

1	
2	
3	Response of two marine bacterial isolates to high CO ₂ concentration
4	
5	Eva Teira ^{1*} , Ana Fernández ¹ , Xosé Antón Álvarez-Salgado ² , Enma Elena García-
6	Martín ¹ , Pablo Serret ¹ , Cristina Sobrino ¹
7	
8	¹ Departamento Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-
9	Marcosende 36310 Vigo, Spain.
10	² CSIC, Instituto de Investigacións Mariñas, Eduardo Cabello 6, 36208 Vigo, Spain
11	*email: teira@uvigo.es
12	Running title: Bacterial metabolism under high pCO_2
13	

ABSTRACT: Experimental results relative to the effects of ocean acidification on 1 2 planktonic marine microbes are still rather inconsistent and occasionally contradictory. Moreover, laboratory or field experiments addressing the effects of changes in CO₂ 3 concentrations on heterotrophic microbes are very scarce, despite their major role in the 4 marine carbon cycle. We tested the direct effect of an elevated CO₂ concentration (1000 5 ppmv) on the biomass and metabolic rates (leucine incorporation, CO₂ fixation and 6 respiration) of two isolates belonging to two relevant marine bacterial families: 7 Rhodobacteraceae (strain MED165) and Flavobacteriaceae (strain MED217). Our 8 results demonstrate that, contrary to some expectations, high pCO_2 did not negatively 9 10 affect bacterial growth but increased growth efficiency in the case of MED217. The elevated pCO_2 caused, in both cases, higher rates of CO_2 fixation in the dissolved 11 12 fraction and, in the case of MED217, lower respiration rates. Both responses would tend 13 to increase the pH of seawater acting as a negative feedback between elevated atmospheric CO₂ concentrations and ocean acidification. 14

15

16 Key words: bacterial metabolism - Flavobacteriaceae - ocean acidification 17 Rhodobacteraceae

18

1 INTRODUCTION

In the past 200 years the oceans have absorbed about 50% of the anthropogenic CO₂ (Sabine et al. 2004), which has resulted in a decrease of surface seawater pH by 0.1 units (Royal Society 2005). Caldeira & Wickett (2003) estimate that surface ocean seawater pH will reduce by 0.7 units over the next 200 years.

Ocean acidification could have severe consequences for marine biota, including
both calcifying and non-calcifying organisms (Raven et al. 2005, Fabry et al. 2008), yet,
there is not solid evidence about how the different organisms will react to the coupled
pCO₂-pH change (Hendriks et al. 2010). In the case of marine microbes, the
experimental results are inconsistent and occasionally contradictory (Joint et al. 2010,
Liu et al. 2010).

Compared to phytoplankton, much less laboratory or field experiments have 12 assessed the effects of changes in CO₂ concentrations on heterotrophic microbes (Joint 13 et al. 2010), despite playing a major role in the marine carbon cycle, mineralizing 14 organic carbon in the oceans to CO₂ (del Giorgio & Williams 2005). A few mesocosms 15 experiments have tested the effect of high CO₂ concentrations on the abundance and/or 16 production of natural bacterioplankton populations (Rochelle-Newall et al. 2004, 17 Grossart et al. 2006, Allgaier et al. 2008). These studies have found either no or indirect 18 (linked to phytoplankton dynamics) effect of elevated pCO_2 on bacterial production. 19 Only a few studies have demonstrated a direct effect of CO₂ on natural prokaryotic 20 plankton from the deep ocean (Coffin et al. 2004, Yamada et al. 2010) or on marine 21 bacterial isolates (Takeuchi et al. 1997, Labare et al. 2010). The latter studies found a 22 decrease in the production and growth rates at pH < 7, values nevertheless far from the 23 usual pH observed in ocean waters under present or future scenarios of elevated pCO_2 . 24

Most microorganisms, particularly heterotrophic bacteria, are able to assimilate CO₂ as part of their metabolism through anaplerotic reactions (Roslev et al. 2004). Although light-independent or dark CO₂ assimilation has been usually assumed to be insignificant in oxygenated marine waters, a recent work by Alonso-Sáez et al. (2010) suggests that the global relevance of this process could have been underestimated. Those results show for the first time that high ambient CO₂ concentrations could stimulate CO₂ fixation rates by increasing the CO₂ flux into the cells.

8 A comprehensive understanding of the effect of elevated CO₂ concentration on carbon cycling in the ocean requires the analysis of both production and respiration 9 rates to provide a total carbon budget. However, to the best of our knowledge none of 10 the published studies have simultaneously addressed the effect of CO₂ on bacterial 11 production and respiration, which are essential variables for bacterial growth efficiency 12 calculations. On the other hand, Allgaier et al. (2008) did find changes in bacterial 13 14 taxonomic composition in response to high CO₂ concentrations, which suggest that the effects of elevated pCO_2 are likely to vary among species. Therefore, the aim of our 15 16 work was to test the direct effect of elevated CO₂ concentrations (1000 ppmv) on the 17 biomass and metabolic rates (leucine incorporation, CO₂ fixation and respiration) of two bacterial isolates. 18

In order to test the direct effect of pCO_2 on bacterioplankton it is essential to isolate them from the rest of the microbial food web components. Moreover, the best approach is working with isolates or strains which are abundant and/or relevant in the ocean and that are likely to respond in a different way to a similar stress. We selected different bacterial isolates representative of two important families in marine surface waters: Rhodobacteraceae (MED165) and Flavobacteriaceae (MED217). The Rhodhobacteraceae includes the *Roseobacter* lineage, which is adapted to use monomers, such as sugars or amino acids, and typically constitute about 20% of the bacterial community in eutrophic coastal waters (Buchan et al. 2005, Alonso-Gutierrez et al. 2009). On the other hand, members of the family Flavobacteriaceae, are successful in the degradation of polymeric substances and are particularly abundant during decaying phytoplankton blooms (Pinhassi et al. 2004, Alderkamp et al. 2006, Teira et al. 2008), eventually accounting for up to more than 50% of total bacterial abundance.

