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Inducing and optimizing magnetism in graphene nanomeshes
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Using first-principles calculations, we explore the electronic and magnetic properties of graphene nanomesh
(GNM), a regular network of large vacancies, produced either by lithography or nanoimprint. When removing an
equal number of A and B sites of the graphene bipartite lattice, the nanomesh made mostly of zigzag (armchair)
-type edges exhibit antiferromagnetic (spin unpolarized) states. In contrast, in situations of sublattice symmetry
breaking, stable ferri(o)magnetic states are obtained. For hydrogen-passivated nanomesh, the formation energy
is dramatically decreased, and ground state is found to strongly depend on the vacancies shape and size. For
triangular-shaped holes, the obtained net magnetic moments increase with the number difference of removed A

and B sites in agreement with Lieb’s theorem for even A + B. For odd A + B triangular meshes and all cases
of nontriangular nanomeshes, including the one with even A + B, Lieb’s theorem does not hold anymore, which
can be partially attributed to the introduction of armchair edges. In addition, large triangular-shaped GNMs could
be as robust as nontriangular GNMs, providing a possible solution to overcome one of the crucial challenges for
the sp magnetism. Finally, significant exchange-splitting values as large as ∼0.5 eV can be obtained for highly
asymmetric structures evidencing the potential of GNM for room-temperature carbon-based spintronics. These
results demonstrate that a turn from zero-dimensional graphene nanoflakes throughout one-dimensional graphene
nanoribbons with zigzag edges to GNM breaks localization of unpaired electrons and provides deviation from
the rules based on Lieb’s theorem. Such delocalization of the electrons leads the switch of the ground state of a
system from an antiferromagnetic narrow gap insulator discussed for graphene nanoribons to a ferromagnetic or
nonmagnetic metal.
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I. INTRODUCTION

Two-dimensional graphene has emerged as a natural candi-
date for developing “beyond CMOS” nanoelectronics.1–6 In
addition to the reported huge charge mobilities, the weak
intrinsic spin-orbit coupling in carbon-based sp2 structures7,8

could potentially allow for very large (micrometer-long) spin
diffusion lengths. These features, together with the other
“semiconductorlike” properties of graphene, make graphene-
based spintronic devices highly promising9,10 and have trig-
gered a quest for controlling spin injection in graphene.11–14

Many routes have been attempted to induce magnetism by
proximity effect or inject spins from magnetic electrodes.15

Another, more intrinsic, possibility is shaping the geometry
of graphene by designing graphene nanoribbons (GNR) with
zigzag edges.16,17 This has been found to induce localized
edge magnetic states which can serve as a conceptually new
building block for spintronics.18–21

The existence of intrinsic magnetism driven by atomic-
scale defects (such as vacancies, chemisorbed species, grain
boundaries, etc.) has also been suggested theoretically,20,22–30

but remains fiercely debated on the experimental side.31 It is
indeed particularly difficult to achieve a precise experimental

characterization of those defects, whereas the control of their
density, positioning, or chemical reactivity seems an insur-
mountable challenge, jeopardizing a further use of magnetic
properties in real devices. Additionally, the absence of a true
energy gap in two-dimensional graphene limits the elaboration
of active graphene-based devices and circuits with standard
semiconductor technologies.

Another route to make graphene magnetic is either
chemisorption of an odd number of adatoms or functional
groups,20,32 or using magnetism on zigzag edges.18,33–35 In the
first case the stability of magnetic configurations at room tem-
perature can be easily destroyed by the migration of adatoms
with turning the system into nonmagnetic configuration.32 In
contrast to the adatom-based magnetism edge34 and vacancy,36

magnetism in graphite is stable at room temperature. But
herewith localization of the magnetic moments on the edges
provides formation of the antiferromagnetic (AFM) exchange
interactions between two edges.18

The case of graphene nanoribbons obeys Lieb’s theorem be-
cause the localized electrons on one edge belong to sublattice A

and localized electrons from the other edge belong to sublattice
B. Magnetism on the edges of graphene nanoflakes is also

214404-11098-0121/2011/84(21)/214404(7) ©2011 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36061377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevB.84.214404


YANG, CHSHIEV, BOUKHVALOV, WAINTAL, AND ROCHE PHYSICAL REVIEW B 84, 214404 (2011)

described by this theorem.37 Electron localization plays an
important role in the different many-body effects on graphene
edges38 and bulk graphene.39 Understanding the nature of the
electron localization and delocalization in graphene and related
systems is necessary not only for control and manipulation of
magnetism in studied compounds but also for the develop-
ment of knowledge about systems with strongly correlated
electrons.

