone extracts at dark after filtration through Whatman GF/F filters (0.45 μ m).
6	Total C and N were measured in dried sediment (first cm) on a CHNS-932-LECO Element
7	Analyzer after Cr ₂ O ₃ and AgCo ₃ O ₄ catalyzed oxidation and segregation on a Haysep-Q-
8	column. The organic C content in surface sediments was determined by chemical oxidation
9	(Gaudette et al. 1974, El Rayis 1985) with a standard deviation of $\pm 0.25\%$.
10	Grain size distribution in surface sediments was measured by sieving, except for the fraction
11	smaller than 63 μ m which was determined with a laser diffraction analyzer. Analysis of grain
12	size statistics was carried out using the software GRADISTAT (Blott & Pye 2001).

13 Macrofauna

During the survey in November 2006, macrofaunal samples were collected at each station 14 with a Van Veen grab (sampling area: 0.1 m²), and sieved over a 1 mm mesh-sized sieve. 15 16 Recovered material was preserved in 4% buffered formaldehyde. The preserved samples were sorted and identified. Abundance of each taxonomic group was recorded and wet weight of 17 each species from each station was calculated. Wet weights were transformed to ash-free dry 18 19 weights (AFDW) using published conversion factors for major taxa (Ricciardi & Bourget 1998). Trophic guilds of the sampled macrofaunal species were determined from Parada 20 21 (2005), based on Pearson (1971), Fauchald & Jumars (1979) and other different works.

22 Benthic flux and rate calculations

Fluxes across the sediment-water interface were calculated as the product of the chamber height and the slope of the linear regression of the time series concentration evolution. Errors in benthic fluxes were derived from the error of the slope resulting from the data fit.

- 1 Denitrification rates
- 2 Total denitrification rates (F_{denit}) were estimated, assuming that nitrate reduction is the
- 3 dominant N₂-producing process in the sediments, following the equation:

$$F_{\text{denit}} = (1/C:N) * C_{\text{ox}} - F_{\text{IN}}$$
(1)

4 where C_{ox} is the carbon mineralization rate, which were taken from a parallel study (Ferrón et 5 al. submitted) and F_{IN} is the measured flux of dissolved inorganic nitrogen $(NO_3^- + NO_2^- +$ 6 $NH_4^+)$. Associated carbon mineralized via denitrification was estimated from the 7 stoichiometry of the reaction (Froelich et al. 1979):

$$(CH_2O)_{106}(NH_3)_{16}(H_3PO_4) + 84.8 \text{ HNO}_3 \rightarrow 106 \text{ CO}_2 + 42.4 \text{ N}_2 + 16 \text{ NH}_3 + H_3PO_4$$

$$+ 148.4 \text{ H}_2\text{O}$$
 (2)

8 Nitrification rates

9 Nitrification rates (F_{nit}) were calculated as the difference between total organic N mineralized

10 and ammonium flux (F_{NH4}) (Lehmann et al. 2004):

$$F_{nit} = (1/C:N)*C_{ox} - F_{NH4}$$
 (3)

11 The first term of equations (1) and (3) represents the total organic N mineralized and depends on the C/N atomic ratio of organic matter undergoing diagenesis. In the study site, the organic 12 matter deposited into the sediments is likely influenced by the supplies of terrestrial carbon 13 discharged by the Guadalquivir and Guadalete rivers, as well as by autochthonous 14 phytoplankton-derived material. Therefore, the C/N ratio of degrading organic matter is 15 16 expected to range from the Redfield ratio for phytoplankton (C/N = 6.6) to the C/N ratio 17 measured in the top centimeter of sediment. Consequently, to delimit the upper and lower limits of denitrification and nitrification rates, these were calculated assuming both Redfield 18 19 and sediment C/N ratios for organic matter.

20

1 *P recycling efficiency*

- 2 P recycling efficiency was calculated as the percentage of measured phosphate fluxes (F_{PO4})
- 3 relative to the expected F_{PO4} from organic carbon remineralization assuming Redfield
- 4 stoichiometry, by applying the expression:

% P recycling = $100*[F_{PO4}/(C_{ox}*1/C:P)]$

In this case, calculations were only based on Redfield stoichiometry ratio (C:P = (4) 106:1), as the sediment C/P ratio was not available. Therefore, these estimates are likely a lower limit for P recycling efficiency.

5 Statistical analysis

- 6 Seasonal and spatial (between GL and BC sites) differences of sediment properties and
- 7 benthic fluxes were analyzed by using one-way ANOVA followed by Bonferroni post-hoc
- 8 test (Statgraphics Plus 5.1). The threshold value for statistical difference was assumed to be p

9 < 0.05.

- 10 Relationship between sediment and bottom water properties and sediments were assessed
- 11 using Principal Components Analysis (PCA) (Statgraphics Plus 5.1).
- 12

1 RESULTS

2 Water column characteristics

3 Water temperature varied seasonally, presenting highest temperatures in the summer and 4 lowest in the winter (Fig. 2). Temperature differences between surface and bottom waters 5 were mainly observed at GL sites during the summer. During autumn and winter, salinity 6 values in surface waters were generally lower than in bottom waters, due to the influence of 7 terrestrial freshwater inputs. Bottom water oxygen concentrations ranged from 163 to 248 8 µM, corresponding to atmospheric saturations of 62% and 99%, respectively. Oxygen 9 concentrations were significantly lower in the summer than in the winter (p < 0.05). Water 10 column nutrient concentrations (only nitrate shown) were significantly lower for the summer 11 than the autumn and winter periods (p < 0.01). Whereas phosphate concentrations where in 12 most cases above 0.05 µM, the concentration of nitrate was, during the summer and mostly in 13 surface waters, often below 0.5 µM, which is considered limiting to phytoplankton growth 14 (Fasham et al. 1990). Sea surface concentrations of nitrate, nitrite, phosphate and silicate were 15 directly influenced by freshwater supply, as a negative linear relationship with salinity pointed out $(r^2 = 0.80 \text{ for } NO_3^2 + NO_2^2, r^2 = 0.61 \text{ for } PO_4^2, \text{ and } r^2 = 0.71 \text{ for } Si(OH)_4)$. Nitrous oxide 16 concentrations were significantly lower during the winter compared to autumn and summer (p 17 < 0.01). Water column was in all cases N₂O oversaturated with respect to atmosphere, with 18 19 saturations ranging from 220-340%, 230-290% and 120-155% during summer, autumn and 20 winter respectively.

21 Sediment characteristics

Sediment from GL stations was characterized as mud (GL4, GL2 and GL3) and sandy mud
(GL1), with a mud:sand ratio higher than 8:1 and negligible gravel content. The BC sites
showed a higher fraction of sand. Sediments at BC1 and BC3 were characterized as muddy
sands with a sand:mud ratio close to 9:1, whereas BC2, BC4 and BC5 were muddy sands with

similar proportions of sand and mud but characterized by different fractions of gravel (1% in
BC2 and 5% in BC4 and BC5). Coarse material was mostly calcareous shell fragments.
Average organic carbon for each site ranged from 0.25 to 1.18% and was significantly higher
at GL sites than at BC sites (p < 0.01) (Table 1). Sediment nitrogen contents ranged from
0.03% to 0.18%, and also showed significantly lower values (p < 0.01) at BC stations than at
GL stations. The C:N molar ratios in surface sediments ranged from 7.0 to 9.4 and were not
significantly different in GL and BC sites.

8 Macrofauna

9 A total of 97 benthic macrofaunal taxa were identified in the study area in November 2006 (see Appendix I). Total macrofaunal abundances and biomass ranged from 660 to 2570 10 individuals m^{-2} , and from 0.4 to 6.9 g m^{-2} , respectively. Polychaeta was the dominant class 11 12 and accounted in all sites for more than 45% of total biomass, with the exception of BC2 and 13 BC3 (Fig. 3a). The polychaetes population was mainly dominated by small-size opportunistic 14 polychaetes belonging to the families Lumbrineridae, Spionidae, Paraonidae, Capitellidae, 15 Magelonidae and Sternaspis scutata, or the large-size and active irrigating polychaete climax 16 species such as Maldane glebifex or Glycera unicornis in BC4 and BC5. Molluscs were the next dominant macrofaunal class in most sites, with biomass ranging from 0.04 to 1.28 g m⁻². 17 18 Surface deposit feeders were the dominant macrofaunal trophic group in terms of abundance, 19 with the exceptions of GL1 and GL4 (Fig. 3b). In most of the stations, the dominance was 20 well distributed among different groups except for sites GL3 and BC5 and BC2 and BC4. In 21 terms of total biomass, carnivores accounted for more than 60% of total biomass in GL3 and 22 BC5, mainly as a result of the presence of the nemertean *Cerebratulus* sp and to the 23 burrowing polychaete *Glycera unicornis*, respectively. On the other hand, at sites BC2 and 24 BC4, surface deposit feeders dominated due to the presence of the urchin Echinocardium cordatum at BC2, and to the tube-dwelling of the family Maldanidae at BC4. 25

1 Benthic fluxes

7

2 Nitrate fluxes ranged from -0.9 to 1.0 mmol $m^{-2} d^{-1}$ whereas nitrite fluxes varied between -

3 0.25 and 0.26 mmol $m^{-2} d^{-1}$ (Table 2). Twice in November 2006 and three times in February

4 2007, nitrate and nitrite fluxes were directed in opposite directions. Ammonium fluxes,

5 ranging from -0.33 to 3.10 mmol $m^{-2}d^{-1}$, were always positive except for three occasions in

6 BC sites. Benthic fluxes of NO_3^- , NO_2^- and NH_4^+ did not differ significantly between BC and

GL regions or among seasons. Seasonally averaged NO₃⁻ and NH₄⁺ fluxes at each site showed

8 a significant linear correlation with the organic carbon content of surface sediments, which

9 was negative for the former ($r^2 = 0.47$) and positive for the latter ($r^2 = 0.74$). In contrast to

10 nitrate fluxes, seasonally averaged NH_4^+ fluxes also correlated with average carbon oxidation 11 rates for each site ($r^2 = 0.72$).