8

9

MATERIAL AND METHODS

10 Bacterial cultures and experimental setup. The two strains (MED165 and MED217) were isolated in May 2001 from the surface waters (5 m) of Blanes Bay 11 (Mediterranean Sea) and were kindly provided by Dr JM Gasol (ICM-CSIC). MED165 12 belongs to Rhodobacteraceae and is 99.8% similar to Roseobacter sp. AY576690; 13 whereas MED217 belongs to Flavobacteriaceae and is 99.6% similar to Cytophaga sp. 14 AY745817. Both MED165 and MED217 were isolated from 1:20 seawater dilution 15 cultures enriched with inorganic phosphorous. Thereafter, we will refer to these isolates 16 as Roseobacter (MED165) and Cytophaga (MED217). 17

The strains were initially grown in Zobell liquid medium (4 g of peptone [Bacto TM Peptone; DIFCO 211677] and 0.8 g of yeast extract [Bacto Yeast Extract DIFCO 20 212750] dissolved in 600 mL of 0.2- μ m filtered seawater and 200 mL of sterile MQ 21 water) for one week. Thereafter, they were grown in 0.2- μ m filtered seawater amended 22 with 0.5 mL of Zobell medium per litre of seawater in 2 L-glass culture flasks. In order to determine the periodicity of dilution for establishing a semicontinuous culture, we first studied the growth characteristics of each strain in the diluted media used (Fig. 1). Both strains approached the stationary phase after 28 h, therefore, 80% dilutions were done every 24 h. The derived growth rate, calculated using a logistic model, was slightly higher for *Roseobacter* than for *Cytophaga*, with doubling times of 4.1 and 5.3 h, respectively.

Semi-continuous cultures (n=4) for each strain were simultaneously maintained 7 by daily 80% dilutions with fresh medium. Culture flasks were kept in an incubation 8 chamber at 18 °C under 16h light: 8h dark cycles. Light was provided by cool white 9 fluorescent tubes and irradiance, measured in air in a position close to the centre of the 10 culture flasks, was 250 µmol photons m⁻² s⁻¹. The cultures were allowed to acclimate to 11 the experimental conditions by continuously bubbling with the target CO₂ levels during 12 5 days under the light and temperature conditions previously described. To ensure 13 sterile conditions mixed gases were supplied after filtering through a 0.2 µm membrane 14 filter. The pCO_2 of fresh medium used for daily dilutions was also adjusted to the 15 experimental conditions. Cultures were aerated with air pumped from an open area 16 outside the building, for the samples incubated under regular atmospheric CO₂ levels 17 (Ambient CO₂: 380 ppmv) (n=2), and with a mix of air and CO₂ from a 2000-3000 18 ppmv CO₂ gas tank (Air Liquide S.A.), for the samples incubated under elevated CO₂ 19 levels (Elevated CO₂: 1000 ppmv final concentration) (n=2). The mixture air:CO₂ 20 21 reaching the cultures was made by a double tube flow meter and the flow in each flask was regulated by individual flow meters (Aalborg). After the acclimation period, a single 22 sampling took place at 9:00 a.m. (approx. 12 hours after dilution). It was carried out by 23 gravity using the flow generated after sucking the air of a silicon tube with a syringe 24

connected to the tube and to a glass tube inserted in each flask. Samples were taken for
the estimation of inorganic and organic carbon system variables and fluorescence of
coloured organic matter, as well as for bacterial abundance and activity (leucine
incorporation, CO₂ fixation and respiration rates).

Dissolved inorganic carbon and p**CO**₂. Water samples (n=3) for the analysis of 5 dissolved inorganic carbon (DIC) in each flask were collected in 5 mL glass serum vials 6 and analysed with a LiCOR Non-Dispersive Infrared Gas Analizer LiCOR 7000 within 7 8 a few hours after collection. The system was standardised with Na₂CO₃ solutions. pH and temperature were measured with a Crison pH 25 pH meter and salinity with a 9 Pioneer thermosalinometer Pioneer 30. The pH meter was calibrated in the total 10 hydrogen ion concentration pH scale with a 2-amino-2-hydroxymethyl-1,3-propanediol 11 (tris) buffer prepared in synthetic seawater (DOE, 1994). The partial pressure of CO_2 in 12 the water samples (pCO_2) was calculated from salinity, temperature, pH and DIC 13 measurements using the inorganic carbon equilibrium constants from Merhbach et al. 14 (1973) as refit by Dickson & Millero (1987), the boric acid constant from Dickson 15 16 (1990), the ionic product of water from Millero (1995), and the dissociation constant of 17 bisulfate ion from Dickson (1990).

Fluorescence of particulate and dissolved organic matter (DOM). Samples for dissolved organic carbon (DOC) and fluorescence of coloured dissolved organic matter (FDOM) quantification were collected in 250 mL acid-cleaned Winkler flasks and filtered through acid-rinsed 0.2 μ m filters (Pall Supor membrane Disc) in an acidcleaned all-glass filtration system under low N₂ flow pressure within one hour of collection. Aliquots for the analysis of DOC were drawn into pre-combusted (450 °C, 12 h) 10 mL glass ampoules, acidified with 25% H₃PO₄ to pH < 2, heat sealed and preserved at 4 °C until determination with a Shimadzu TOC-VCS analyzer under the principle of high temperature catalytic oxidation. The catalyser was 0.5% Pt on Al_2O_3 balls. The DOC concentration of each sample was obtained by subtracting the average ± SD peak area of 3-5 injections (150 µL) from the average ± SD peak area of the freshly produced milli-Q water used as a blank and dividing by the slope of the standard curve with potassium hydrogen phthalate (Álvarez-Salgado & Miller, 1998).

Aliquots for the quantification of FDOM were collected directly in a quartz cell 7 of 1 cm path-length and measured in a Perkin Elmer LS 55 luminiscence spectrometer. 8 9 The fluorescence of particulate organic matter (FPOM) was obtained by subtracting the FDOM from the fluorescence of the unfiltered sample. The Perkin Elmer LS 55 was 10 11 equipped with a xenon discharge lamp, equivalent to 20 kW for 8 µs duration. Discrete excitation/emission (Ex/Em) pair measurements were performed at P.G. Coble's (1996) 12 peak-M, characteristic of marine humic-like substances (Ex/Em : 320 nm /410 nm) and 13 14 peak-T, characteristic of protein-like substances (Ex/Em: 280 nm/350 nm). Four replicate measurements were performed for each Ex/Em pair. The system was calibrated 15 with a mixed standard of quinine sulphate (QS) and tryptophan (Trp) in sulphuric acid 16 0.05 M (Nieto-Cid et al. 2005). The equivalent concentration of every peak was 17 determined by subtracting the average peak height from the corresponding milli-Q 18 water blank height and dividing by the slope of the standard curve. Fluorescence units 19 20 were expressed in ppb equivalents of QS (ppb QS) for peak-M and ppb equivalents of Trp (ppb Trp) for peak-T. The precision was ± 0.1 ppb QS and ± 0.6 ppb Trp, 21 22 respectively.

