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Abstract 

The structural evolution of Pb(Mg1/3Nb2/3)O3 has been reviewed in terms of 

characteristic temperatures, length scales and timescales, with a view to considering the 

overall relaxor behaviour from the perspectives of strain and elasticity. A conventional 

analysis of lattice parameter data in terms of spontaneous strain and strain/order parameter 

coupling shows that the relaxor ordering process is accompanied by a significant volume 

strain which follows the pattern of a static order parameter evolving according to that 

expected for a tricritical phase transition with Tc ≈ 350 K. This matches the evolution of the 

intensity of the elastic central peak in neutron scattering spectra and reflects the development 

of static (or quasistatic) polar nano regions (PNR’s) as if by a discrete, mean-field phase 

transition. It also matches the evolution of shear strain in crystals poled by an electric field. 

Use of a Landau free energy expansion, which includes 
  

! 

"4

# order parameter components to 

describe ferroelectric contributions and an 
  

! 

R1

+ order parameter to describe cation ordering 

together with their formal coupling with strain, then allows the pattern of elastic softening 
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expected for a cubic → rhombohedral phase transition to be anticipated. The extent to which 

observed softening differs from this static mean-field pattern serves to highlight the 

additional roles of local heterogeneity and relaxation dynamics in determining the relaxor 

properties of PMN. 

 

1. Introduction 

Underlying origins of the distinctive physical properties of relaxor ferroelectrics, such 

as giant electrostriction, electrooptic effect and large dielectric constant, are usually 

investigated from the perspective of their response to an applied electric field. Lead 

magnesium niobate PbMg1/3Nb2/3O3 (PMN) is regarded as a model relaxor phase in this 

context, and its dielectric properties have been measured over a wide frequency range from 

~10-3 to 1014 Hz (e.g. Bovtun et al 2006, and many references therein). Real (ε') and 

imaginary (ε'') parts of the complex permittivity reveal aspects of the dynamic behaviour of 

electronic, phonon and relaxational type polarizations over the correspondingly wide range of 

time scales. The characteristic broad peak of ε' through the “diffuse” phase transition in the 

region of ~200-300 K together with strong frequency dispersion, in particular, have then been 

used to inform models of the relaxor behaviour based on the development and freezing of 

polar nanoregions (PNR’s) which are believed to be responsible for the difference from 

conventional ferroelectric behaviour (Bokov and Ye 2006a). A thermally activated 

relaxational process with a single relaxation time would be expected to give variations in ε' 

and dielectric loss (tanδ = ε''/ε') that depend on the frequency of the applied electric field 

according to the Debye equation. Instead, the freezing process of PNR’s involves a wide 

spectrum of relaxation times and Vogel-Fulcher dynamics (e.g. for PMN: Viehland et al 

1990, Dorogovtsev and Yushin 1990, Levstik et al 1998, Glazounov and Tagantsev 1998, 

Bovtun et al 2004, 2006, Bokov and Ye 2006a, Pirc and Blinc 2007, Zhao et al 2009). The 
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key parameters of the Vogel-Fulcher equation are a freezing temperature, Tf, and some 

relaxation time, τ, which are related by 
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Here τo is the inverse of attempt frequency, U is an effective activation energy and T is 

temperature. In practice different relaxation times from the total relaxation time spectrum 

may be extracted in different ways from experimental data (e.g. Glazounov and Tagantsev 

1998, Bokov and Ye 2006a, b) and different parts of the spectrum may have different 

freezing temperatures (Bokov and Ye 2006a). 

The relaxation dynamics of PNR’s can also be investigated from other perspectives. 

