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Marine species provide highly perishable products whose quality and freshness rapidly 

declines post-mortem due to a variety of microbial and biochemical degradation 

mechanisms. These undesirable events make mandatory the efficient refrigeration of 

marine food products on-board in the fish vessels immediately after the catch and the 

imposition of hygienic handling and storage conditions, since these will directly affect 

both the fish quality and its commercial shelf-life [1, 2]. 

Traditionally, fish species have been preserved by cooling and storing in flake ice 

[3], refrigerated seawater [4], or by exposure to the action of chemical preservation 

agents [5, 6]. In the last decade, slurry ice-based cooling and storage methods have been 

introduced in the fish sector [for an updated review: 7]. Slurry ice consists of a biphasic 

system composed by microscopic spherical ice crystals dispersed in refrigerated 

seawater cooled at subzero temperature in the range of -0.5ºC to -1.5ºC. Slurry ice 

systems exhibit several technical features of applied interest, among them: (i) its higher 

heat-exchange capacity as compared to flake ice, this reducing the cooling times of the 

fish catch, (ii) the reduced physical damage caused to the fish surface by the 

microscopic spherical particles as compared with flake ice aciculate crystals, (iii) the 

slowing down of a wide variety of chemical and enzymatic degradation mechanisms 

due to the subzero temperature imposed, and (iv) the fluid nature of slurry ice, which 

allows its pumping and a more hygienic handling of the fish specimens[7]. 

Pioneer works by Chapman [8] demonstrated a better maintenance of quality of 

finfish stored on-board in slurry ice as compared with other more traditional chilling 

technologies. Similar good conclusions were raised when slurry ice was used for the on-

board storage of albacore tuna [9] and as a pre-cooling method [10]. Evidences of the 
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advantages of slurry ice systems for the management of shellfish batches have also been 

reported, both for inland storage [11], and, more recently, for on-board storage [12]. 
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In our laboratory, refrigeration and subzero storage in slurry ice has proven to slow 

down microbial growth in lean [13], medium-fat [14] and fat [15] fish species. 

Likewise, refrigeration and storage in slurry ice have also been described to decrease the 

rates of a variety of biochemical mechanisms involved in quality loss in lean fish 

species [16], medium-fat [17] or fat [18] fish species. As a consequence of these effects, 

better sensory quality and extended shelf-lives have been reported for such fish species 

stored in slurry ice, as compared with traditional flake ice [13-18]. 

A technical relevant feature of slurry ice is that it may be combined with other 

agents, such as ozone, to achieve an antiseptic surface effect, or melanosis inhibitors, to 

prevent browning reactions in shellfish [12]. We have demonstrated the benefits of a 

novel ozonised-slurry ice combined system for the inland storage of sardine [14, 18] 

and farmed turbot [19]. However, such system has not been installed in a fishing vessel 

for its evaluation in the on-board storage of fish material. Thus, the main goal of this 

work was to combine a slurry ice prototype and an ozone generator for the on-board 

refrigeration and storage of megrim (Lepidorhombus whiffiagonis). This flat fish species 

represents the most fished species in the Gran Sol North Atlantic Fishing Bank, 

exploited by a number of European countries [20]. The capture of megrim in such a 

distant fishing bank usually means that the time elapsed between the catch and arrival at 

destiny varies from 10 to 15 days, this fact underlining the need to optimise 

refrigeration parameters in order to provide consumers with fish of the highest quality 

possible, especially in the case of fish specimens caught during the first days of the 

fishing run. 
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Slurry ice system used 

A combined slurry ice prototype (FLO-ICE, Kinarca S.A.U., Vigo, Spain) provided 

with an ozone generator (Cosemar Ozono, Madrid, Spain) was installed in the ship 

Cantábrico, based on Vigo fishing harbour (Northwestern Spain). The composition of 

the slurry ice binary mixture was 40% ice and 60% water, prepared on-board with 

filtered seawater (salinity: 3.3%). The temperature of the slurry ice mixture was -1.5ºC. 

Flake ice was prepared using freshwater with an Icematic F100 Compact device 

(Castelmac SPA, Castelfranco, Italy). 