Cell abundance and biovolume. One or 2 mL samples were fixed with 0.2-μm
filtered formaldehyde (1-2% final concentration) and subsequently stored at 4 °C in the

dark for 12-18 h. Thereafter, each sample was filtered through a 0.2 µm polycarbonate 1 2 filter (Millipore, GTTP, 25 mm filter diameter) supported by a cellulose nitrate filter (Millipore, HAWP, 0.45 µm), washed twice with milli-Q water, dried and stored in a 3 microfuge vial at -20 °C. For total bacterial counts cells were stained with a DAPI (4', 4 6'-diamidino-2-phenylindole)-mix (5.5 parts of Citifluor [Citifluor, Ltd.], 1 part of 5 Vectashield [Vector Laboratories, Inc.] and 0.5 parts of PBS with DAPI (1 µg mL⁻¹ final 6 7 concentration). The slides were examined with an epifluorescence microscope equipped with a 100-W Hg-lamp and appropriate filter sets for DAPI. More than 200 DAPI-8 stained cells were counted per sample. Bacterial biovolumes were estimated from DAPI 9 images as $(\pi/4)W^2(L - W/3)$, where L is length, and W is width. Despite bacterial 10 biovolume is commonly examined by using DAPI staining for DNA, it is important to 11 note that DAPI images may underestimate cell sizes (Suzuki et al 1993). 12

Catalysed Reported Deposition-Fluorescence In Situ Hybridisation (CARD-13 FISH). In order to control potential cross-contamination of the cultures we used 14 Catalysed Reported Deposition-Fluorescence In Situ Hybridisation (CARD-FISH) with 15 oligonucleotide probes specific for the Bacteroidetes group (CF319a) (Manz et al. 16 1996) and the Roseobacter lineage (Ros537). Filters for CARD-FISH were embedded 17 in low-gelling-point agarose and incubated with lysozyme (Teira et al. 2008). Filters 18 were cut in sections and hybridized for 2 h at 35 °C with horseradish peroxidase (HRP)-19 20 labelled oligonucleotide probes. Tyramide-Alexa488 was used for signal amplification (20 min) as previously described (Perthaler et al. 2002). We used 55% formamide for 21 22 both probes. Cells were finally counter-stained with a DAPI-mix. The slides were examined with an epifluorescence microscope equipped with a 100-W Hg-lamp and 23 appropriate filter sets for DAPI and Alexa488. More than 200 DAPI-stained cells were 24

counted per sample. For each microscope field, 2 different categories were enumerated:
 (i) total DAPI-stained cells and (ii) cells stained with the specific probe. The counting
 error, expressed as the percentage of standard error between replicates
 (SE/MEAN*100), was < 2% for DAPI counts and < 10% for FISH counts.

The CARD-FISH using probes of the lineage Roseobacter (Ros537) and for the 5 class Bacteroidetes (CF319a), indicated that problems of cross-contamination were 6 negligible in the case of Roseobacter cultures (ca. 100% of the DAPI-stained cells 7 hybridized with the Ros537 probe both in the High and in the Low CO₂ treatments), 8 whereas a minor cross-contamination with Roseobacter cells was detected in the 9 Cytophaga cultures (ca. 90% of the DAPI-stained cells hybridized with the CF319a 10 probe, and ca. 10% with the Ros537; both in the High and in the Low treatments) (data 11 not shown). 12

Leucine incorporation. The [³H] leucine incorporation method, modified as described by Smith & Azam (1992), was used to determine bacterial production. Samples (four replicates and two killed controls) were incubated for 40 min in the same incubation chamber as the cultures. The theoretical leucine to carbon conversion factor (CF) was used to calculate bacterial biomass production (BP) rates from Leu uptake rates (3.1 kg C mol Leu⁻¹).

19 **CO₂ fixation.** Eight 5 ml acid-cleaned glass vials were filled with culture, 20 inoculated with 180 kBq (5 μ Ci) of NaH¹⁴CO₃ and then incubated for 1 h in a 21 temperature-controlled photosynthetron incubator (CHPT Inc.). Each two replicates 22 were exposed to a range of 4 irradiance levels (0, 100, 250 and 1000 μ mol photons m⁻² 23 s⁻¹) in order to assess the effect of light on bacterial CO₂ fixation. After the incubation 24 period, the samples were filtered at very low vacuum pressure (<50 mm Hg) through

0.2 µm polycarbonate filters using a system that allows the recovery of the filtrate. The 1 2 filters and the filtrates were decontaminated by exposing them to fumes of concentrated HCl for 12 h and by adding 100 µl of 50% HCl and shaking for 12 h, respectively. Two 3 extra replicates were inoculated and immediately decontaminated (without incubation) 4 5 in order to obtain a time zero value. A multipurpose liquid scintillation cocktail was used for both filters and filtrates (Insta-Gel plus, Perkin Elmer). Quenching corrections 6 were made using an external standard. As a significant effect of irradiance was not 7 found neither for *Roseobacter* nor for *Cytophaga* (ANOVA test, p > 0.5, n=16), we 8 9 averaged the disintegrations per minute (DPMs) of the eight bottles and subtracted the mean DPMs of the time zero value for CO₂ fixation calculations. The amount of ¹⁴C 10 fixed as particulate organic carbon (P-CO₂ fix) and the amount of ¹⁴C subsequently 11 released from the cells to the dissolved fraction (D-CO₂ fix) was obtained as the mean 12 13 value in the filter and mean value in the filtrate, respectively.

Respiration. Oxygen consumption rates were determined by dark-bottle 14 incubations. Six dark, 50 mL, gravimetrically calibrated, borosilicate bottles were 15 carefully filled from each culture, using silicone tubing, overflowing >100 mL. An 16 initial set of 3 dark bottles was fixed immediately for initial oxygen concentration, the 17 remainder being kept in the dark for 1-2 h in the same incubation chamber as the 18 cultures. Dissolved oxygen concentration was measured through automated precision 19 Winkler titration performed with a Metrohm 721 DMS Titrino, using a potentiometric 20 end point detector as described in Serret et al. (1999). Bacterial respiration (BR) was 21 22 converted into C units by using a respiration quotient (RQ) of 0.8 (Williams & del Giorgio, 2005). 23