Nitrous oxide fluxes were very variable and directed out of the sediments, except for one 12 deployment in June 2006 at BC3, which also coincided with a sediment uptake of NO₃⁻, NO₂⁻ 13 and NH₄⁺. Nitrous oxide fluxes ranged from -1.2 to 10.4 μ mol N-N₂O m⁻²d⁻¹ and accounted 14 on average for less than 1% of benthic inorganic nitrogen fluxes $(NO_3^2 + NO_2^2 + NH_4^4)$. The 15 ratio of N₂O fluxes to total inorganic nitrogen fluxes varied significantly between the three 16 sampled seasons (p < 0.05), being highest in June 2006 and lowest in February 2007. Nitrous 17 oxide fluxes were significantly smaller in February 2007 than in November 2006 (p < 0.01), 18 19 and no significant differences were observed between GL and BC sites. 20 Phosphate was normally released to the water column with the exception of a few cases in 21 which it was taken up by the sediment. Benthic phosphate fluxes, ranging from -0.04 to 0.22mmol $m^{-2}d^{-1}$, were variable and did not show any clear spatial or temporal trends. 22 Silicate fluxes ranged from 0.21 to 2.87 mmol $m^{-2}d^{-1}$, did not differed significantly between 23

24 BC and GL sites or among seasons. Seasonally averaged silicate fluxes were linearly

1 correlated with average carbon oxidation rates ($r^2 = 0.65$) and sediment surface organic

2 carbon ($r^2 = 0.65$).

3 Factors controlling benthic organic matter mineralization and nutrient recycling

4 The relationships among sediment and bottom water properties and benthic fluxes were analyzed using principal components analysis (PCA) in order to elucidate the primary factors 5 driving benthic organic matter mineralization and nutrient recycling in the northeastern shelf 6 7 of the Gulf of Cádiz (Table 3). Component 1 is indicative of organic matter mineralization 8 (Cox), concomitant with ammonium and silicate effluxes, and it is significantly associated 9 with the content of organic carbon and median grain size of surface sediments. Component 2 10 is positively associated to benthic fluxes of phosphate, nitrate and nitrite, and negatively 11 correlated to bottom water oxygen concentration. Component 3 indicates a negative 12 relationship between bottom water nitrate concentrations and both temperature and salinity. 13 Finally, component 4 is positively associated to the abundance and biomass of macrofauna, 14 which are mostly correlated (negative) to sediment grain size. The four components explained 15 74.5% of the data variability.

16 Denitrification and nitrification rates

The molar ratios of mineralized carbon to the flux of inorganic nitrogen (nitrate + nitrite + 17 ammonium) (Cox:FIN) can be used to investigate the preferential pathways of organic matter 18 19 remineralization, given the C/N ratio of deposited organic matter. The C:N:P Redfield ratio 20 (106:16:1) is often applied to compare it to measured solute flux ratios, considering that only 21 phytoplankton-derived material is undergoing diagenesis (Berelson et al. 1998, 2003, Jahnke 22 & Jahnke 2000). However, the organic matter in the study site is likely affected by terrestrial 23 or seagrass detritus, which are expected to have higher C/N ratios (e.g. Enriquez et al. 1993). Measured fluxes of inorganic nitrogen $(NO_3^+ + NO_2^+ + NH_4^+)$ were in general lower than those 24

25 expected from benthic mineralization when assuming in one case the Redfield and in the other

1 case the sediment C/N ratios for organic matter (Fig 4a and b). Average denitrification rates for each site, calculated applying equation (1), ranged from 1.12 to 3.74 mmol N m⁻² d⁻¹, 2 assuming a Redfield stoichiometry for mineralized organic matter, and from 0.61 to 3.23 3 mmol N m⁻² d⁻¹, assuming observed sediment C:N molar ratios (Table 4). The ratio of 4 denitrification rates based on Redfield stoichiometry to the ones based on sediment C/N ratios 5 6 was on average 1.7, which demonstrates the sensitivity of these calculations to the C/N ratio 7 of mineralized organic matter. Averaged carbon remineralization rates attributed to 8 denitrification ranged from 8 to 15% considering Redfield stoichiometry, and from 4 to 14% 9 considering sediment C:N ratios.

10 Average nitrification rates calculated from equation (3) ranged from 1.79 to 3.90 mmol N m⁻² 11 d^{-1} and from 1.27 to 3.42 mmol N m⁻² d^{-1} , applying Redfield and observed sediment C:N ratio,

respectively (Table 4). These rates were on average between 1.2 and 1.5 times higher than
denitrification rates. The ratio of nitrification rates based on Redfield stoichiometry to the

14 ones based on sediment C/N ratios was on average 1.5. Estimated denitrification and

15 nitrification rates did not vary significantly among the seasons or between BC and GL

16 regions, although they were considerably smaller in BC1 compared to the rest of stations.

17 P recycling efficiency

Averaged for each site, P recycling efficiencies, which account for the average fraction of remineralized P that is recycled to the water column, were very variable and ranged from -8% (net uptake) at GL4 to 72% at BC1. Average P recycling efficiencies were found to be negatively correlated to the water depth, with the best fit being logarithmic (%P = -37.4*Ln(z) + 137.2; $r^2 = 0.65$).

1 DISCUSSION

2 **N** regeneration

22

In marine sediments there are three principle microbial processes that affect N regeneration: 3 denitrification, nitrification and ammonification, i.e. the release of NH₄⁺ from organic matter 4 (Bronk & Steinberg 2008). Denitrification is of particular interest in coastal systems because 5 6 it represents a net loss of N (as N_2) and, therefore, reduces the N-enrichment in these 7 environments (Devol 2008). Apart from the classical denitrification process, the recently 8 discovered anaerobic ammonium oxidation with nitrite (anammox) can also be involved in 9 benthic production of N₂ (Thamdrup & Dalsgaard 2002). The most important drivers 10 controlling the relative importance of anammox in sediment N₂ production are water depth 11 (and hence benthic mineralization rates) and NO₃ availability (Thamdrup & Dalsgaard 2002, Dalsgaard et al. 2005). According to these authors, the relative contribution of this route to N_2 12 13 production is often less than 20% in shallow sediments (<50 m) with the highest N₂ 14 production in environments with high NO_3^- availability. Thus, given the shallowness and very 15 low nitrate levels of the study site, we have assumed that denitrification is the main N₂producing process. In addition, the anaerobic dissimilatory nitrate reduction to ammonium 16 (DNRA) can also be involved in the sedimentary N cycle, although this route is generally 17 18 only significant in organic rich sediments with high free sulfide concentrations, such as 19 estuarine sediments (Rysgaard et al. 1996) and under fish culture net pens (Christensen et al. 20 2000). 21 Benthic NH₄⁺ fluxes measured in the northeastern shelf of the Gulf of Cádiz were within the

range reported for coastal environments (Berelson et al. 1998, 2003, Hopkinson et al. 2001, Bronk & Steinberg 2008 and references therein). The regeneration of NH₄⁺ was related to 23

24 benthic organic matter remineralization, which in the study site was found to be mainly

controlled by the organic matter content in surface sediments. (Table 3, Ferrón et al. 25

1 submitted). Although this pattern has been previously observed (e.g. Forja et al. 2004, 2 Lansard et al. 2008), other authors have found that benthic remineralization is mainly controlled by the quality, rather than the quantity, of sedimentary organic matter (Arnosti & 3 4 Holmer 2003, Ståhl et al. 2004). Although not significantly, component 1 of the PCA was negatively associated to surface sediment C/N ratios, which are considered to be indicative of 5 6 organic matter quality. However, the stronger contribution of bulk sediment organic carbon to 7 component 1, together with the significant relationships observed between silicate benthic 8 fluxes and both organic carbon oxidation rates and organic carbon content in surface 9 sediments, seemed to indicate that a considerable fraction of the latter must be labile (e.g. fresh diatoms). 10 11 Contrary to NH_4^+ fluxes, NO_3^- fluxes were negatively correlated to component 1. In addition, 12 benthic fluxes of NO_3^- and NO_2^- , which were within the range reported for other coastal 13 environments (Berelson et al. 1998,2003, Hopkinson et al. 2001, Bronks & Steinberg 2008 14 and references therein), were negatively correlated to bottom water oxygen concentration 15 (component 2). In fact, oxygen strongly affects most of the processes involved in the N cycle, 16 with the exception of organic N mineralization or NH_4^+ regeneration, which occurs under both oxic and anoxic conditions (Joye & Anderson 2008). The lower and upper limits for 17 18 denitrification rates estimated for the study site, assuming that denitrification was the main 19 N_2 -producing process, indicated that on average between 60% and 68% of the nitrogen 20 mineralized was denitrified, respectively. This is in good agreement with other values 21 reported in the literature for marine sediments (Seitzinger et al. 1988, Seitzinger & Giblin 22 1996, Berelson et al. 1998, Jahnke & Jahnke 2000, Hopkinson et al. 2001, Laursen & 23 Seitzinger 2002). Average denitrification rates for each sampling site were linearly correlated 24 to surface sediment organic carbon and carbon oxidation rates. Taking into account the lower and upper limits calculated for denitrification rates, it was estimated that this process 25

contributed between 9 and 13% to total organic matter oxidation. Laursen & Setzinger (2002)
 found a similar contribution in continental shelf sediments of the Mid-Atlantic Bight, where
 denitrification accounted for 13% of total benthic remineralization.