 

Fish material, processing and sampling 

Two batches of megrim specimens were prepared in flake ice (FI) and slurry ice 

(SI). Another two batches were prepared with ozonised slurry ice (oSI batches). In such 

batches, the injection of ozone in the slurry ice mixture was accomplished with the 

ozone generator (Cosemar Ozono), the redox potential being adjusted to 600 mV (0.16 

mg ozone/l) (oSI600 batch) or to 300 mV (0.08 mg ozone/l) (oSI300 batch), respectively. 

In both batches, the ozone concentration was monitored by readings of the redox 

potential in the liquid phase. The fish specimens were surrounded by either ozonised 

slurry ice, slurry ice or flake ice at a fish:ice ratio of 1:1, and stored on-board for 14 

days in a refrigerated room at 2ºC. The temperature of megrim in the SI and oSI batches 

was in the range of -1˚C/-1.5˚C, while the temperature in the flake ice was in the range 

of 0˚C/+1ºC. When required, the ice mixtures were renewed on-board.  

The fish specimens were gutted and not headed. The length of the megrim specimens 

was in the 15–20 cm range and their weight was in the 80-100 (¿tan poco?) g range. 
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Once the four batches were unloaded at Vigo fishing harbour, they were transported to 

the laboratory of IIM (Vigo, Spain) and kept in an isothermal room in each type of ice 

at +2ºC for up to 6 days. Sensory, microbiological and biochemical analyses were 

performed at days 0, 2 and 6 after unloading, these corresponding to 14, 16 and 20 days 

after the catch. All analyses were performed in triplicate. 
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Sensory analyses 

Sensory analysis was conducted by a sensory panel consisting of five experienced 

judges, according to traditional guidelines concerning fresh and refrigerated fish [21]. 

Four categories were ranked: highest quality (E), good quality (A), fair quality (B), and 

unacceptable quality (C). Sensory assessment of the fish included the following 

parameters: external odour and appearance, gill cavity and flesh odour. 

 

 Microbiological analyses 

Samples of 10 g of fish muscle were dissected aseptically from chilled hake specimens, 

mixed with 90 ml of 0.1% peptone water (Oxoid Ltd., London, UK), and homogenised 

in a stomacher (Seward Medical, London, UK) as previously described [22, 23]. In all 

cases, serial dilutions from the microbial extracts were prepared in 0.1% peptone water. 

Total aerobes were investigated by surface inoculation in plate count agar (PCA, Oxoid) 

after incubation at 30ºC for 72 h. Psichrotrophes were also investigated in PCA (Oxoid) 

but incubation was carried out at 7-8ºC for 10 days. Enterobacteriaceae were 

investigated in Crystal Violet Neutral Red Bile Glucose Agar (VRBD Agar, Merck, 

Darmstadt, Germany) after incubation at 37ºC for 24 h. Microorganisms exhibiting a 

proteolytic phenotype were investigated in casein-agar medium [24] after incubation at 

30ºC for 48 h, as previously described [25]. 
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Chemical analyses 

The evolution of pH values in megrim muscle along storage time was determined by 

means of a 6-mm diameter insertion electrode (Crison, Barcelona, Spain).  

Total volatile base-nitrogen (TVB-N) values were measured as described elsewhere 

[26]. Briefly, fish muscle (10 g) was extracted with 6% perchloric acid and brought up 

to 50 ml -the TVB-N content being determined, following steam-distillation of the acid 

extracts rendered alkaline to pH 13 with 20% NaOH- by titration of the distillate with 

10 mM HCl. The results were expressed as mg TVB-N/100 g muscle. Trimethylamine-

nitrogen (TMA-N) values were determined by the picrate method, as previously 

described [27]. This technique involves the preparation of a 5% trichloroacetic acid 

extract of fish muscle (10 g /25 ml). The results were expressed as mg TMA-N/100 g 

muscle. 