1	Statistical analysis. Data were log or arcsin transformed to attain normality and
2	homocedasticity (tested by Kolmogorov-Smirnov and Levene tests, respectively). The
3	unpaired T-test was then used for comparisons of two datasets (Elevated versus
4	Ambient treatments). When homocedasticity failed we used a T-test assuming unequal
5	variances. An ANOVA test was used for comparison of more than two datasets. All
6	statistical analyses were computed using SPSS statistics 19.0 software. In order to
7	correct for the small sample size (n=4), we applied the correction proposed by Good
8	(1982), substituting p by p $\sqrt{0.5}$.
9	
0	
10	RESULTS
11	CO ₂ system variables
11 12	CO_2 system variables At the beginning of the acclimation period the pCO_2 of the air bubbling the
11 12 13	CO ₂ system variables At the beginning of the acclimation period the pCO_2 of the air bubbling the cultures was adjusted to 1000 ppmv in the Elevated CO ₂ treatment and to 380 ppmv in
11 12 13 14	CO ₂ system variables At the beginning of the acclimation period the pCO_2 of the air bubbling the cultures was adjusted to 1000 ppmv in the Elevated CO ₂ treatment and to 380 ppmv in the Ambient CO ₂ treatment. Due to bacterial activity at the sampling time, i.e. 12 hours
11 12 13 14 15	CO ₂ system variables At the beginning of the acclimation period the p CO ₂ of the air bubbling the cultures was adjusted to 1000 ppmv in the Elevated CO ₂ treatment and to 380 ppmv in the Ambient CO ₂ treatment. Due to bacterial activity at the sampling time, i.e. 12 hours after 80% dilution with acclimated fresh medium, the p CO ₂ of seawater in the Elevated
11 12 13 14 15 16	CO ₂ system variables At the beginning of the acclimation period the p CO ₂ of the air bubbling the cultures was adjusted to 1000 ppmv in the Elevated CO ₂ treatment and to 380 ppmv in the Ambient CO ₂ treatment. Due to bacterial activity at the sampling time, i.e. 12 hours after 80% dilution with acclimated fresh medium, the p CO ₂ of seawater in the Elevated CO ₂ treatment was 1162 ± 84 ppmv in the <i>Roseobacter</i> and 1137 ± 51 ppmv in the
11 12 13 14 15 16 17	CO ₂ system variables At the beginning of the acclimation period the p CO ₂ of the air bubbling the cultures was adjusted to 1000 ppmv in the Elevated CO ₂ treatment and to 380 ppmv in the Ambient CO ₂ treatment. Due to bacterial activity at the sampling time, i.e. 12 hours after 80% dilution with acclimated fresh medium, the p CO ₂ of seawater in the Elevated CO ₂ treatment was 1162 ± 84 ppmv in the <i>Roseobacter</i> and 1137 ± 51 ppmv in the <i>Cytophaga</i> cultures. By contrast, in the Ambient CO ₂ treatment, the seawater p CO ₂ was
11 12 13 14 15 16 17 18	CO ₂ system variables At the beginning of the acclimation period the p CO ₂ of the air bubbling the cultures was adjusted to 1000 ppmv in the Elevated CO ₂ treatment and to 380 ppmv in the Ambient CO ₂ treatment. Due to bacterial activity at the sampling time, i.e. 12 hours after 80% dilution with acclimated fresh medium, the p CO ₂ of seawater in the Elevated CO ₂ treatment was 1162 ± 84 ppmv in the <i>Roseobacter</i> and 1137 ± 51 ppmv in the <i>Cytophaga</i> cultures. By contrast, in the Ambient CO ₂ treatment, the seawater p CO ₂ was significantly (T-test, p = 0.047, n = 4) higher in the <i>Cytophaga</i> cultures (412 ± 27
11 12 13 14 15 16 17 18 19	CO ₂ system variables At the beginning of the acclimation period the pCO_2 of the air bubbling the cultures was adjusted to 1000 ppmv in the Elevated CO ₂ treatment and to 380 ppmv in the Ambient CO ₂ treatment. Due to bacterial activity at the sampling time, i.e. 12 hours after 80% dilution with acclimated fresh medium, the pCO_2 of seawater in the Elevated CO ₂ treatment was 1162 ± 84 ppmv in the <i>Roseobacter</i> and 1137 ± 51 ppmv in the <i>Cytophaga</i> cultures. By contrast, in the Ambient CO ₂ treatment, the seawater pCO_2 was significantly (T-test, p = 0.047, n = 4) higher in the <i>Cytophaga</i> cultures (412 ± 27 ppmv) than in the <i>Roseobacter</i> cultures (242 ± 11 ppmv). The mean pH in the Elevated
 11 12 13 14 15 16 17 18 19 20 	CO ₂ system variables At the beginning of the acclimation period the <i>p</i> CO ₂ of the air bubbling the cultures was adjusted to 1000 ppmv in the Elevated CO ₂ treatment and to 380 ppmv in the Ambient CO ₂ treatment. Due to bacterial activity at the sampling time, i.e. 12 hours after 80% dilution with acclimated fresh medium, the <i>p</i> CO ₂ of seawater in the Elevated CO ₂ treatment was 1162 \pm 84 ppmv in the <i>Roseobacter</i> and 1137 \pm 51 ppmv in the <i>Cytophaga</i> cultures. By contrast, in the Ambient CO ₂ treatment, the seawater <i>p</i> CO ₂ was significantly (T-test, p = 0.047, n = 4) higher in the <i>Cytophaga</i> cultures (412 \pm 27 ppmv) than in the <i>Roseobacter</i> cultures (242 \pm 11 ppmv). The mean pH in the Elevated CO ₂ treatment was 7.60 in both cultures, whereas the pH in the Ambient CO ₂ treatment
 11 12 13 14 15 16 17 18 19 20 21 	CO ₂ system variables At the beginning of the acclimation period the <i>p</i> CO ₂ of the air bubbling the cultures was adjusted to 1000 ppmv in the Elevated CO ₂ treatment and to 380 ppmv in the Ambient CO ₂ treatment. Due to bacterial activity at the sampling time, i.e. 12 hours after 80% dilution with acclimated fresh medium, the <i>p</i> CO ₂ of seawater in the Elevated CO ₂ treatment was 1162 \pm 84 ppmv in the <i>Roseobacter</i> and 1137 \pm 51 ppmv in the <i>Cytophaga</i> cultures. By contrast, in the Ambient CO ₂ treatment, the seawater <i>p</i> CO ₂ was significantly (T-test, p = 0.047, n = 4) higher in the <i>Cytophaga</i> cultures (412 \pm 27 ppmv) than in the <i>Roseobacter</i> cultures (242 \pm 11 ppmv). The mean pH in the Elevated CO ₂ treatment was 7.60 in both cultures, whereas the pH in the Ambient CO ₂ treatment was significantly higher (T-test, p = 0.026, n = 4) in <i>Roseobacter</i> (8.17 \pm 0.03) than in