4 In general, sediments acted as a source of N₂O to the water column and measured fluxes were in the range of those reported in other coastal environments (Seitzinger 1988, Hopkinson et al. 5 6 2001, Laursen & Seitzinger 2002). In marine sediments, N_2O is mainly produced by 7 denitrification, nitrification, nitrifier-denitrification and DNRA. Although N2O benthic fluxes 8 were negligible in terms of mineralized N, representing on average less than 1% of measured inorganic N fluxes $(NH_4^+ + NO_3^- + NO_2^-)$, they may represent a significant source of N₂O to 9 10 the water column. In this sense, averaged for each season and region (BC and GL), bottom 11 water N₂O concentrations significantly correlated with N₂O benthic fluxes, with the best fit being a second order polynomial ($r^2 = 0.83$). 12

13 **P** regeneration

14 Phosphate fluxes were in good agreement with those measured in other coastal environments 15 (Berelson et al. 1998, 2003, Hopkinson et al. 2001) and were poorly correlated with carbon 16 remineralization rates, indicating that there must be other sources and sinks for P (Fig. 5). Flux ratio lines of 1:106 (Redfield ratio), 1:50 and 1:300 (F_P:C_{OX}) are plotted in figure 6 as a 17 reference, as P:C ratios of mineralized organic matter may deviate from Redfield 18 19 stoichiometry. Measured benthic phosphate fluxes were in all cases lower than expected from 20 carbon mineralization rates and Redfield stoichiometry, and also often lower than expected 21 from organic matter with lower P:C ratios. On the other hand, the PCA showed a significant 22 negative relationship between benthic phosphate fluxes and bottom water oxygen 23 concentrations (component 2). In this context, lower F_P:C_{OX} ratios are often reported in 24 literature for oxic environments, whereas higher ratios are found in areas with oxygen depleted bottom waters (e.g. Ingall & Jahnke 1997, McManus et al. 1997). This is further 25

1 corroborated by the negative linear relationship found between estimated P recycling efficiencies and oxygen concentrations in bottom water ($r^2 = 0.51$; only efficiencies > 0% 2 3 considered in the fit). The efflux of remineralized phosphate may be controlled in the surface 4 oxidized layer by sorption with iron oxyhydroxides (Patrick & Khalid 1974). In a nearby 5 shallow tidal creek located within the saltmarsh area of the Bay of Cádiz (Río San Pedro), Ferrón et al. (2009) reported phosphate benthic fluxes ranging from 0.2 to 2.4 mmol $m^{-2} d^{-1}$, 6 7 and they associated the high P recycling efficiencies observed (mostly in the summer) to the 8 low oxygen concentrations in the water column, as well to the release of inorganic mineral P 9 adsorbed into the sediments. In the study site, where relatively high bottom water oxygen concentrations were observed, and taking into account the low (FP:COX) ratios found, a 10 11 considerable fraction of the P mineralized is likely being retained in the sediments by 12 adsorption or mineral precipitation. In addition, the magnitude of P regenerated to the water 13 column seemed to be mainly driven by bottom water oxygen concentration and water column 14 depth, rather than by the total rate of organic matter mineralization.

15 Influence of macrofauna on nutrient regeneration

16 It is well documented that the presence of meio- and macrofauna impacts benthic mineralization and nutrient recycling through feeding, burrowing and irrigation (Aller 1982, 17 Aller & Aller 1998). Due to the large sediment surface covered by the chamber used in this 18 19 study, measured benthic fluxes already integrate the influence of macrofauna on benthic 20 carbon remineralization and nutrient regeneration. Sediment bioturbation, burrowing and 21 irrigation affect the vertical distribution of organic matter within sediments, increase exposure 22 of sediment to oxygen, enhance the exchange of solutes between sediment and overlying 23 water and, therefore, influence a variety of aerobic and anaerobic microbial processes (Aller 24 1982, Aller & Aller 1998). In shallow nearby sediments of the Bay of Cádiz, Forja & Gómez-Parra (1998) found that macrofauna affected the top 10 to 15 cm of sediment, significantly 25

1 enhancing benthic fluxes of inorganic carbon and nutrients. However, the PCA failed to show 2 any significant relationship between total macrofaunal abundance or biomass and organic matter mineralization and nutrient benthic fluxes. This was also true when separated into the 3 4 different classes or the different trophic groups. The PCA showed that macrofaunal abundance and biomass correlated with component 4 (Table 3), and that both variables were 5 6 negatively correlated to the median sediment grain size. No trends were observed between 7 macrofaunal community and organic carbon content in surface sediments. Similarly, previous 8 investigations in the northern Aegean Sea and the Skagerrak (NE North Sea) showed no 9 correlation between macrofaunal biomass and organic carbon oxidation rates (Ståhl et al. 10 2004 a,b). However, in Skagerrat sediments measured dissolved inorganic carbon fluxes were 11 enhanced by 1.0 – 5.4 times over diffusive fluxes, indicating that macrofauna had a significant 12 impact on benthic exchange rates of organic carbon remineralization products (Ståhl et al. 13 2004 a,b). The lack of correlation between macrofauna abundance or biomass and carbon 14 oxidation rates may partly be explained by the existence of patchiness in the macrofaunal 15 communities, as well as the complexity of assessing the species-specific traits and functional 16 biodiversity. In this sense, the overall indirect enhancement of bacterial respiration rates by bioirrigation and bioturbation activities depends on several factors such as the structure of the 17 18 macrobenthic community, the size distribution, the geometrical shape of burrows and the 19 modes of burrow ventilation and feeding strategies (Aller & Yingst 1978). Therefore, 20 macrofaunal biomass or abundance my not be sensitive measures of macrofaunal influence on 21 benthic remineralization rates (Ståhl et al. 2004a). Furthermore, macrofauna in this study was 22 only sampled in November 2006 and, hence, data may not be sufficient to establish any 23 correlation with other parameters measured in this study. 24 In addition to macrofauna, the presence of benthic microalgae is known to have a significant

25 impact in sediment biogeochemistry and nutrient cycling (Jahnke 2005). This has been clearly

demonstrated in shallow littoral sediments (< 2m) that present lower sediment-water NH₄⁺ 1 2 fluxes than deeper sediments (Joye & Anderson 2008), suggesting an autotrophic uptake at 3 shallower depths. However, some authors have observed significant benthic primary 4 production rates in continental shelf sediments (e.g. Hopkinson 1991, Jahnke et al. 2000). It is 5 estimated that up to 30% of the continental shelf sea floor could receive enough light to support significant rates of benthic photosynthesis (Jahnke 2005). If that was the case, the 6 7 exclusion of sunlight by the chambers would prevent benthic primary production reducing 8 sediment oxygen penetration depth and, thereby, nitrification-denitrification potential and 9 phosphate binding capacity. Consequently, our data would not integrate net metabolism but only respiration. 10

11 Role of benthic remineralization and nutrient recycling

12 Based on net primary production measurements performed in nearby stations of the Gulf of Cádiz using the ¹⁴C uptake method (Huertas et al. 2005, Navarro et al. 2006), it is possible to 13 14 examine the importance of benthic carbon remineralization on the fertilization of the system. An average integrated primary production value of about 700 mg C m⁻² d⁻¹ was assumed, 15 16 which is the average of the values reported by Navarro et al. (2006) for the most coastal 17 stations. Given the annually averaged carbon oxidation rate for the study site ($28 \pm 8 \mod C$ $m^{-2} d^{-1}$), benthic remineralization degrades about 47% of net primary production (Fig. 6). The 18 19 dependence of carbon remineralization rates on surface sediment organic carbon reported throughout the study site, together with the significance of sediments in degrading primary 20 21 produced organic matter, seem to indicate a tight benthic-pelagic coupling in this system (Fig. 6). Moreover, based on measured average fluxes of inorganic nitrogen $(NO_3^{-} + NO_2^{-} + NH_4^{+})$ 22 23 and phosphate, benthic nutrient recycling supplied to the water column about 15% and 12%, 24 respectively, of total nitrogen and phosphorus phytoplankton requirements. The remaining N 25 and P required by phytoplankton are very likely supplied by terrestrial inputs and upwelling

events. The significance of benthic carbon remineralization and nutrient regeneration in these
shelf sediments seems to be relatively high. For example, Hopkinson et al. (2001) found that
benthic metabolism was equivalent to 20-24% and 11-14% of the primary production in
Massachusetts Bay (30 m deep) and Stellwagen Bay (75 m deep), respectively. In the same
study, these authors reported that benthic remineralization supplied between 3 and 8% of the
N and 11 to 15% of the P required for phytoplankton primary production in those coastal
systems.