Graphene nanomesh (GNM) is the intermediate compound
between graphene nanoribbons with localized electrons on
zigzag edges and perfect bulk graphene with delocalized
electrons. The fabrication of GNM, using block copolymer
lithography and offering versatility in varying periodicities and
neck widths down to 5 nm,40 could circumvent the hurdles.
Indeed, such technique allows a scalable engineering of
superlattices of large graphene vacancies whose density, shape,
and distribution can be controlled down to the nanoscale.
Additionally, GNM-based field-effect transistors were shown
to withstand current densities two orders of magnitudes
larger than individual graphene nanoribbon devices, with
comparable on/off ratio and easily tunable by varying the neck
width. Moreover, in accordance to the well-established Lieb’s
theorem,41 the possibility to control inner edge structures42 of
nanomesh vacancies could enable a true control of intrinsic
magnetic properties.

In this paper, we present first-principles calculations of
electronic and magnetic properties of graphene nanomesh. We
found that by varying the shape, different types of intrinsic
ferrimagnetic43 states can be obtained with clear identification
of optimal conditions. Systematic studies of nonpassivated
and hydrogen-passivated GNM are achieved by varying the
difference (�AB = |B − A|) between missing A and B sites
of the underlying bipartite lattice and analyzing different hole
geometries. For nonpassivated GNM with �AB = 0, stable
nonmagnetic states are found for armchair edge termination,
while zigzag edge terminations result in antiferromagnetic
ground states. These localized magnetic moments, however,
vanish when all edge C atoms are hydrogen passivated.
In sharp contrast, when �AB �= 0, stable ferri(o)magnetic
states are induced with net moments up to 4μB (per 6
× 6 unit cell) originating from dangling bonds of edge
atoms.

Furthermore, for hydrogen-passivated GNM, the forma-
tion energy is dramatically decreased, and ground state
is found to strongly depend on the vacancies shape and
size. Our calculations reveal the existence of three mag-
netic regimes which depend on �AB : (i) highly magnetic
GNMs obeying Lieb’s theorem corresponding to triangular-
shaped holes with even A + B; (ii) GNMs with quenched
magnetic state due to complete chemical bond reconstruc-
tion with �AB = 1 and trivially nonmagnetic state with
�AB = 0; and (iii) GNMs following intermediate regime
between magnetic and quenched magnetic states, i.e. triangular
GNMs with odd A + B and more complicated structures
including both even (e.g., sector-shaped GNM) and odd
(e.g., pentagon-shaped GNM) A + B. We show that large
triangular GNMs could be as robust as nontriangular GNMs,
providing a possible solution to overcome one of the cru-
cial challenges for the sp magnetism. Moreover, significant
exchange-splitting values as large as ∼0.5 eV can be obtained

(d)(c)

(b)

C3:3 C6:6

C12:12 T6:7

(a)

FIG. 1. (Color online) [(a)–(c)] Schematics of the calculated
crystalline structures for balanced nonpassivated circular-shaped C3:3,
C6:6, and C12:12 GNM structures, respectively; (d) the same for
unbalanced nonpassivated triangular-shaped T6:7 GNM structure.
Edge carbon atoms are in blue and red to represent A and B

sites, respectively. For convenience, positions of removed atoms are
indicated in orange.

for highly asymmetric structures evidencing the potential
of graphene nanomesh for room-temperature carbon-based
spintronics.

II. METHODS

First-principles calculations were performed using the
Vienna ab initio simulation package (VASP)44 based on
density functional theory (DFT) with generalized gradient
approximation (GGA) for exchange-correlation potential. We
have used the projected augmented wave (PAW) method45

with the Perdew-Becke-Ernzerhof (PBE) parametrization46

potentials to describe the core electrons of carbon. Periodic
6 × 6 unit cells were used to simulate nonpassivated GNM
structures as shown in Fig. 1, whereas periodic 8 × 8 unit
cells were used to simulate H-passivated GNM structures.
The kinetic cutoff energies for the plane-wave basis set used
to expand the Kohn-Sham orbitals were 520 eV for the
self-consistent energy calculations. The Methfessel-Paxton
method47 is used with a broadening width of 0.2 eV for the
partial occupancy smearing calculations. A 9 × 9 × 1 k-point
mesh was sufficient to ensure good convergence in the total
energy differences. The structural relaxations were performed
ensuring that the Hellmann-Feynman forces acting on ions
were less than 10−3 eV/Å.