23 DOC and induced fluorescence of particulate and dissolved organic matter

DOC concentration at the sampling time was higher in the *Roseobacter* (372 ± 5) 1 μ mol C L⁻¹) than in the Cytophaga (286 ±10 μ mol C L⁻¹) cultures, and no significant 2 differences were found between the Elevated and the Ambient CO₂ treatments. The 3 protein-like fluorescence of particulate organic matter (FPOM-T) at the sampling time 4 was higher in the Roseobacter than in the Cytophaga cultures (Fig. 2A). There were no 5 significant differences between the mean FPOM-T in the Elevated and Ambient CO₂ 6 treatments. The protein-like fluorescence of dissolved organic matter (FDOM-T) 7 followed a very similar pattern than the FPOM-T (Fig. 2B). By contrast, the humic-like 8 fluorescence of dissolved organic matter (FDOM-M) in the Cytophaga culture was 9 significantly higher (T-test, p = 0.03, n=4) in the Ambient than in the Elevated CO₂ 10 11 treatment (Fig. 2C).

12

Bacterial abundance and activity rates

After the acclimation period, the abundance of *Roseobacter* at the sampling time was ca. 50 x 10⁶ cells mL⁻¹, whereas that of *Cytophaga* was ca. 80 x 10⁶ cells mL⁻¹ (Fig. 3A). There were no significant differences between the Elevated and the Ambient CO₂ treatments. The mean biovolume of *Roseobacter* cells ($0.71 \pm 0.05 \ \mu m^3$) was higher than that of *Cytophaga* cells ($0.35 \pm 0.05 \ \mu m^3$), and no significant differences were found between the Elevated and Ambient CO₂ treatments.

19 Despite lower cell abundance, rates of leucine incorporation (bacterial 20 production, BP) were almost twice in the *Roseobacter* than in the *Cytophaga* culture 21 (Fig. 3B). There were no significant differences between CO₂ treatments. Similarly, 22 anaplerotic CO₂ fixation rates (both dissolved and particulate) were also higher in 23 *Roseobacter* than in *Cytophaga* (Figs. 3C & D). There were no significant differences in 24 the rates of CO₂ fixation measured in the particulate fraction (P-CO₂ fix, Fig. 3C) between treatments, whereas those measured in the dissolved fraction (D-CO₂ fix) were
significantly higher in the Elevated than in the Ambient CO₂ treatment (Fig.3D) in both
isolates. Overall, P-CO₂ fixation represented 8-9% of the BP in both isolates.

On the other hand, bacterial respiration (BR) was higher in the Cytophaga than 4 5 in the Roseobacter cultures, particularly in the Ambient CO₂ treatment (Fig. 3E). BR was significantly higher in the Ambient than in the Elevated CO₂ treatment in the case 6 of Cytophaga (T-test, p = 0.02, n = 4). The derived bacterial growth efficiency (BGE, 7 8 estimated as BP/(BP+BR), was higher for Roseobacter than for Cytophaga (Fig. 3F). *Cytophaga* showed a significantly (T-test, p = 0.005, n = 4) higher BGE in the Elevated 9 CO_2 (0.57 ± 0.01) than in the Ambient CO_2 (0.49 ± 0.02) treatment, while *Roseobacter* 10 growth efficiency did not respond to the elevated CO₂. 11

- 12
- 13

DISCUSSION

Both detrimental and stimulatory effects of seawater acidification associated to 14 elevated pCO_2 on marine plankton have been widely demonstrated at the organism 15 level; including both phytoplankton and zooplankton species (see review by Riebesell et 16 al. 2008). However, to the best of our knowledge, the effect of high pCO_2 has been 17 scantily tested on single marine heterotrophic bacteria species (Takeuchi et al. 1997, 18 19 Labare et al. 2010). Moreover, none of these studies tested the effect of elevated CO₂ on respiration or CO₂ fixation rates. Both processes are relevant in terms of dissolved 20 inorganic carbon system chemistry and carbon cycling, as CO₂ fixation reduces, and 21 22 respiration increases, the concentration of CO₂ in seawater. The objective of our study was to evaluate the direct effect of elevated pCO_2 levels on catabolic and anabolic 23

processes rates of two relevant marine strains. Our results revealed that *Roseobacter* and
 Cytophaga strains, presumably carrying out contrasting functions in the ecosystem
 (Teira et al. 2008, 2009), responded differently to high pCO₂.

4

Roseobacter and *Cytophaga* metabolism under present-day *p*CO₂ levels (380 ppmv)

The bacterial yield in terms of cell abundance is lower for *Roseobacter* than for *Cytophaga* (50 vs. 80 x 10⁶ cells mL⁻¹ at the sampling time) (Fig. 3A). The lower bacterial yield of *Roseobacter* contrasts with its higher BP and P-CO₂ fixation rates. A possible explanation could be a larger cell size of *Roseobacter* compared to *Cytophaga*. Based on microscope estimates, we found that the mean biovolume of *Roseobacter* cells was twice that of *Cytophaga* cells. The higher FPOM-T in *Roseobacter* rather than in *Cytophaga* cultures also suggests higher bacterial biomass in the *Roseobacter* cultures.

12 Cell-specific BP rates in the Ambient CO_2 treatment (5.4 and 13.1 fg C cell⁻¹ d⁻¹ 13 for *Cytophaga* and *Roseobacter*, respectively) are within the range of cell-specific BP 14 rates measured in coastal waters where members of Rhodobacteraceae and 15 Flavobacteriaceae are particularly abundant (Reinthaler & Herndl 2005, Lamy et al. 16 2009, Lekunberri et al 2010).

Heterotrophs can assimilate CO_2 in various carboxylation reactions as part of central and peripheral pathways (Dijkhuizen & Harder 1985). We found that CO_2 fixation was independent of light in both strains, which points out to a purely heterotrophic assimilation process. The daily cellular rates of P-CO₂ fixation in the Ambient CO₂ treatment by *Roseobacter* (1.2 fg C cell⁻¹ d⁻¹) and *Cytophaga* (0.43 fg C cell⁻¹ d⁻¹) were about one order of magnitude higher than those reported by Alonso-Sáez et al. (2010) in arctic waters. The P-CO₂ fixation represented 7-8 % of the total carbon anabolism, which agrees very well with most previous estimates which suggest that 18% of the organic carbon in some heterotrophic bacteria can be attributed to CO₂
assimilation in carboxylation reactions (Romanenko 1964, Doronia & Trotsenko 1985,
Roslev et al. 2004).