8 Two different average budgets for the N cycle have been estimated for the study site 9 depending on our assumption about the C:N of organic matter undergoing decomposition: 10 based on Redfield ratio or based on bulk sediment C:N ratio (Fig. 6a and b, respectively). For 11 P, only the Redfield assumption was available. Overall, between 29 and 36% of total mineralized nitrogen was released to the water column as NH_4^+ , whereas a small fraction 12 13 (~4%) was released as NO₃⁻. Between 61 and 67% of total mineralized nitrogen was estimated 14 to be lost via denitrification. If this fraction of mineralized N was returned to the water 15 column as bioavailable DIN instead of lost as N₂, it could support an additional ~14-19 mmol C $m^{-2} d^{-1}$ of phytoplankton production. Therefore, even if these sediments seemed to recycle a 16 considerable fraction of the N required by phytoplankton, they represent a net loss of total 17 18 nitrogen for this environment. In comparison, in Mid-Atlantic Bight sediments, 57% of total mineralized nitrogen was lost as N₂, while 37% entered the water column as NH_4^+ and 6% as 19 20 $NO_3^- + NO_2^-$ (Laursen & Seitzinger 2002). In Massachusetts Bay sediments, 60% of total mineralized nitrogen was lost as $N_2,$ while 34% was released to the water column as $N{H_4}^{\scriptscriptstyle +}$ and 21 6% as $NO_3^{-} + NO_2^{-}$; whereas in Stellwagen Basin, 72% of total mineralized nitrogen was lost 22 as N₂, whereas 16% was released as NH_4^+ and 11% as $NO_3^- + NO_2$ (Hopkinson et al. 2001). 23

1 CONCLUSIONS

2 Benthic fluxes of nutrients resulting from organic matter remineralization in sediments of the near-shore northeastern shelf of the Gulf of Cádiz provide, respectively, about 15% and 12% 3 4 of inorganic nitrogen and phosphorus required for phytoplankton primary production. Furthermore, these sediments mineralize approximately 47% of the primary production 5 carbon. These results highlight the significance of benthic remineralization processes in the 6 7 biogeochemistry of coastal environments. In relation to sediment N cycling, estimated 8 denitrification rates accounted for between 9-13% of total organic matter remineralization and 9 were found to be correlated with the organic carbon content of surface sediments. Between 10 61% and 67% of mineralized N was estimated to be lost as N₂ via denitrification, with the remaining portion recycled mostly as NH_4^+ . The regeneration of NH_4^+ was closely linked to 11 12 carbon oxidation rates, which were strongly influenced by bulk organic carbon in surface 13 sediments. Sediments behaved as a net source of dissolved N₂O and, although benthic N₂O 14 fluxes were not significant in terms of the sedimentary N cycle, they were a considerable 15 potential source of this gas to the water column. Phosphorus regeneration seemed to be 16 mainly controlled by bottom water oxygen concentrations. The low P/C flux ratios reported indicated that up to 75% of mineralized P could be retained in the sediments by adsorption or 17 18 mineral precipitation. No clear trends were observed between the macrofaunal community 19 and benthic carbon mineralization rates or nutrient recycling.

20

21 ACKNOWLEDGMENTS

The authors would like to thank the crew of the *R/V Mytilus* for their valuable assistance during the cruises and S. Smith for language correction. This work was supported by the Spanish CICYT (Spanish Commission for Research and Development) under contract

- CTM2005-01364/MAR. S.F. was funded by a grant from the Spanish MECD. The manuscript
 benefited from the comments provided by four anonymous reviewers.
- 3

4 **REFERENCES**

- 5 Aller RC, Yingst JY (1978) Biogeochemistry of tube-dwellings: A study of the sedentary
- 6 polycheate Amperite ornata. J Mar Res 36: 201–254
- 7 Aller RC (1982) The Effect of macrobenthos on chemical properties of marine sediment and
- 8 overlying water. In: Animal-Sediment Relations. The Biogenic Alteration of Sediments. MJS
- 9 Tevesz (eds). Plenum Press, New York pp. 53–104
- 10 Aller RC, Aller JY (1998) The effect of biogenic irrigation intensity and solute exchange on
- 11 diagenetic reaction rates in marine sediments. J Mar Res 56: 905-936
- 12 Arnosti C, Holmer M (2003) Carbon cycling in a continental margin sediment: contrasts
- 13 between organic matter characteristics and remineralization rates and pathways. Est Coast
- 14 Shelf Sci 58: 197-208
- Bange HW, Rapsomanikis S, Andreae MO (1996) Nitrous oxide in coastal waters. Global
 Biogeochem Cycles 10: 197-207
- Bange HW (2006) Nitrous oxide and methane in European coastal waters. Est Coast Shelf Sci
 70: 361-374
- 19 Berelson WM, Reggie D, Longmore A, Kilgore T, Nicholson G, Skyring G (1998) Benthic
- 20 nutrient recycling in Port Phillip Bay, Australia. Est Coast Shelf Sci 46: 917-934
- 21 Berelson WM, McManus J, Coale KH, Johnson KS, Burdige D, Kilgore T, Colodner D,
- 22 Chavez F, Kudela R, Boucher J (2003) A time series of benthic flux measurements from
- 23 Monterey Bay, CA. Cont Shelf Res 23: 457-481
- 24 Blott SJ, Pye K (2001) GRADISTAT: A Grain size distribution and statistics package for the
- analysis of unconsolidated sediments. Earth Surf Process Landforms 26: 1237-1248

- 1 Bronk DA, Steingberg DK (2008) Nitrogen regeneration. In: Nitrogen in the marine
- 2 environment. D.G. Capone et al. (eds). Elsevier. pp. 385-467
- 3 Christensen JP (1994) Carbon export from continental shelves, denitrification and
- 4 atmospheric carbon dioxide. Cont Shelf Res 14: 547–576
- 5 Christensen PB, Rysgaard S, Sloth NP, Dalsgaard T, Schwærter S (2000) Sediment
- 6 mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to
- 7 ammonium in an estuarine fjord with sea cage trout farms. Aquat Microb Ecol 21: 73-84
- 8 Cowan JLW, Boynton, WR (1996) Sediment-water oxygen and nutrient exchanges along the
- 9 longitudinal axis of Chesapeake Bay: Seasonal patterns, controlling factors and ecological
- 10 significance. Estuaries 19: 562-580
- 11 Crutzen PJ, Schmailzl U (1983) Chemical budgets of the stratosphere. Planet Space Sci 31:
 12 1009-1032
- 13 Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox)
- 14 in the marine environment. Res Microbiol 156: 457-464
- 15 de la Paz M, Gómez-Parra A, Forja JM (2007) Inorganic carbon dynamic and air-water CO₂
- 16 exchange in the Guadalquivir Estuary (SW Iberian Peninsula) J Mar Syst 68: 265-277
- 17 Devol AH (2008) Denitrification including anammox. In: Nitrogen in the marine
- 18 environment. D.G. Capone et al. (eds). Elsevier. pp. 263-301
- 19 El Rayis OA (1985) Re-assessment of the titration methods for determin ation of organic
- 20 carbon in recent sediments. Rapport Commission International Mer Mediterranée 29: 45–47
- 21 Enriquez S, Duarte CM, Sand-Jensen K (1993). Patterns in decomposition rates among
- 22 photosynthetic organisms: The importance of detritus C:N:P content. Oecologia 94: 457–471
- 23 Fasham MJR, Ducklow HW, McKelvie SM (1990) A nitrogen-based model of plankton
- 24 dynamics in the oceanic mixed layer. J Mar Res 48:591-639

- 1 Fauchald K, Jumars PA (1979) The diet of worms: a study of polychaete feeding guilds.
- 2 Oceanogr Mar Biol 17: 193-284
- 3 Ferrón S, Alonso-Pérez F, Castro CG, Ortega T, Pérez FF, Ríos AF, Gómez-Parra A, Forja
- 4 JM (2008) Hydrodynamic characterization and performance of an autonomous benthic
- 5 chamber for use in coastal systems. Limnol Oceanogr Methods 6: 558-571
- 6 Ferrón S, Ortega T, Forja JM (2009) Benthic fluxes in a tidal salt marsh creek affected by fish
- 7 farm activities: Río San Pedro (Bay of Cádiz, Spain). Mar Chem 113: 50-62
- 8 Forja JM, Blasco J., Gómez-Parra (1994) Spatial and seasonal variation of in situ benthic
- 9 fluxes in the Bay of Cadiz (South-West Spain). Est Coast Shelf Sci 39: 127-141
- 10 Forja JM, Gómez-Parra A (1998) Measuring nutrient fluxes across the sediment-water
- 11 interface using benthic chambers. Mar Ecol Prog Ser 164: 95-105
- 12 Forja J M, Ortega T, DelValls T A, Gómez-Parra A (2004) Benthic fluxes of inorganic carbon
- 13 in shallow coastal ecosystems of the Iberian Peninsula. Mar Chem 85: 141-156
- 14 Froelich PN, Klinkhammer G, Bender ML, Luedtki NA, Heath GR, Cullen D, Dauphin P,
- 15 Hammond D, Hartman B (1979) Early oxidation of organic matter in pelagic sediments of the
- 16 eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43: 1075–1095
- 17 Gaudette HE, Flight WR, Torner L, Folger DW (1974) An inexpensive titration method for
- 18 the determination of organic carbon in recent sediments. J Sediment Petrol 44: 249–253
- 19 Gibbs M, Funnel G, Pickmere S, Norkko A, Hewitt J (2005). Benthic nutrient fluxes along an
- 20 estuarine gradient: Influence of the pinnid bivalve *Atrina zelandica* in summer. Mar Ecol
- 21 Progr Ser 288: 151-164
- 22 Glud RN, Blackburn N (2002) The effects of chamber size on benthic oxygen uptake
- 23 measurements: a simulation study. Ophelia 56: 23-31