Lipid hydrolysis was evaluated by the free fatty acid (FFA) content, determined by 

the Lowry and Tinsley [28] method based on complex formation with cupric acetate-

pyridine. Results were expressed as g FFA/100 g lipids. Lipid oxidation was evaluated 

by estimating the formation of fluorescent compounds with a Perkin Elmer LS 3B 

fluorimeter. Measurements were performed at 393/463 nm and 327/415 nm as 

previously described [26]. The relative fluorescence (RF) was calculated as follows: RF 

= F/Fst, where F is the fluorescence measured at each excitation/emission maximum, 

and Fst is the fluorescence intensity of a quinine sulphate solution (1 µg/mL in 0.05 M 

H2SO4) at the corresponding wavelength. The fluorescence ratio (FR) was calculated as 

the ratio between the two RF values: FR = RF393/463 nm/RF327/415 nm. The FR value was 

determined in the aqueous phase resulting from the lipid extraction [30]. 
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Bacterial counts were transformed into log CFU/g before undergoing statistical analysis. 

The SPSS 11.5 for Windows software (SPSS Inc., Chicago, IL) was used to explore the 

statistical significance of the results obtained, this including multivariate contrasts and 

multiple comparisons by the DMS test. A confidence interval at the 95% level (p<0.05) 

was considered in all cases. 

 

Results and discussion 

 

Sensory analyses 

The megrim specimens stored on board in any of the two oSI systems were classified 

into the A category at unloading (Table 1). After this sampling time, quality decreased 

to B category in the batch oSI300 on day 6, this was 20 days after the catch, while the 

oSI600 batch maintained the A quality at that time. On contrast, megrim specimens kept 

on boar in FI or SI exhibited B category when unloading, although the latter batch 

exhibited a better sensory quality than the former. The quality of the FI batch after 

unloading decreased rapidly and, unlike the SI batches, was not acceptable on day 20 

(Table 1). 

 The main negative aspect related to quality loss in the batches was both the gills and 

external odour. No significant alteration in the eye appearance was observed in any of 

the four batches studied this not being in agreement with the results obtained for 

seabream stored in slurry ice by other authors [31]. According to our results, on-board 

storage of megrim in ozonised slurry ice (oSI600 batch) allowed a significant extension 

of its shelf-life, such batch maintaining the A quality even after 20 days of storage. This 

result confirms at the sensory level previous works performed with oSI batches [15, 19], 
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although the present work represents the first scientific evaluation of an oSI system for 

the on-board storage of a commercial fish species. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

 

Microbiological analyses 

Initially, one-way ANOVA was carried out considering aerobes, psychrotrophes, 

Enterobacteriaceae and proteolytic bacteria as dependent variables, and time as the 

factor. Post-hoc analyses were performed by means of the DMS test. Table 2 compiles 

the average counts and ranges determined for the above-cited microbial groups in the 

FI, SI, oSI300, oSI600 batches after 14, 16 and 20 days of storage. Statistically significant 

(p<0.05) lower microbial numbers were determined for all four above-cited microbial 

groups in the oSI600 with respect to the FI and SI batches.  

 With respect to the counts of total aerobes, the average difference between oSI600 

batch and FI and SI batches was 0.469 and 0.525 log units, respectively (Table 2). 

However, the bacterial counts reached levels slightly above 104 CFU/g only in the FI 

and SI batches, these numbers being considerably below those considered to be required 

for the spoilage of fish stored aerobically [32]. These results are in agreement with the 

significantly lower counts determined for aerobes in sardine [15] and turbot [19] muscle 

stored in ozonised slurry ice with respect to FI and SI, although the latter two works 

were not performed on-board. 

 The numbers determined for psychrotrophic bacteria in megrim specimens stored in 

the oSI600 batch were also significantly (p<0.05) lower than those determined in the FI 

and SI batches, with average differences of 0.445 and 0.446, respectively (Table 2), this 

revealing a significant slow down of the growth of this bacterial group in the oSI600 

batch. However, and as in the case of aerobes, the numbers of psychrotrophes in all four 

batches were not high, being in all cases below 106 CFU/g. More intense growth 
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reductions had been determined for psychrotrophes in sardine [15] and turbot [19] 

muscle stored in ozonised slurry ice. 
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 With respect to the development of Enterobacteriacea in megrim muscle stored in 

either slurry ice or flake ice, significant (p<0.05) differences were observed between the 

oSI600 batch and both FI and SI batches, as in the case of aerobes and psychrotrophes 

(Table 3). However, the average counts were so low that the contribution on this 

bacterial group to megrim spoilage must be discarded.  