The higher D-CO₂ fixation and the lower respiration rates measured in *Roseobacter* compared to *Cytophaga*, may explain the differences in pH and *p*CO₂ observed in the Ambient CO₂ treatment (8.17 in *Roseobacter* versus 7.99 in *Cytophaga*), as CO₂ fixation would tend to increase seawater pH and respiration would tend to decrease pH.

10

11

12

ppmv)

Roseobacter and Cytophaga metabolism under high pCO₂ future levels (1000

In the case of *Roseobacter*, the only significant response to elevated pCO_2 was 13 an increment in the rate of D-CO₂ fixation, a pattern also observed in Cytophaga. 14 Although the effect of elevated pCO_2 on the heterotrophic CO_2 fixation had never been 15 tested, an increase in photosynthetically produced-DOC release, as a consequence of 16 high pCO_2 , has been previously observed in phytoplankton (e.g. Engel et al. 2004, 2005, 17 Riebesell et al. 2007). Although the mechanism of CO₂ fixation differs between 18 19 phytoplankton and bacterioplankton, our results indicate that the fraction of recently fixed carbon released as dissolved organic matter by heterotrophic bacteria could also 20 increase under high seawater pCO₂. By contrast, both P-CO₂ fixation and leucine 21 22 incorporation (BP) were not significantly affected by elevated CO₂ which is also congruent with no differences in cell abundance and biovolume. Several studies with 23

natural microbial plankton populations, testing similar high CO₂ levels, either failed to
find a significant effect on bulk leucine incorporation rates (Allgaier et al. 2008) or did
find an increase related to a higher dissolved organic carbon excretion by phytoplankton
(Grossart et al. 2006).

5 Interestingly, a significant decrease in bacterial respiration occurred in the Elevated CO₂ treatment in Cytophaga (Fig. 3E), which produced an increase in its 6 growth efficiency under high pCO_2 conditions (Fig. 3F). As far as we know, the effect 7 8 of high CO₂ on the growth efficiency of single marine bacterial species or natural bacterial communities has never been tested before (Liu et al. 2010). The higher 9 respiration rates measured in the Ambient than in the Elevated CO₂ treatment strongly 10 concurs with the significantly higher concentration of humic substances observed in the 11 Elevated CO₂ treatment (Fig. 2C). Several studies have demonstrated the correlation 12 between microbial respiration rates and rates of humic matter formation (Nieto-Cid et 13 14 al. 2006, Lønborg et al. 2010). A decrease in respiration rates of soil bacteria with increasing CO₂ concentration (0-1000 ppmv) was reported by Koizumi et al. (1991), 15 16 although they did not provide an explanation for this metabolic response.

17 A decrease in phytoplankton respiration under high pCO_2 conditions has been recently suggested by Hopkinson et al. (2010). These authors speculated that this 18 19 respiration decline could be most likely related to a reduced energy cost on intracellular 20 pH homeostasis. Most non-extremophilic bacteria grow over a broad range of external pH values, from 5.5. to 9.0, and maintain a cytoplasmatic pH within the narrow range of 21 7.4 to 7.8 (Booth 1985, Padan et al. 2005). Surface ocean bacteria grow in alkaline 22 23 environments (pH~ 8.2) and there is a large number of adaptive strategies for alkaline pH homeostasis (Padan et al. 2005), including increased metabolic acid production, 24

increased ATP synthase that couples proton entry to ATP generation, changes in 1 2 membrane properties, and increased expression and activity of monovalent cation/proton antiporters. Thus, energy savings when pH approaches the desired 3 intracellular pH likely vary among different bacterial species, depending on the strategy 4 for pH regulation. Unfortunately, we do not have information about the mechanisms 5 implied in pH regulation in the studied strains. The lower external pH in the Elevated 6 CO_2 treatment (pH= 7.60) could imply a reduced energy expense and thus, a higher 7 growth efficiency and a lower total carbon demand, for Cytophaga but not for 8 Roseobacter strain. 9

Our results contrast with recent observations of increases in bacterial 10 polysaccharide degradation under pH lowered by 0.2-0.3 units, which has the potential 11 to enhance respiratory CO_2 production under high pCO_2 future scenarios (Piontek et al. 12 2010). In the case of Cytophaga cultures, the implication of a reduced respiration under 13 14 high CO₂ concentration is a negative feedback to rising CO₂. We have shown that laboratory experiments with cultured organisms may provide valuable information on 15 physiological responses to the perturbation of CO₂ concentrations. We have 16 demonstrated here that some metabolic rates of two important representatives of marine 17 bacteria do change in response to a higher CO₂ concentration, and, contrary to some 18 expectations, lowering pH did not negatively affect bacterial growth or even increased 19 20 growth efficiency in the case of Cytophaga. In both cases, the bacterial activity under high pCO_2 (higher D-CO₂ fixation or higher D-CO₂ fixation plus lower respiration 21 22 rates) would increase the buffering capacity of seawater.

The complex interactions among microbial plankton organisms and different
 environmental factors implies that experiments under *in situ* conditions and with natural

plankton communities are also essential to understand how the pelagic ecosystems will 1 react to an increase in surface ocean CO₂ concentration. Our results suggest the need for 2 including simultaneous measurements of several key metabolic processes in CO₂ 3 perturbation experiments with natural microbial populations, to better understand the 4 net effect of human induced rising seawater CO₂. Moreover, we have shown that the 5 response may vary among different bacteria taxa and, thus, it is crucial to 6 simultaneously analyze changes in bacterial function and taxonomic composition, as 7 8 well as to conduct experiments over a wide range of different bacterial community 9 structures.

10

11

1 Acknowledgements

We thank Estación de Ciencias Mariñas de Toralla (ECIMAT) for the technical support
during the experiments, and María Pérez Lorenzo for technical assistance. This research
was supported by the Xunta de Galicia (grant 07MMA013103PR) and the MICINN
contract DIFUNCAR (CTM2008-03790). E.T was funded by a Ramón y Cajal contract
from the Spanish Ministry of Science and Innovation. C.S was funded by an Isidro
Parga Pondal contract from the Xunta de Galicia.