- 1 Gómez-Parra A, Forja JM (1992) Significance of benthic regeneration in nutrient balance in
- 2 the Bay of Cadiz, south-west Spain (a shallow semi-closed coastal ecosystem). Sci Total
- **3** Environ 126: 1079–1086
- 4 Hansen HP, Grassoff K (1983) Automated chemical analysis. In: Grassoff K, Ehrardt M,
- 5 Kermling K (eds) Methods of Seawater Analysis. Verlag Chemie, Weinheim, p 347-395
- 6 Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiology
- 7 Reviews 23: 563-590
- 8 Hopkinson Jr CS, Fallon RD, Jansson BO, Schulauer JP (1991) Community metabolism and
- 9 nutrient cycling at Gray's Reef, a hard bottom babitat in the Georgia Bight. Mar Ecol Prog
- 10 Ser 73: 105—120
- 11 Hopkinson Jr CS, Giblin AE, Tucker J (2001) Benthic metabolism and nutrient regeneration
- 12 on the continental shelf of Eastern Massachusetts, USA. Mar Ecol Prog Ser 224: 1-19
- 13 Huertas E, Navarro G, Rodríguez-Gálvez S, Prieto L (2005) The influence of phytoplankton
- 14 biomasa on the spatial distribution of carbon dioxide in surface sea water of a coastal area of
- 15 the Gulf of Cádiz (southwester Spain). Can J Bot 83: 929-940
- 16 Ingall E, Jahnke R (1997) Influence of water-column anoxia on the elemental fractionation of
- 17 phosphorus during sediment diagenesis. Mar Geol 139: 219-229
- 18 Jahnke RA, Jahnke DB (2000) Rates of C, N, P and Si recycling and denitrification at the US
- 19 Mid-Atlantic continental slope depocenter. Deep-Sea Res. Part I 47: 1405-1428
- 20 Jahnke RA, Nelson JR, Marinelli RL, Eckman JE (2000) Benthic flux of biogenic elements
- 21 on the Southeastern US continental shelf: influence of pore water advective transport and
- 22 benthic microalgae. Cont Shelf Res 20: 109–127
- 23 Jahnke RA (2005) Transport processes and organic matter cycling in coastal sediments. In:
- 24 The global coastal ocean. Multi-scale interdisciplinary processes. AR Robinson & KH Brink
- 25 (eds). Harvard University Press, Harvard. pp 163-191.

- 1 Joye SB, Anderson IC (2008). Nitrogen cycling in coastal sediments. In: Nitrogen in the
- 2 marine environment. DG Capone et al. (eds). Elsevier. pp. 867-915
- 3 Khalil MAK, Rasmussen RA (1992) The global sources of nitrous oxide. J Geophys Res 97:
 4 14651-14660
- 5 Lansard B, Rabouille C, Denis L, Grenz C (2008) In situ oxygen uptake rates by coastal
- 6 sediments under the influence of the Rhône River (NW Mediterranean Sea). Cont Shelf Res

7 28: 1501-1510

- 8 Laursen AE, Seitzinger SP (2002) The role of denitrification in nitrogen removal and carbon
- 9 mineralization in Mid-Atlantic Bight sediments. Cont Shelf Res 22: 1397-1416
- 10 Lehmann MF, Sigman DM, Berelson WB (2004) Coupling the ${}^{15}N/{}^{14}N$ and ${}^{18}O/{}^{16}O$ of nitrate
- 11 as a constraint on benthic nitrogen cycling. Mar Chem 88: 1-20
- 12 Lobo FJ, Sánchez R, González R, Dias JMA, Hernández-Molina FJ, Fernández-Salas LM,
- 13 Díaz Del Río V, Mendes I (2004) Contrasting styles of the Holocene highstand sedimentation
- 14 and sediment dispersal systems in the northern shelf of the Gulf of Cádiz. Cont Shelf Res 24:

15 461-482

- 16 McManus J., Berelson WM, Coale KH, Johnson KS, Kilgore TE (1997). Phosphorus
- 17 regeneration in continental margin sediments. Geochim Cosmochim Acta 61: 2891-2907
- 18 Mortimer RJG, Davey JT, Krom MD, Watson PG, Frickers PE, Clifton RJ (1999) The effect
- 19 of macrofauna on porewater profiles and nutrient fluxes in the intertidal zone of the Humber
- 20 Estuary. Est Coast Shelf Sci 48: 683–699
- Mouriño C, Fraga F (1985) Determinación de nitratos en agua de mar. Invest Pesq (Barc) 49:
 81-96
- 23 Navarro G, Ruiz J (2006) Spatial and temporal variability of phytoplankton in the Gulf of
- 24 Cádiz through remote sensing images. Deep-Sea Res. Part II 53: 1241-1260

- 1 Navarro G, Ruiz J, Huertas IE, García CM, Criado-Aldenueva F, Echevarría F (2006) Basin-
- 2 scale structures governing the position of the deep fluorescence maximum in the Gulf of
- 3 Cádiz. Deep-Sea Res. Part II 53: 1261-1281
- 4 Nixon SW (1981) Remineralization and nutrient cycling in coastal marine ecosystems. In:
- 5 Neilson BJ, Cronin LE (eds). Estuaries and Nutrients. Humana, New York, pp 111-138
- 6 Parada JM (2005) Cartografía biosedimentaria y comunidades bentónicas de los fondos
- 7 blandos submareales de las Rías de Pontevedra y Aldán y la Ensenada de A Lanzada. PhD
- 8 dissertation. Universidad de Santiago de Compostela. Santiago de Compostela (A Coruña),
- 9 Spain
- 10 Patrick Jr WH, Khalid RA (1974) Phosphate release and sorption by soils and sediments:
- 11 effect of aerobic and anaerobic conditions. Science 186: 53-55
- 12 Pearson TH (1971) The benthic ecology of Loch Linnhe and Loch Eil, a sea-loch system on
- 13 the west coast of Scotland. III. The effect on the benthic fauna of the introduction of pulp mill
- 14 effluent. J Exp Mar Biol Ecol 6: 211-233
- Ricciardi A, Bourget E (1998) Weight-to-weight conversion factors for marine benthic
 macroinvertebrates. Mar Ecol Prog Ser 163: 245-251
- 17 Robinson A D, Nedwell D B, Harrison RM, Ogilvie B D (1998) Hypernutrified estuaries as
- 18 sources of N₂O emission to the atmosphere: the estuary of the River Colne, Essex, UK. Mar
- 19 Ecol Prog Ser 164: 59–71
- 20 Rodhe H (1990) A comparison of the contribution of various gases to the greenhouse effect.
- 21 Science 248: 1217-1219
- 22 Rysgaard S, Risgaard-Petersen N, Sloth N P (1996) Nitrification, denitirification and nitrate
- ammonification in sediments of two coastal lagoons in southern France. Hydrobiologia 329:
- 24 133–141

- 1 Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological
- 2 and geochemical significance. Limnol Oceanogr 33: 702-724
- 3 Seitzinger SP, Giblin AE (1996) Estimating denitrification in North Atlantic continental shelf
- 4 sediments. Biogeochemistry 35: 235-260
- 5 Seitzinger SP, Kroeze C, Styles RV (2000) Global distribution of N₂O emissions from aquatic
- 6 systems: natural emissions and anthropogenic effects. Chemosphere: Global Change Sci 2:

7 267-279

- 8 Ståhl H, Tengberg A, Brunnegård J, Bjørnbom E, Forbes T, Josefson A, Kaberi H, Darle
- 9 Hasselloöv I-M, Olsgard F., Roos P, Hall POJ (2004a) Factors influencing organic carbon
- 10 recycling and burial in Skagerrak sediments. J Mar Res 62:867-907
- 11 Ståhl H, Hall POJ, Tengberg A, Josefson A, Streftaris N, Zenetos A, Karageorgis AP (2004b)
- 12 Respiration and sequestering of organic carbon in shelf sediments of the oligotrophic northern
- 13 Aegean Sea. Mar Ecol Prog Ser 269: 33-48
- 14 Thamdrup B, Dalsgaard T (2002) Production of N₂ through anaerobic ammonium oxidation
- 15 coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68: 1312–1318
- 16 Tovar A, Moreno C, Manuel-Vez MP, García-Vargas M. (2000) Environmental implications
- 17 of intensive marine aquaculture in earthen ponds. Mar Pollut Bull 40: 981-988
- 18 Van Geen A, Adkins JF, Boyle EA, Nelson CH, Palanques A (1997) A 120 yr record of
- 19 widespread contamination from mining of the Iberian pyrite belt. Geology 25: 291–294
- 20 Weiss RF, Price BA (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8: 347-
- 21 359
- 22 Wenzhöfer F, Glud RN (2004) Small-scale spatial and temporal variability in coastal benthic
- 23 O₂ dynamics: Effects of fauna activity. Limnol Oceanogr 49: 1471-1481

- 1 Wollast R (2002) Continental margins review of geochemical settings. In: Wefer G, Billet
- 2 D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering TCE (eds) Ocean margin systems.
- 3 Springer.
- 4

1 FIGURE CAPTIONS

Figure 1. Map of the near-shore northeastern shelf of the Gulf of Cádiz showing the sampling
sites and the location of the rivers and the Bay of Cádiz. Isolines represent the bathymetry in
meters.

5 Figure 2. Surface and bottom water characteristics at the beginning of each chamber

6 incubation versus distance to the coast for BC and GL sites.

7 Figure 3. (a) Total biomass (g AFDW m^{-2}) and total abundance (ind m^{-2}) of the macrofaunal

8 groups at each station (b) Total biomass (ind m⁻²) and total abundance (g AFDW m⁻²) of the

9 trophic groups at each station (C, carnivores; SD, surface deposit feeders; SSD, sub-surface

10 deposit feeders; S, suspension feeders; O, others).