III. MODEL OF GRAPHENE NANOMESH

A GNM can be formed by either removing atoms centered
of a six ring structure [Figs. 1(a)–1(c)] or centered of one
carbon atom [Fig. 1(d)], which leads to the formation of GNM
with eihter a balanced or an unbalanced number of removed A

and B sites. For the sake of clarity, we label those structures
according to their shapes and put the number of removed A-
and B- site atoms as a subscript. For instance, the structure
of Fig. 1(a) named C3:3, corresponds to a circle hole shape
GNM with 3:3 denoting three A and three B atoms removed
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TABLE I. The number of removed atoms on A and B sites and their difference �AB . Magnetic moment M(μB ), total energies E (in eV)
for ferri(o)magnetic (Ferri(o)), antiferromagnetic (AF), and paramagnetic (PM) states, and defect formation energies Ef (in eV) for different
GNM structures. The total energies for ground states of different structures are specified in bold. The nonpassivated C3:3, C6:6, C12:12, and T6:7

and passivated CH
12:12 GNMs are calculated with a 6 × 6 unit cell; others are calculated with an 8 × 8 unit cell.

Etotal (eV)
Structure �AB M(μB ) PM AF Ferri(o) Ef (eV/C)

C3:3 0 0 –590.414 −591.742 (–591.185) 2.81
C6:6 0 0 −528.112 Unstable Unstable 2.10
C12:12 0 0 –406.137 −408.953 (–407.659) 1.402
T6:7 1 3.99 –516.732 Unstable −518.255 1.98

(–517.630)
TH

6:7 1 10−4 –1089.046 Unstable –1089.046 0.142
TH

10:12 2 1.80 –1015.387 Unstable −1015.403 0.120
TH

15:18 3 2.16 –923.346 Unstable −923.365 0.103
TH

21:25 4 3.62 –813.104 Unstable −813.223 0.084
SH

19:21 2 1.04 –862.346 Unstable −862.348 0.082
PH

18:21 3 2.15 –872.125 Unstable −872.147 0.156
CH

3:3 0 0 −627.565 Unstable Unstable 0.22
CH

12:12 0 0 −481.358 Unstable Unstable 0.078
RH

24:24 0 0 −795.267 Unstable Unstable 0.070
P′H

18:19 1 10−4 –887.147 Unstable –887.147 0.075

from perfect graphene. The superscript H is used for hydrogen-
passivated GNM.

IV. RESULTS AND DISCUSSIONS

For the C3:3 structure [Fig. 1(a)], we find that the con-
figuration with opposite spin orientation between adjacent
edge C atoms is energetically favored in comparison with the
configuration with parallel spins between edge atoms of two
sublattices represented by blue and red in Fig. 1. The total
energy calculations reveal quite large magnetic interaction
energies. For instance, the energy difference between a
ferromagnetic (FM) spin-polarized and a paramagnetic (PM)
state is found to be 0.129 eV per edge atom. The spin
configuration is further stabilized by 0.093 eV per edge atom
as a result of the antiferromagnetic (AF) coupling between
neighboring atoms with a magnetic moment of 0.48μB per
edge atom for each spin on each sublattice with opposite
orientation. The magnetic moment is slightly larger than that
of graphene nanoribbons, which is ∼0.43μB .18

We now discuss the case of a three-ring defect C12:12 GNM
[Fig. 1(c)]. The total energy calculations show that the ground
state is AF with a magnetic moment of 0.45μB per edge atom
for each spin on each sublattice with opposite orientation.
The FM state is lower by 0.127 eV per edge atom compared to
the PM state, and the spin configuration is further stabilized by
0.107 eV per edge atom as a result of the AF coupling between
neighboring atoms on different sublattices with opposite spin
orientations (see Table I).