8

9 LITERATURE CITED

Alderkamp A-C, Sintes E, Herndl GJ (2006). Abundance and activity of major groups of
 prokaryotic plankton in the coastal North Sea during spring and summer. Aquat
 Microb Ecol 45: 237-246

- Allgaier M, Riebesell U, Vogt M, Thyrhaug R, Grossart H- (2008) Coupling of
 heterotrophic bacteria to phytoplankton bloom development at different pCO₂
 levels: a mesocosm study. Biogeosciences 5: 1007-1022
- Alonso-Gutiérrez J, Lekunberri I, Teira E, Gasol JM, Figueras A, Novoa B (2009)
 Pronounced Seasonality in Bacterioplankton Composition of the Coastal
 Upwelling System of "Ría de Vigo", NW-Spain. FEMS Microbiol Ecol 70:
 493-505
- Alonso-Sáez L, Galand P, Casamayor EO, Pedrós-Alió C, Bertilsson S (2010) High
 bicarbonate assimilation in the dark by arctic bacteria. The ISME journal 4:
 1581-1590
- Álvarez-Salgado XA, Miller AEJ (1998) Simultaneous determination of dissolved
 organic carbon and total dissolved nitrogen in seawater by high temperature

1	catalytic oxidation: conditions for precise shipboard measurements. Mar Chem
2	62: 325-333
3	Booth IR (1985) Regulation of cytoplasmatic pH in bacteria. Microbiol Rev 49: 359-
4	378
5	Buchan A, González JM, Morán MA (2005) Overview of the marine Roseobacter
6	lineage. Appl Environ Microb 71: 5665-5677
7	Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425: 365
8	Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using
9	excitation-emission matrix spectroscopy. Mar Chem 51: 325-346
10	Coffin RB, Montgomery MT, Boyd TJ, Masutani SM. (2004) Influences of ocean CO ₂
11	sequestration on bacterial production. Energy 29: 1511-1520
12	del Giorgio PA, Williams PJleB (2005) The global significance of respiration in aquatic
13	ecosystems from single cells to the biosphere. In: del Giorgio, PA and Williams,
14	PJleB (eds). Respiration in Aquatic Ecosystems. Oxford University Press:
15	Oxford, pp 267-303
16	Dijkhuizen L, Harder W (1985) Microbial metabolism of carbon dioxide. In: Dalton, H
17	(ed). Comprehensive Biotechnology, vol 1. Pergamon Press: Oxford, pp 409-
18	423
19	DOE (1994) Handbook of methods for the analysis of the various parameters of the
20	carbon dioxide system in sea water. Version 2, A. G. Dickson & C. Goyet, eds.
21	ORNL/CDIAC-74
22	Dickson, A.G. and Riley, J.P (1979) The estimation of acid dissociation constants in seawater
23	media from potentiometric titrations with strong base. II. The dissociation of phosphoric
24	acid. Mar. Chem. 7: 101–109

1	Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the
2	dissociation of carbonic acid in seawater media. Deep-Sea Res 34: 1733-1743
3	Dickson AG (1990) Thermodynamics of the dissociation of boric acid in synthetic sea
4	water from 273.15 to 318.15 K. Deep-Sea Res 37: 755-766
5	Doronia NV, Trotsenko YA (1985) Levels of carbon dioxide assimilation in bacteria
6	with different pathways of C1 metabolism. Mikrobiologiya 53: 885-889
7	Engel A, Delille D, Jacquet S, Riebesell U, Rochelle-Newall E, Terbrugeen A,
8	Zondervan I (2004) TEP and DOC productin by Emiliania huxleyi exposed to
9	different CO ₂ concetrations: a mesocosm experiment. Aquat Microb Ecol 34:
10	93-104
11	Engel A, Zondervan I, Aerts K, Beaufort L, Benthien A, Chou L (2005) Testing the
12	direct effect of CO ₂ concentration on a bloom of the coccolithophorid Emiliania
13	huxleyi in mesocosm experiments. Limnol Oceanogr 50: 493-507
14	Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine
15	fauna and ecosystem processes. ICES J Mar Sci 65: 414-432
16	Good IJ (1982) Standardized tail-area probabilities. J Stat Comput Sim 16: 65-66
17	Grossart H-P, Allgaier M, Passow U, Riebesell U (2006) Testing the effect of CO2
18	concentration on the dynamics of marine heterotrophic bacterioplankton.
19	Limnol Oceanogr 51: 1-11
20	Hendriks IE, Duarte CM, Álvarez M (2010) Vulnerability of marine biodiversity to
21	ocean acidification: A meta-analysis. Estuar Coast Shelf Sci 86:157-164
22	Hopkinson BM, Xu Y, Shi D, McGinn PJ, Morel FMM (2010) The effect of CO ₂ on the
23	photosynthetic physiology of phytoplankton in the Gulf of Alaska. Limnol
24	Oceanogr 55: 2011-2024
25	Joint I, Doney SC, Karl DM. (2010) Will ocean acidification affect marine microbes?
26	The ISME journal 5: 1-7

- Koizumi H, Nakadai T, Usami Y, Satoh M, Shiyomi M, Oikawa T (1991) Effect of
 carbon dioxide concentration on microbial respiration in soil. Ecol Res 6: 227 232
- Lamy D, Obernosterer I, Laghdass M, Artigas LF, Breton E, Grattepanche JD, Lecuyer
 E, Degros N, Lebaron P, Christaki U (2009) Temporal changes of major
 bacterial groups and bacterial heterotrophic activity during a Phaeocystis
 globosa bloom in the eastern English Channel. Aquat Microbe Ecol 58: 95-107
- Labare MP, Bays JT, Butkus MA, Snyder-Leiby T, Smith T, Goldstein A (2010) The
 effects of elevated carbon dioxide levels on a Vibrio sp. Isolated from the deepsea. Environ Sci Pollut Res 17: 1009-1015
- Lekunberri I, Calvo-Diaz A, Teira E, Morán XAG, Peters F, Nieto-Cid M, Espinoza Gonzalez O, Teixeira IG, Gasol JM (2010) Changes in bacterial activity and
 community composition caused by exposure to a simulated oil spill in
 microcosm and mesocosm experiments. Aquat Microb Ecol 59: 169-183
- Liu J, Weinbauer MG, Maier C, Dai M, Gattuso J-P (2010) Effect of ocean acidification
 on microbial diversity and on microbe-driven biogeochemistry and ecosystem
 functioning. Aquat Microb Ecol 61: 291-305
- Lønborg C, Álvarez–Salgado XA, Richardson K, Martínez–García S, Teira E (2010)
 Assessing the microbial bioavailability and degradation rate constants of
 dissolved organic matter by fluorescence spectroscopy in the coastal upwelling
 system of the Ría de Vigo. Mar Chem 119: 121–129
- Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH (1996) Application of a
 suite of 16S rRNA-specific oligonucleotide probes designed to investigate
 bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural
 environment. Microbiology-UK 142: 1097-1106
- Merhbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the
 apparent dissociation constants of carbonic acid in seawater at atmospheric
 pressure. Limnol Oceanogr 18: 897–907