11 Figure 4. Measured fluxes of inorganic nitrogen vs. expected fluxes derived from carbon

12 oxidation rates (a) assuming Redfield stoichiometry (b) assuming sediment C/N ratio for

13 organic matter. White and black symbols represent, respectively, BC and GL sites. The lines

14 represent the 1:1 relationship. Fluxes are in mmol N $m^{-2} d^{-1}$

15 Figure 5. Measured fluxes of phosphate vs. organic carbon oxidation rates. The dotted lines

16 represent the indicated P:C molar ratios or remineralized organic matter. Units are in mmol m

 $17 ^{2} d^{-1}$

18 Figure 6. N cycle for the northeastern shelf of the Gulf of Cádiz. Units are in mmol N $m^{-2} d^{-1}$,

19 except for net primary production (NPP) and C mineralization, which are in mmol C $m^{-2} d^{-1}$.

20 Also shown are the percentages of N remineralized under the different pathways, the

21 percentage of primary produced C remineralized in the sediments, and the percentage of

22 phytoplankton required N supplied by benthic recycling (a) assuming Redfield stoichiometry

23 (b) assuming sediment C/N ratio for organic matter.

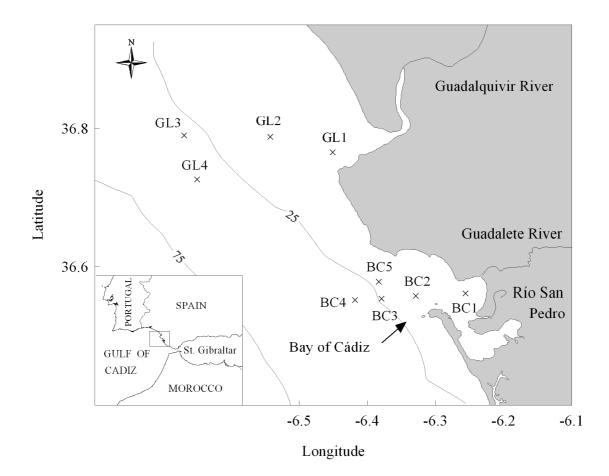


Fig. 1

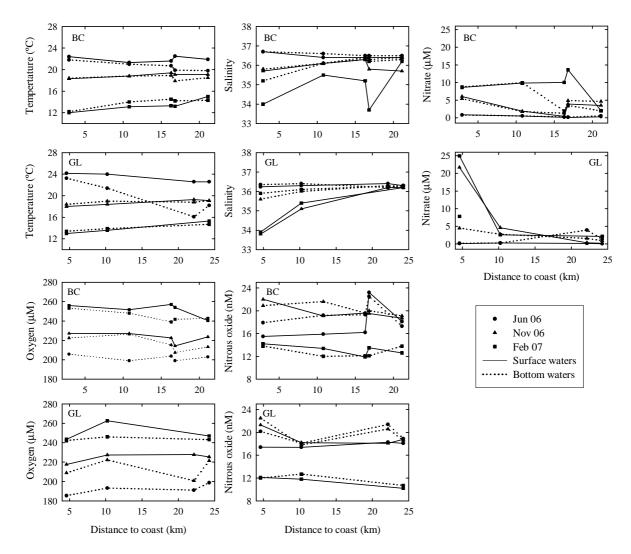


Fig. 2

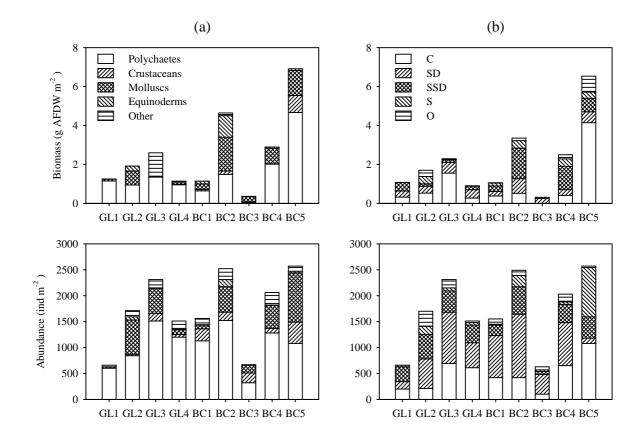


Fig. 3

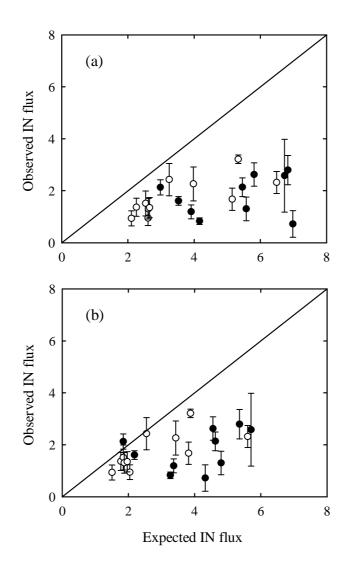


Fig. 4

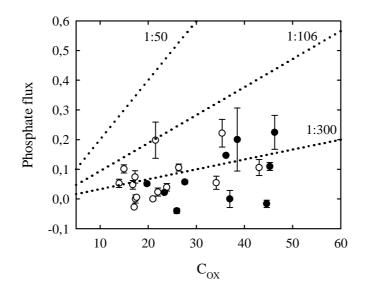


Fig. 5

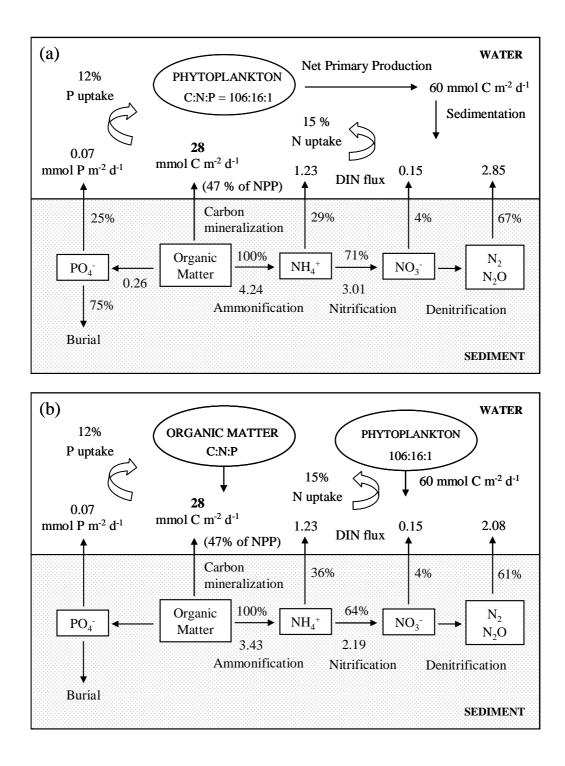


Fig. 6

Table 1. Depth, sediment organic carbon content (OC), nitrogen content (N), molar C:N ratio and median grain size (D_{50}) for each station.

	Depth	OC	TN	C:N	D_{50}
BC1	8	0.25 ± 0.01	0.04 ± 0.01	8.2	372
BC2	18	0.47 ± 0.15	0.06 ± 0.02	8.8	61
BC3	22	0.29 ± 0.04	0.03 ± 0.01	8.4	421
BC4	32	0.64 ± 0.03	0.08 ± 0.01	8.8	78
BC5	22	0.75 ± 0.28	0.12 ± 0.07	7.0	76
GL1	13	1.18 ± 0.25	0.18 ± 0.03	7.9	12
GL2	18	0.83 ± 0.05	0.11 ± 0.01	8.4	13
GL3	29	0.80 ± 0.07	0.12 ± 0.01	9.4	27
GL4	34	0.93 ± 0.03	0.14 ± 0.01	7.7	6.8

Table 2. Date of sampling and benthic fluxes of ammonium (F_{NH4}), nitrate (F_{NO3}), nitrite (F_{NO2}), phosphate (F_{PO4}), silicate (F_{Si}), and nitrous oxide (F_{N2O}) for each station. Units in mmol m⁻² d⁻¹, except for nitrous oxide (μ mol m⁻² d⁻¹). Negative values denote fluxes into the sediment. Uncertainties are estimated from the errors in the slope of the regression of concentration with time, multiplied by the height of the benthic chamber.