The one-ring and three-ring defect C3:3 and C12:12 structures
considered above present no net permanent magnetic moment,
since the spin-polarized edge atoms appear in pairs with
opposite orientations, resulting in an AF ground state with
balanced spin-up and spin-down sublattices. However, in view

of spintronic applications, it would be much more interesting to
find the GNM structures with nonzero net magnetic moment.
This can actually be done by building an unbalanced sublattice
[Fig. 1(d)]. We found that the ground state of this unbalanced-
defect triangular structure T6:7 turns out to be ferrimagnetic
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0.00 µB
0ΔAB

o

b

a

0.00 µB
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0.0001
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H
7:6T

H
12:10T H
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21:19S

H
25:21T H

21:18P

FIG. 2. (Color online) H-passivated GNMs with triangular
shapes: (a) TH

6:7, (b)TH
10:12, (c)TH

15:18, (d) TH
21:25; with a circular shape:

(e) CH
12:12; with a rhombic shape: (f) RH

24:24; with a sector shape:
(g) SH

19:21; and with a pentagon shape: (h) PH
18:21. The corresponding

net magnetic moments for each structure are also indicated.
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FIG. 3. (Color online) (a) Total magnetic moment (μB/cell) (left)
and spin-splitting (right) as a function of �AB for various GNM
geometries, where P′H

18:19 is transformed from a pentagon structure
(PH

18:21) by adding two A atoms to the two opened hexagons. The
result of the Lieb’s theorem prediction is also given for comparison.
The even number of A + B structures TH

10:12 and TH
21:25 are shown in

red to indicate the good agreement with Lieb’s theorem prediction.
(b) Energy difference between ferrimagnetic and paramagnetic
states.

(FMi) with a total net moment of 3.987μB per unit cell.
This moment originates from each edge atom’s dangling
bond (σ bond) with a spin moment of 1μB providing the
magnetic moment of 6(red) − 3(blue) = 3μB in addition to
a contribution from the π bond equal to 1μB according to
the total number difference between atoms on the A and B

sublattices �AB .
Dangling bonds at the edge C atoms of nonpassivated

GNM are strongly chemically reactive,48 which leads to a
hole formation energy of pure GNM higher than 1 eV/C (see
Table I). Thus edge C atoms are likely to be passivated by
light elements. We used hydrogen for passivation of edge C
atoms and considered basic geometrical GNM shapes (Fig. 2)
for which the GNM hole formation energy is dramatically
decreased due to passivation of dangling bonds (see Table I).
For triangular holes, one can see that the formation energy
decays as a function of hole dimension. At the same time,
the magnetic moment increases and is roughly proportional
to the GNM hole size. When the triangular hole size is
increased, one observes that the net moment gets bigger
[Figs. 2(b)–2(d)] and reaches 3.62μB for the biggest hole
shown in Fig. 2(d). It is interesting to note that Lieb’s theorem
was originally formulated for an even A + B number of atoms,

and indeed the obtained values for TH
10:12 and TH

21:25 follow
Lieb’s theorem predictions. However, there is an exception for
the nontriangular case of (SH

19:21) with a total sum of A and B

being even, which is not well accounted by Lieb’s theorem.
In addition, one can see from Table I that the formation
energy values of triangular GNMs decrease as a function of
hole size and are comparable to those of the nonmagnetic
configurations.

In Fig. 3(a) we summarize the aforementioned results
including the calculated net magnetic moments for circular
(CH

12:12), rhombic (RH
24:24), sector (SH

19:21), and pentagon (PH
18:21)

GNM shapes represented in Figs. 2(e)–2(h), respectively. In
addition, the curves contain the net magnetic moment values
for alternative pentagon-shape GNM, P′H

18:19, obtained from
PH

18:21 by adding two A sites to complete two hexagons in the

FIG. 4. (Color online) Density of states for triangular GNMs of
(a) TH

6:7, (b) TH
10:12, (c) TH

15:18, (d) TH
21:25, (e) CH

3:3, (f) RH
24:24, (g)P′H18:19 ,

(h) SH
19:21, and (i) PH

18:21; the peaks around Fermi level are marked with
arrows. It can be seen that only the pz state contributes to the moment
from (c′) projected density of states of one edge atom in the TH

15:18

GNM.
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upper left and upper rightsix-rings in Fig. 2(h). Even though
the overall trend of the calculated values qualitatively follows
the Lieb’s theory, differences are observed, and first-principles
calculations do not always correspond to �AB , even for
the case with A + B is even of SH