1	Millero FJ (1995) Thermodynamics of the carbon dioxide system in the oceans.
2	Geochim Cosmochim Acta 59: 661–677
3	Nieto-Cid M, Álvarez-Salgado XA, Gago J, Pérez FF (2005) DOM fluorescence, a
4	tracer for biogeochemical processes in a coastal upwelling system (NW Iberian
5	Peninsula). Mar Ecol Prog Ser 297: 33-50
6	Nieto-Cid M, Álvarez-Salgado XA, Pérez FF (2006) Microbial and photochemical
7	reactivity of fluorescent organic matter in a coastal upwelling system. Limnol
8	Oceanogr 51: 1391-1400
9	Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new
10	insights. Biochim Byophys Acta 1717: 67-88
11	Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and
12	catalysed reporter deposition for the identification of marine Bacteria. Appl
13	Environ Microbiol 68:3094-3101
14	Pinhassi J, Sala MM, Havskum H, Peters F, Guadayol O, Malits A (2004) Changes in
15	bacterioplankton composition under different phytoplankton regimens. Appl
16	Environ Microbiol 70: 6753-6766
17	Piontek J, Lunau M, Händel N, Borchard C, Wurst M, Engel A (2010) Acidification
18	increases microbial polysaccharide degradation in the ocean. Biogeosciences 7:
19	1615-1624
20	Raven J, Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P, Riebesell U (2005)
21	Ocean acidification due to increasing atmospheric carbon dioxide. The Royal
22	Soc. Policy Document, 12/05. Clyvedon Press, Cardiff, U.K
23	Reinthaler T, Herndl GJ (2005) Seasonal dynamics of bacterial growth efficiencies in
24	relation to phytoplankton in the southern North Sea. Aquat Microb Ecol 39: 7-
25	16

1	Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P, Meyerhöfer M (2007)
2	Enhanced biological carbon consumption in a high CO ₂ ocean. Nature 450:
3	545-548

- 4 Riebesell U, Bellerby RGJ, Grossart H-P, Thingstad F (2008) Mesocosm CO₂
 5 perturbation studies: from organism to community level. Biogeosciences
 6 Discuss 5: 641-659
- Rochelle-Newall E, Delille B, Frankignoulle M, Gattuso J-P, Jacquet S, Riebesell U
 (2004) Chromophoric dissolved organic matter in experimental mesocosms
 maintained under different pCO₂ levels. Mar Ecol Prog Ser 272: 25-31
- Romanenko VI (1964) Heterotoprhic assimilation of CO₂ by bacterial flora of water.
 Microbiologiya 33: 610-614
- Roslev P, Larsen MB, Jørgensen D, Hesselsoe M (2004) Use of heterotrophic CO₂
 assimilation as a measure of metabolic activity in planktonic and sessile
 bacteria. J Microbiol Methods 59: 381-393
- Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL (2004) The oceanic sink
 for anthropogenic CO₂. Science 305: 367-371
- Serret P, Fernández E, Sostres JA, Anadón R (1999) Seasonal compensation of
 microbial production and respirationin a temperate sea. Mar Ecol Prog. Ser 187:
 43-57
- Smith DC, Azam F (1992) A simple, economical method for measuring bacterial
 protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6:
 107-114
- Suzuki MT, Sherr EB, Sherr BF (1993) DAPI direct counting underestimates bacterial
 abundances and average cell size compared to AO direct counting. Limnol
 Oceanogr 38:1566-1570

1	Takeuchi K, Fujioka Y, Kawasaki Y, Shirayama Y (1997) Impacts of high
2	concentration of CO_2 on marine organisms; a modification of CO_2
3	sequestration. Energy Convers Mgmt 38: S337-S341
4	Teira E, Gasol JM, Aranguren-Gassis M, Fernandez A, González J, Lekunberri I,
5	Alvarez-Salgado XA (2008) Linkages between bacterioplankton community
6	composition, heterotrophic carbon cycling and environmental conditions in a
7	highly dynamic coastal ecosystem. Environ Microbiol 10: 906-917
8	Teira E, Martínez-García S, Lønborg C, Álvarez-Salgado XA (2009) Growth rates of
9	different phylogenetic bacterioplankton groups in a coastal upwelling system.
10	Environ Microbiol Reports 1: 545-554
11	The Royal Society (2005) Ocean acidification due to increasing atmospheric carbon
12	dioxide. Document 12/05 Royal Society: London
13	Williams PJleB, del Giorgio PA (2005) Respiration in aquatic ecosystems: history and
14	background. In: del Giorgio, PA and Williams, PJleB (eds). Respiration in
15	Aquatic Ecosystems. Oxford University Press: Oxford, pp 1-18
16	Yamada N, Tsurushima N, Suzumura M (2010) Effects of seawater acidification by
17	ocean CO ₂ sequestration on bathypelagic prokaryote activities. J Oceanogr 66:
18	571-580

1 Figure legends.

Figure 1. Growth of (A) *Roseobacter* (MED165) and (B) *Cytophaga* (MED217)
cultures in Zobell medium under light-dark cycles. Error bars represent ±SE of
microscope cell counts (n=20).

Figure 2. (A) Protein-like fluorescence of the particulate organic matter (FPOM-T), (B)
protein-like fluorescence of the dissolved organic matter (FDOM-T) and (C) humic-like
fluorescence of the dissolved organic matter (FDOM-M) in the *Roseobacter* and *Cytophaga* cultures in the Elevated (black bars; n=2) and Ambient (white bars; n=2)
CO₂ treatments. Significant differences between the Elevated and Ambient CO₂
treatments are marked with an asterisk (*, p < 0.05; **, p < 0.01).

Figure 3. (A) Bacterial abundance, (B) leucine incorporation rates (BP), (C) CO₂ fixation measured in the particulate fraction (P-CO₂ fix) rates, (D) CO₂ fixation measured in the dissolved fraction (D-CO₂ fix) rates, (E) bacterial respiration (BR) and (F) bacterial growth efficiency (BGE) in *Roseobacter* and *Cytophag*a cultures in the Elevated (black bars; n=2) and Ambient (white bars; n=2) CO₂ treatments. Significant differences between the Elevated and Ambient CO₂ treatments are marked with an asterisk (*, p < 0.05; **, p < 0.01).

18

19

20

Figure 1

3 Figure 3