Most notably, relaxor ferroelectrics display significant electrostriction (e.g. in PMN: 

Blackwood and Ealey 1993, Zhao et al 1998), which is an overt demonstration of the fact that 

electric polarization is coupled with strain. Polarisation relaxation in a dynamic electric field 

must depend also on the dynamics of strain relaxation, therefore. The equivalent elastic 

property to electric polarisation is strain and the equivalent susceptibility to permittivity is 

elastic compliance. The latter is more usually expressed in terms of the elastic constants for a 

single crystal or bulk and shear moduli for a ceramic. It follows that, as proposed by Viehland 

et al (1990), interactions between PNR’s could occur by both dipole and elastic strain 

mechanisms. The electric dipole interactions should be relatively strong and short ranging, 

while correlations via elastic strain fields would be weak but relatively long ranging. Elastic 

and dielectric responses to external fields will not necessarily be quite the same, therefore. 

The pattern of strain variations and elastic softening associated with a conventional 

ferroelectric transition is expected to depend on the evolution of a classical order parameter 

more or less according to Landau theory. Deviations from this are indicative of the special 
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characteristics of correlation length scales and relaxational timescales of PNR’s as observed 

from the perspective of strain correlations rather than of electric dipole correlations.  

Strain and elastic moduli are second and fourth rank properties, respectively, in 

comparison with polarisation and permittivity which are first and second rank properties, so 

that elastic responses have the potential to convey additional information relating to the role 

of symmetry in some of the coupling processes which determine relaxor behaviour. There 

will also be acoustic losses in an alternating stress field which can be described by the 

internal friction or inverse mechanical quality factor, and which will provide specific 

information on the relaxation properties of boundary regions between the PNR’s analogous to 

the dynamic behaviour of twin walls in ferroelastic materials. The present study was devised 

with the purpose of investigating the properties and behaviour of PNR’s from this perspective 

of strain and elasticity. PMN was chosen for investigation both because it retains cubic lattice 

geometry down to low temperatures, without any breaking of macroscopic symmetry, and 

because of the wealth of experimental data available for its unit cell parameters, dielectric 

properties and lattice dynamics. In particular, it is already known that there is strong coupling 

between acoustic phonons and local dynamics of the PNR’s (Stock et al 2005). 

In this first of two papers, the overall relaxor behaviour of PMN is reviewed in terms 

of characteristic temperatures, length scales and timescales of the structural processes 

involved. The macroscopic strain evolution is then analysed using a Landau free energy 

expansion which includes the effects of both ferroelectric displacements and cation ordering. 

It turns out that the volume strain can be described using normal strain/order parameter 

coupling as if there is a tricritical phase transition with Tc ≈ 350 K. This leads to a simple 

prediction of the form of the elastic anomalies which should be expected to occur. In the 

following paper (Carpenter et al 2011), new data for the elastic properties and acoustic 

dissipation obtained by Resonant Ultrasound Spectroscopy are combined with elasticity data 
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from the literature to show the extent to which strain dynamics of the PNR’s follow the local 

dipole dynamics. Deviations from classical strain/order parameter patterns of elastic 

softening can be understood in terms of coupling between acoustic modes and relaxational 

modes of the PNR’s. 

 

2. Statics and dynamics of relaxor behaviour of PMN 

2.1 Characteristic temperatures 

With falling temperature, the Burns temperature, Td ≈ 630 K, is marked by the onset 

of changes in refractive index (Burns and Dacol 1983), a change in thermal expansion (e.g. 

Bonneau et al 1989, Zhao et al 1998, Dul’kin et al 2003, Dkhil et al 2001, 2009), together 

with the appearance of a central peak component in Raman spectra (Siny et al 1997, Siny and 

Katiyar 1998, Svitelskiy et al 2003), quasi-elastic scattering in inelastic neutron scattering 

spectra (Naberezhnov et al 1999, Hirota et al 2002, Hiraka et al 2004, Gvasaliya et al 2005), 

and a peak in acoustic emission (Dul’kin et al 2003, Dkhil et al 2009). These effects are all 

understood to originate from the development of dynamic PNR’s. 