Site	Date	F _{NH4}	F _{NO3}	F _{NO2}	F _{PO4}	F _{Si}	F _{N2O}
BC1	17.06.06	0.65 ± 0.20	0.15 ± 0.06	0.15 ± 0.03	0.07 ± 0.02	1.02 ± 0.09	10.4 ± 5.6
BC2	18.06.06	3.10 ± 0.13	0.02 ± 0.02	0.09 ± 0.02	0.22 ± 0.05	2.87 ± 0.20	7.24 ± 3.5
BC3	19.06.06	-0.33 ± 0.10	-0.23 ± 0.07	-0.09 ± 0.04	0.04 ± 0.01	1.06 ± 0.13	-1.2 ± 0.6
BC4	20.06.06	1.57 ± 0.37	0.10 ± 0.05	nm	0.05 ± 0.02	2.55 ± 0.23	9.1 ± 2.4
BC5	21.06.06	2.00 ± 0.38	0.22 ± 0.02	0.10 ± 0.02	$0.11{\pm}0.03$	2.13 ± 0.16	3.8 ± 0.6
GL2	24.06.06	2.37 ± 0.33	0.23 ± 0.11	0.03 ± 0.01	0.20 ± 0.02	0.84 ± 0.16	3.5 ± 1.3
GL3	26.06.06	0.96 ± 0.43	-0.16 ± 0.05	-0.08 ± 0.03	0.22 ± 0.11	0.95 ± 0.17	3.2 ± 1.1
GL4	27.06.06	1.63 ± 0.30	$\textbf{-0.21} \pm 0.07$	$\textbf{-0.12} \pm 0.09$	nm	0.12 ± 0.47	3.6 ± 3.0
BC1	19.11.06	0.58 ± 0.15	0.86 ± 0.18	$-0.07{\pm}~0.02$	0.10 ± 0.01	0.96 ± 0.11	6.9 ± 3.3
BC2	20.11.06	0.49 ± 0.32	0.97 ± 0.14	0.05 ± 0.03	0.05 ± 0.02	1.24 ± 0.16	7.3 ± 1.4
BC3	21.11.06	0.77 ± 0.27	0.38 ± 0.06	0.15 ± 0.06	nm	1.08 ± 0.11	9.4 ± 3.7
BC4	22.11.06	0.20 ± 0.11	$\textbf{-0.57} \pm 0.17$	$\textbf{-0.13} \pm 0.03$	nm	0.21 ± 0.07	9.7 ± 0.8
BC5	23.11.06	1.95 ± 0.48	0.36 ± 0.17	$\textbf{-0.04} \pm 0.01$	0.11 ± 0.01	1.46 ± 0.44	10.1 ± 0.2
GL1	29.11.06	1.89 ± 0.29	0.18 ± 0.06	0.07 ± 0.01	0.15 ± 0.03	1.67 ± 0.26	7.9 ± 11.6
GL2	28.11.06	2.31 ± 0.47	0.33 ± 0.04	0.15 ± 0.05	0.11 ± 0.01	1.68 ± 0.21	2.5 ± 0.4
GL3	27.11.06	1.57 ± 0.12	0.50 ± 0.12	0.07 ± 0.05	0.05 ± 0.01	0.47 ± 0.07	3.7 ± 1.8
GL4	26.11.06	0.80 ± 0.17	0.29 ± 0.07	0.10 ± 0.02	-0.04 ± 0.01	2.14 ± 0.45	3.0 ± 2.5
BC1	31.01.07	1.52 ± 0.38	0.64 ± 0.18	0.26 ± 0.06	0.20 ± 0.061	0.82 ± 0.13	2.2 ± 1.1
BC2	01.02.07	$\textbf{-0.87} \pm 0.21$	0.15 ± 0.05	$\textbf{-0.25} \pm 0.03$	$\textbf{-0.03} \pm 0.003$	0.48 ± 0.11	3.3 ± 0.3
BC3	02.02.07	0.85 ± 0.25	0.13 ± 0.02	$\textbf{-0.04} \pm 0.01$	0.05 ± 0.014	1.09 ± 0.13	2.1 ± 0.7
BC4	03.02.07	1.22 ± 0.33	0.08 ± 0.04	0.05 ± 0.01	0.01 ± 0.001	0.78 ± 0.10	3.3 ± 0.6
BC5	04.02.07	-1.21 ± 0.13	nm	-0.06 ± 0.02	0.02 ± 0.014	0.52 ± 0.07	1.7 ± 0.9
GL1	06.02.07	3.50 ± 0.97	$\textbf{-0.86} \pm 0.41$	$\textbf{-0.07} \pm 0.02$	$\textbf{-0.02} \pm 0.008$	2.22 ± 0.58	3.1 ± 0.6
GL2	07.02.07	0.42 ± 0.09	0.38 ± 0.03	0.03 ± 0.01	0.06 ± 0.013	1.38 ± 0.10	0.7 ± 0.1
GL3	08.02.07	1.48 ± 0.14	0.17 ± 0.02	$\textbf{-0.05} \pm 0.01$	0.02 ± 0.006	1.60 ± 0.29	1.3 ± 0.6

nm: not measurable

Table 3. Principal components analysis of sediment and bottom water properties and benthic fluxes for the northeastern shelf of the Gulf of Cádiz. Associations of parameters with a component are considered significant if the score is > 0.5.

	1	2	3	4
Cox	0.90	0.10	0.11	0.04
F _{NH4}	0.81	0.32	-0.03	-0.03
F _{NO3}	-0.47	0.62	-0.12	0.31
F _{NO2}	0.06	0.80	0.05	-0.11
F _{PO4}	0.22	0.76	0.07	0.16
$\mathbf{F}_{\mathbf{Si}}$	0.74	0.23	0.30	-0.01
OC	0.84	-0.28	-0.15	0.08
C:N	-0.40	-0.15	0.19	0.41
D ₅₀	-0.71	0.27	0.07	-0.54
Biomass	0.16	0.01	0.09	0.86
Abundance	-0.01	0.04	0.10	0.95
Oxygen	-0.04	-0.65	-0.18	0.36
NO ₃	-0.05	-0.20	-0.90	-0.07
Salinity	0.06	0.26	0.81	0.06
Temperature	-0.04	-0.32	0.89	0.12
% of variance	25.6	18.8	17.5	12.6

Site	C_{ox}^{a}	F_{nit}^{b}	F_{nit}^{c}	$F_{dent}^{\ \ b}$	F_{dent}^{c}	% DNF ^b	% DNF ^c	% P _{recyc} ^b
BC1	17.9	1.79	1.27	1.12	0.61	42.7	29.2	71.7
BC2	23.1	2.57	1.71	2.23	1.37	72.6	63.6	26.5
BC3	18.4	2.34	1.76	2.24	1.66	74.5	67.8	28.7
BC4	24.2	2.66	1.75	2.81	1.90	77.4	69.9	10.1
BC5	28.9	3.69	3.42	3.50	3.23	81.9	80.8	26.6
Mean $\pm SD$	22.8 ± 5.1	2.6 ± 0.7	2.0 ± 0.8	2.4 ±0.9	1.8 ±1.0	70 ±16	62 ± 20	33 ±23
GL1	40.4	3.40	2.45	3.74	2.78	61.3	54.1	19.6
GL2	37.1	3.90	2.69	3.52	2.31	64.6	54.9	34.3
GL3	29.8	3.16	1.82	3.01	1.67	57.5	39.4	29.6
GL4	31.4	3.53	2.88	3.50	2.84	73.1	68.8	-16.4
Mean $\pm SD$	<i>34.7 ± 4.9</i>	3.5 ±0.3	2.5 ± 0.5	3.4 ± 0.3	2.4 ± 0.5	64 ± 7	54 ±12	17 ±23

Table 4. Average carbon mineralization rates (C_{ox} ; mmol C m⁻² d⁻¹), nitrification rates (F_{nit} ; mmol N m⁻² d⁻¹), denitrification rates (F_{dent} ; mmol N m⁻² d⁻¹), percent of mineralized N denitrified (% DNF), and percent of mineralized P recycled (% P_{recyc}) for each sampling site.

^a Taken from Ferrón et al. (submitted).

^bCalculations made assuming a Redfield stoichiometry for organic matter.

^cCalculations made assuming the surface sediment C/N ratio for organic matter.

APPENDIX I: Abundance (ind m⁻²) and species richness of benthic macrofaunal species collected at the nine sites in November 2006. The trophic group (TG) is also included (C, carnivores; S, suspension feeders; SD, surface deposit feeders; SSD, sub-surface deposit feeders; O, others).

	TG	GL1	GL2	GL3	GL4	BC1	BC2	BC3	BC4	BC5
Polychaetes										
Ampharetidae	SD		10						30	
Capitella capitata	SSD				10	20				
Chaetozone sp.	SD						10		20	
Diopatra neapolitana	С	10				40				
Diplocirrus sp.	SD				10					
Euclymene sp.	SSD	20				130	310	10		10
Galathowenia sp.	S		10	10			20		10	
<i>Glycera</i> sp.	С		20		20		40		10	50
Glycera unicornis	С		10	10						40
<i>Glycinde</i> sp.	С						50			10
Hesionidae	С		40	40	10	50	60		10	20
Heteromastus filiformis	SSD	50	10	60	50				70	30
<i>Hyalinoecia</i> sp.	С								20	
Laonice cirrata	SD		20	240	200		30		50	30
<i>Lumbrineris</i> sp.	С	130	300	430	390		40		260	420
Magelona alleni	SD				10		10		10	
Magelona minuta	SD	10	140	230	100		350		280	150
Maldane glebifex	SSD		40	10					30	100
Mediomastus fragilis	SSD					20	40	40	10	
Melinna palmata	SD	40								
Monticellina sp.	SD		10		40	160	40		90	10
Nephtys sp.	С	50	30	60	10	260	30	80	70	10
Notomastus sp.1	SSD		10	20	20				80	80
Notomastus sp.2	SSD					20	10			
Orbiniidae	SSD							10		10
Owenia fusiformis	S						10			
Paraonidae	SSD		90	280	150	10	30		150	70
Pectinaria sp.	SSD		10							
Phyllodoce sp.	С					10	10			
Phyllodocidae	С				20				40	10
Polycirrus sp.	SD	50	10							
Polydora sp.	SD	10				10				20
Prionospio sp.1	SD	10	50	50	40	260	70		10	10
Prionospio sp.2	SD					90		160		
Sabellidae	S			10			10	10	10	
Scolelepis sp.	SD						20			
Sigalion mathildae	С							10		
Sphaerosyllis sp.	С					30				
Spiochaetopterus sp.	SD		50	30	10		40			
Spiophanes sp.	SD					10	280			
Sternaspis scutata	SSD	220	10	30	110				10	