 The greatest differences between the oSI batches and both FI and SI batches were 

determined for proteolytic bacteria. This bacterial group may lead to the formation of 

microbial metabolites such as peptides or amino acids, derived from protein hydrolysis, 

thus contributing to undesirable sensory changes in seafood products [33-35]. As can be 

observed in Table 2, significant (p<0.05) lower counts of proteolytic bacteria were 

observed in the oSI600 and oSI300 batches than in the FI and SI batches. The greatest 

average difference (1.463 log CFU/g units) was found between oSI300 and FI batches. 

These results confirm a previous work indicating a significantly slower growth of 

proteolytic bacteria in sardine stored in ozonised slurry ice [15].  

 Chen et al. [36] reported that the presence of ozone in water or in NaCl solutions 

were effective for the inactivation of a wide variety of Gram-negative and Gram-

positive bacteria. Although the present study was performed with slurry ice prepared 

with marine water, and not with a NaCl solution, the results described in our study and 

those described by Chen et al. [36] were in agreement. It should also be underlined that 

the results obtained in the microbiological analyses in the present study, correlated well 

with the differences observed in the sensory analyses, again confirming the better 

maintenance of quality in the megrim specimens stored in the oSI600 batch with respect 

to the other three batches. 
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Chemical analyses 

It is widely accepted that pH increase denotes the accumulation of undesirable alkaline 

compounds, such as ammonia and TMA, which are mostly derived from microbial 

action [37]. It has been suggested that pH values above 7 may limit the consumption of 

certain lean fish species such as hake [38]. In our study regarding pH, significant 

(p<0.05) differences were determined between the FI batch on one hand, and the other 

SI-based batches, on the other (Table 3). Thus, at day 20 of storage the pH value of 

megrim muscle stored in FI resulted to be 7.38. On contrast, significantly (p<0.05) 

lower pH values of 7.07, 6.95 and 6.99 were determined in the SI, oSI300 and oSI600 

batches, respectively. These results seem to be related to a more intense development of 

alkalinising microflora in the FI batch and are in agreement with previous reports that 

reported steady increases in pH for other lean fish species such as hake [38] and turbot 

[35], and a better control of the pH value as a consequence of their storage in slurry ice 

[13, 19] or in ozonised slurry ice [39]. 

 As in the case of the pH values, TVB-N formation in megrim stored in FI was 

significantly (p<0.05) higher than in the other three batches (Table 3). Thus, TVB-N 

concentrations below 22 mg/100 g muscle were determined in the SI and oSI batches on 

day 14, while such values rose above 34 mg/100 g in the case of the FI batch. A similar 

trend was observed on days 16 and 20 (Table 3). Interestingly, the presence of ozone in 

the oSI batches implied the lowest TVB-N contents in megrim muscle, although such 

batches were not statistically different with respect to the SI batch. The FI batch would 

reach the legal limit of 35 mg/100 g set for TVB-N (Directive 95/149/EEC) on day 14, 

while such limit was not surpassed by the SI and oSI batches up to day 20. These results 
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are also in agreement with a previous study on farmed turbot stored in ozonised slurry 

ice, SI and FI [19]. 
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 A similar trend was also observed for TMA-N, another parameter that together with 

TVB-N has been previously proposed to estimate freshness in megrim [40]. Thus, 

TMA-N formation in megrim stored in FI was significantly (p<0.05) higher than in the 

case of the other three batches (Table 3). In example, TMA-N concentrations below 15 

mg/100 g muscle were determined in the SI and oSI batches on day 16, while TMA-N 

reached values above 25 mg/100 g on that day. A similar trend was observed on day 20 

(Table 3). As in the case of pH and TVB-N, the presence of ozone in the oSI batches 

implied lower TMA-N formation than in the SI batch, although all these three batches 

were not significantly (p<0.05) different. In this sense, the oSI600 batch was in the range 

of the legal limit of 12 mg/100 g set for TMA-N (Directive 91/493/EEC) on day 16, 

while the other three batches were above that limit. Our results clearly indicate a better 

control of TMA-N formation in the SI and oSI batches with respect to FI, a result that is 

in agreement with a previous study on farmed turbot [19]. 