19:21 as we have already
mentioned. In fact, we can ascribe the structures with an odd
number of A + B atoms, i.e., TH

6:7, P
′H
18:19, TH

15:18, and PH
18:21

as well as sector shape SH
19:21 GNMs to intermediate regime

between nonmagnetic and highly magnetic regimes. This
regime provides a root toward the design of magnetic GNM
supermeshes. It is worth noting that the possible mechanism for
the deviation from the Lieb’s theorem of the moment value for
the sector shape GNM SH

19:21 compared to TH
10:12 where A + B

is even for both, could be attributed to the larger amount of
armchair edges (not favorable for moment formation) in the
SH

19:21 structure.
To further elucidate the origin of magnetism in GNM

structures, we compute the total and partial density of states
(DOS) for considered GNMs. Figures 4(a)–4(d) give the total
DOS for the triangular-shape GNMs shown in Figs. 2(a)–2(d),
respectively. The exchange splitting between majority and
minority spins mainly originates from pz orbitals, as clearly
seen from Fig. 4(c′) where the projected density of states
(pDOS) on edge atoms for TH

15:18 is plotted. More interestingly,
exchange splitting and energy differences between FM and
PM states also increase with �AB following the same trend
as the net magnetic moment [see Figs. 3(a) and 3(b)],

-0.014

-0.001

0.012

0.025

0.038

0.051

0.064
-0.016

-0.003

0.010

0.023

0.036

0.049

0.062

5 Å (a) H
10:12T

H
18:15T(b)

FIG. 5. (Color online) Spin density (μB/Å2) distribution for the
two types of graphene nanomesh with localized (a) and delocalized
(b) unpaired electrons. Localization and delocalization for these
structures can be clearly seen in Fig. 4(b) and 4(c), respectively.

reaching values of 0.5 and 0.12 eV, respectively. These large
exchange-splitting values suggest that the magnetism could be
preserved at room temperature, which looks very promising
for room-temperature graphene spintronics developments. The
density of states of structures like TH

10:12 provide evidence of the
presence of localized electrons on the zigzag edges similar to
the perfect GNR.18 The smearing of the pz peak and increase of
the number of states at the Fermi level (metallization) suggest
the electron delocalization on edges and switch from AFM
to FM configuration similar to the case of partially oxidized
graphite edges.49 We have plotted the spin-density figures
for the localized and delocalized cases to illustrate dramatic
changes in the distribution of electrons with vanishing of the
pseudogap in density of states (see Fig. 5). The cause of
such delocalization of the unpaired electrons on the edges
of GNM holes can be attributed to a combination of sublattice
degeneracy breaking and deviation from the perfect shapes of
the graphene nanoribbon.

V. CONCLUSIONS

In conclusion, electronic and magnetic properties have
been explored in GNM with different geometries using first-
principles calculations. For balanced nonpassivated GNMs,
the ground state was found to be either paramagnetic or anti-
ferromagnetic. In situations of sublattice degeneracy breaking,
ferrimagnetic ground states were obtained. The hydrogen-
passivated GNMs were found to be strongly sensitive to
the GNM size and shape, with magnetic moments deviation
from the Lieb’s theorem trend caused by the delocalization of
the unpaired electrons on the zigzag edges. The calculations
of the formation energy provide evidence of the structural
stability and high probability of the formation of ferrimag-
netic structures. Furthermore, three magnetic regimes are
revealed: (i) highly magnetic GNM obeying Lieb’s theorem;
(ii) quenched magnetic state due to complete chemical bond
reconstruction; and (iii) intermediate regime providing a
possible root toward design of magnetic GNM supermeshes.
These results demonstrate that a turn from zero-dimensional
graphene nanoflakes throughout one-dimensional GNR with
zigzag edges to GNM breaks localization of unpaired electrons
at zigzag edges and provides a deviation from the Lieb’s
theorem trend. Such delocalization of the electrons allows
switching of the ground state of systems from an antifer-
romagnetic narrow gap insulator discussed for GNRs to a
ferromagnetic or nonmagnetic metal. These results combined
with obtained large values of the exchange splitting (increasing
with �AB) pinpoint promising perspectives for developing
room-temperature graphene spintronics.
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