Terebellidae Terebellides stroemi	SD SD			10			10 10		10	10
M - 11										
Molluscs	SD		10		10				10	10
Abra sp. Acteon tornatilis	C SD	10	10		10				10	10
Antalis novemcostata	SD	10	40				40	10	50	60
Bivalvia	50		20	10		10	40 90	20	50	20
Chamelea striatula	S		10	10	10	10	70	20	10	10
Corbula gibba	SD	20	30	30	40	50	50		20	30
Cylichna cylindracea	C	20	10	50	40	50	10		20	50
<i>Epitonium</i> sp.	0		10				30			
Gastropoda	0		10				50			50
Hyala vitrea	Ő		160	80	20		90		70	80
Kurtiella bidentata	Š		10	10	20		70		70	30
Mangelia sp.	Č		10	10			40			50
Nassarius sp.	0		10			10				
Nucula sp.	SD		50	110		10	70	10	130	30
Nuculana sp.	SD							30		
<i>Spisulla</i> sp.	S							10		
Tellina serrata	SD							- •	10	
Tellinidae	SD		10	10			30	20	10	40
Thyasira flexuosa	SD		160	150			40	-	140	40
Turritella communis	0		130	80	10			50	70	560
Crustaceans										
Ampelisca brevicornis	SD					10				
<i>Ampelisca</i> sp.	SD			30			50		20	40
$\pi m p e m s c u s p$.	50			30			50		20	40
	SD		10	30		40	30	30	20	40 20
Amperiscu sp. Amphipoda <i>Apseudes</i> sp.			10	30	10	40 20	30	30 50	20	
Amphipoda	SD		10	10	10		30 10		20	20
Amphipoda <i>Apseudes</i> sp.	SD SD		10		10	20			20	20 10
Amphipoda <i>Apseudes</i> sp. <i>Bodotria</i> sp.	SD SD SD		10 10	10	10 10	20 10		50	10	20 10 20
Amphipoda <i>Apseudes</i> sp. <i>Bodotria</i> sp. Cumacea	SD SD SD DS DS DS			10 10		20 10	10	50 10 10 40		20 10 20 20
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp.	SD SD SD DS DS O			10 10		20 10 10	10	50 10 10	10	20 10 20 20 20
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae	SD SD SD DS DS O C			10 10 30	10	20 10 10	10	50 10 10 40	10 10	20 10 20 20 20
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae Harpinia pectinata	SD SD DS DS DS O C SSD		10	10 10 30		20 10 10	10	50 10 10 40 10	10 10 10	20 10 20 20 20 130
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae Harpinia pectinata Iphinoe sp.	SD SD DS DS DS O C SSD DS			10 10 30	10	20 10 10	10	50 10 10 40	10 10 10 10	20 10 20 20 20
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae Harpinia pectinata Iphinoe sp. Leptocheirus sp.	SD SD DS DS DS O C SSD DS DS		10	10 10 30	10	20 10 10	10 40	50 10 10 40 10	10 10 10 10 10	20 10 20 20 130
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae Harpinia pectinata Iphinoe sp. Leptocheirus sp. Leucothoe incisa	SD SD SD DS DS O C SSD DS DS DS DS		10	10 10 30	10	20 10 10	10	50 10 10 40 10	10 10 10 10	20 10 20 20 130
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae Harpinia pectinata Iphinoe sp. Leptocheirus sp. Leucothoe incisa Liocarcinus sp.	SD SD SD DS DS O C SSD DS DS DS C		10	10 10 30	10	20 10 10	10 40 10	50 10 10 40 10	10 10 10 10 10	20 10 20 20 130
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae Harpinia pectinata Iphinoe sp. Leptocheirus sp. Leucothoe incisa Liocarcinus sp. Nebalia sp.	SD SD DS DS DS O C SSD DS DS DS C DS		10	10 10 30	10	20 10 10	10 40	50 10 10 40 10	10 10 10 10 10 10	20 10 20 20 130 10 20 30
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae Harpinia pectinata Iphinoe sp. Leptocheirus sp. Leucothoe incisa Liocarcinus sp. Nebalia sp. Paguroidea	SD SD SD DS DS O C SSD DS DS DS DS C DS DS DS		10	10 10 30	10	20 10 10	10 40 10	50 10 10 40 10	10 10 10 10 10	20 10 20 20 130 10 20 30 70
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae Harpinia pectinata Iphinoe sp. Leptocheirus sp. Leucothoe incisa Liocarcinus sp. Nebalia sp. Paguroidea Processa sp.	SD SD SD DS DS O C SSD DS DS DS C DS DS C SSD C SSD C SSD C SSD S C		10	10 10 30	10	20 10 10	10 40 10	 50 10 10 40 10 10 20 	10 10 10 10 10 10	20 10 20 20 130 10 20 30
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae Harpinia pectinata Iphinoe sp. Leptocheirus sp. Leucothoe incisa Liocarcinus sp. Nebalia sp. Paguroidea Processa sp. Tanaidacea	SD SD SD DS DS O C SSD DS DS DS C DS DS C DS DS C DS		10	10 10 30	10	20 10 10	10 40 10 10	50 10 10 40 10	10 10 10 10 10 10	20 10 20 20 130 10 20 30 70 10
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae Harpinia pectinata Iphinoe sp. Leptocheirus sp. Leptocheirus sp. Leucothoe incisa Liocarcinus sp. Nebalia sp. Paguroidea Processa sp. Tanaidacea Upogebia sp.	SD SD SD DS DS O C SSD DS C DS DS C DS DS C DS O S O		10	10 10 30	10	20 10 10	10 40 10	 50 10 10 40 10 10 20 	10 10 10 10 10 10	20 10 20 20 130 10 20 30 70
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae Harpinia pectinata Iphinoe sp. Leptocheirus sp. Leucothoe incisa Liocarcinus sp. Nebalia sp. Paguroidea Processa sp. Tanaidacea	SD SD SD DS DS O C SSD DS DS DS C DS DS C DS DS C DS		10	10 10 30	10	20 10 10	10 40 10 10	 50 10 10 40 10 10 20 	10 10 10 10 10 10	20 10 20 20 130 10 20 30 70 10
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae Harpinia pectinata Iphinoe sp. Leptocheirus sp. Leucothoe incisa Liocarcinus sp. Nebalia sp. Paguroidea Processa sp. Tanaidacea Upogebia sp. Urothoe sp.	SD SD SD DS DS O C SSD DS DS C DS DS C DS DS C S S		10	10 10 30	10	20 10 10	10 40 10 10	 50 10 10 40 10 10 20 	10 10 10 10 10 10	20 10 20 20 130 10 20 30 70 10 10
AmphipodaApseudes sp.Bodotria sp.CumaceaDiastylis sp.Diogenes pugilatorEurydice sp.GnathiidaeHarpinia pectinataIphinoe sp.Leptocheirus sp.Leucothoe incisaLiocarcinus sp.Nebalia sp.PaguroideaProcessa sp.TanaidaceaUpogebia sp.Urothoe sp.	SD SD SD DS DS C SSD DS C DS DS C DS C		10	10 10 30	10	20 10 10	10 40 10 10	 50 10 10 40 10 10 20 	10 10 10 10 10 10	20 10 20 20 130 10 20 30 70 10 10
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae Harpinia pectinata Iphinoe sp. Leptocheirus sp. Leptocheirus sp. Leucothoe incisa Liocarcinus sp. Nebalia sp. Paguroidea Processa sp. Tanaidacea Upogebia sp. Urothoe sp. Echinoderms Amphiura filiformis Amphiura sp.	SD SD SD DS DS O C SSD DS DS DS DS C DS DS C DS S S S		10	10 10 30	10	20 10 10 10	10 40 10 10	 50 10 10 40 10 10 20 	10 10 10 10 10 10	20 10 20 20 130 10 20 30 70 10 10
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae Harpinia pectinata Iphinoe sp. Leptocheirus sp. Leucothoe incisa Liocarcinus sp. Nebalia sp. Paguroidea Processa sp. Tanaidacea Upogebia sp. Urothoe sp. Echinoderms Amphiura filiformis Amphiura sp. Echinocardium cordatum	SD SD SD DS DS C SSD DS C DS DS C DS C		10	10 10 30 60 10	10	20 10 10	10 40 10 10	 50 10 10 40 10 10 20 	10 10 10 10 10 10	20 10 20 20 130 10 20 30 70 10 10
Amphipoda Apseudes sp. Bodotria sp. Cumacea Diastylis sp. Diogenes pugilator Eurydice sp. Gnathiidae Harpinia pectinata Iphinoe sp. Leptocheirus sp. Leptocheirus sp. Leucothoe incisa Liocarcinus sp. Nebalia sp. Paguroidea Processa sp. Tanaidacea Upogebia sp. Urothoe sp. Echinoderms Amphiura filiformis Amphiura sp.	SD SD SD DS DS O C SSD DS DS DS DS C DS DS C DS S S S		10	10 10 30	10	20 10 10 10	10 40 10 10	 50 10 10 40 10 10 20 	10 10 10 10 10 10	20 10 20 20 130 10 20 30 70 10 10

Other invertebrates										
Cerebratulus sp.	С			10						
Chaetognatha	С					10				
<i>Edwardsia</i> sp.	С				10					
Nemertina	С		100	140	130	20	130	10	230	30
Oligochaeta	0					20			10	30
Phascolion strombi	DS						10			
Phoronida	S	30	20	10	20		50			10
PyCogonida	С						20			
Abundance (ind m ⁻²)		660	1740	2320	1490	1490	2500	670	2190	2560
Species richness		14	40	34	29	30	45	24	44	49