Lipid hydrolysis was studied according to the FFA formation. A faster hydrolysis 

development was observed till day 16 for the FI treatment when compared to the three 

SI systems. At the end of the experiment, a high FFA formation was observed for the SI 

systems so that no differences (p>0.05) could be outlined among treatments. A strong 

inhibition on hydrolytic enzyme activity is inferred for the SI treatments according to 

previous research (jur2, sard2). Ozone presence has not afforded a different behaviour 

in the FFA production, according to previous research (sard2). 

 Interaction compounds produced between oxidised lipids and nucleophilic 

compounds present in the muscle were studied by fluorescence assessment. No 

differences could be outlined after the on-board storage. However, during the latest 
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storage period (days 16-20) a higher fluorescence development could be outlined, 

according to an increase in lipid oxidation. At day 20, all treatments showed a 

significant (p<0.05) increase, although no differences (p>A0.05) could be found among 

the SI systems. 
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TABLE 1 

 
 1 

ODOUR  

Time (days) 

 

Process External Gill cavity Muscle 

14 HT B B A 

 HL B A A 

 HL300 A A A 

 HL600 A A A 

     

16 HT B B B 

 HL B B A 

 HL300 A A A 

 HL600 A A A 

     

20 HT C C B 

 HL B B A 

 HL300 B B A 

 HL600 A A A 

 2 
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TABLE 2 

 

 

Irá una tabla con las medias y los rangos de la microbiología: aerobios 

mesófilos, psicrófilos, enterobacterias y proteolíticos 
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TABLE 3 

 

(Eliminaría DMA-N y TBA-i) 

 
Chemical index Time (days) 

 

 

Process TVB-N TMA-N DMA-N FFA TBA-i Fluoresc 

FI 34.15 b 

(3.00) 

8.03 b 

(0.97) 

0.96 c 

(0.16) 

5.01 b 

(1.18) 

0.18 a 

(0.05) 

2.14 a 

(0.28) 

SI 18.55 a 

(1.99) 

2.39 a 

(1.09) 

0.13 a 

(0.07) 

1.62 a 

(0.55) 

0.43 b 

(0.14) 

1.97 a 

(0.45) 

SI-300 21.34 a 

(7.79) 

5.02 ab 

(2.99) 

0.29 ab 

(0.15) 

1.97 a 

(1.00) 

0.41 b 

(0.16) 

2.05 a 

(0.21) 

 

 

 

14 

SI-600 21.61 a 

(4.38) 

7.69 b 

(1.53) 

0.39 b 

(0.14) 

2.44 a 

(1.37) 

0.24 ab 

(0.04) 

1.32 a 

(0.71) 

        

FI 45.04 b 

(3.17) 

25.54 b 

(4.14) 

1.35 b 

(0.10) 

15.91 b 

(2.90) 

0.18 a 

(0.09) 

5.23 b 

(0.72) 

SI 29.67 a 

(1.75) 

14.72 a 

(1.56) 

0.85 a 

(0.10) 

4.42 a 

(2.28) 

0.25 a 

(0.07) 

2.70 a 

(0.63) 

SI-300 28.49 a 

(2.75) 

13.04 a 

(0.89) 

0.71 a 

(0.11) 

2.73 a 

(0.55) 

0.14 a 

(0.03) 

2.49 a 

(0.59) 

 

 

 

16 

SI-600 26.16 a 

(3.60) 

12.47 a 

(5.96) 

0.68 a 

(0.21) 

5.08 a 

(3.42) 

0.26 a 

(0.15) 

2.94 a 

(0.07) 

        

FI 57.14 b 

(3.61) 

39.76 b 

(4.60) 

1.50 b 

(0.07) 

18.78 a 

(5.88) 

0.42 b 

(0.12) 

7.11 b 

(1.09) 

SI 46.65 a 

(4.91) 

23.65 a 

(4.51) 

1.13 a 

(0.15) 

14.38 a 

(1.33) 

0.20 a 

(0.05) 

4.48 a 

(0.37) 

SI-300 43.09 a 

(6.29) 

27.40 a 

(2.18) 

1.36 b 

(0.04) 

13.60 a 

(1.80) 

0.17 a 

(0.05) 

3.07 a 

(0.74) 

 

 

 

20 

 

 

SI-600 41.04 a 

(6.09) 

28.07 a 

(4.08) 

1.35 b 

(0.10) 

19.41 a 

(3.89) 

0.12 a 

(0.03) 

4.21 a 

(1.21) 
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