The most overt evidence for a second characteristic temperature, T* ≈ 500 K, is 

provided by a peak in acoustic emission reported by Dkhil et al (2009). Acoustic emission 

arises from the abrupt release of mechanical stress and is commonly associated with phase 

transitions. In PMN the origin must be due to some local effect since there is no macroscopic 

symmetry change and Dkhil et al (2009) suggested that T* marks the temperature at which 

the PNR’s acquire a static component. Such a clear anomaly does not seem to show up at 500 

K in other properties, though a new peak appears in Raman spectra collected below this 

temperature (Dkhil et al 2009) and elastic diffuse neutron scattering intensity also seems to 

increase from zero at about the same point (see Fig. 1 of Hiraka et al 2004; Fig. 1 and Fig. 8 

of Gehring et al 2009).  
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The next characteristic temperature is the Curie temperature, Tc ≈ 400 K, estimated by 

extrapolation of dielectric susceptibility data from above Td according to the Curie-Weiss law 

(Viehland et al 1992). This seems to correspond exactly with the critical temperature for a 

zone-centre soft optic mode obtained by extrapolation of the square of its frequency to zero 

from high temperatures, 390 ± 30 K (Al-Zein et al 2010, Vakhrushev et al 2010). There is 

also a change in the character of the central peak in neutron scattering spectra at about the 

same temperature. Immediately below Td the central peak is broad and due to quasi-elastic 

scattering. This increases in intensity below ~600 K, reaches a maximum at ~370 K and then 

diminishes on further cooling (Gvasaliya et al 2005). A narrow component due to elastic 

scattering increases in intensity steeply below ~400 K (Hiraka et al 2004, Gvasaliya et al 

2005, Gehring et al 2009, Stock et al 2010) and is interpreted as indicating that the PNR’s 

become static, at least on a time scale of greater than 2 ns (Gehring et al 2009, Stock et al 

2010). The elastic central peak remains diffuse, however, indicating that the correlation 

length of static regions is small. Cowley et al (2009) described this overall behaviour in terms 

of a random field phase transition at ~400 K. Svitelskiy et al (2003) reported splitting of 

peaks in Raman spectra below 350 K (see, also, Curecheriu et al 2009) and quoted T* = 350 

± 25 K as the temperature at which “a quasistatic ordering begins to set in, equivalent to one 

or several underlying or latent structural phase transitions, marked by sharper and split 

phonon peaks”. Some dynamic component to the ordering remains, however, which from 

recent neutron inelastic scattering results has its maximum at ~300-350 K and tends to zero at 

~200 K (Stock et al 2010). 350 K is also the temperature below which significant diffuse 

intensity appears in X-ray diffraction patterns and at which there appears to be a change in 

thermal expansion of single crystal PMN (Dkhil et al 2001).  

Finally, the maximum in dielectric permittivity occurs at a frequency-dependent 

temperature, Tm, which varies between ~230 K at ~10-3 Hz and ~370 K at 1011 Hz (Bovtun et 
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al 2006). This is usually used to obtain a Vogel-Fulcher freezing temperature, TVF, by fitting 

to f = (2πτo)-1exp[-E/(Tm–TVF)]. It does not necessarily follow that the parameters in this 

expression are identical to those of Equation 1 (Bokov and Ye 2006a) but the frequency f is 

effectively used to give a relaxation time τ directly as τ = 1/2πf and TVF may be assumed to 

represent the freezing temperature such that the values of Tf obtained are in the vicinity of 

~220 K for PMN.  

 

2.2. Characteristic length scales 

Although there is no long range order at any temperature in PMN and the structure 

remains cubic down to 5 K (Bonneau et al 1991, de Mathan et al 1991a), short range order 

does develop with distinctive length scales. Firstly, direct observations by transmission 

electron microscopy (TEM) at room temperature have revealed antiphase domains on a scale 

of ~60 Å associated with B-site cation ordering on the basis of space group Fm  

! 

3m (Hilton et 

al 1989, 1990). Chen et al (1989) gave dimensions of ~20 – 50 Å for the same 

microstructure, while Yoshida et al (1998) and Miao et al (2001) gave the dimensions as ~20 

– 70 Å. This chemical ordering gives rise to diffuse intensity in neutron diffraction patterns 

but the intensity is relatively independent of temperature (Gehring et al 2009), indicating that 

the domains remain unchanged through the interval of PNR formation and freezing. It has 

been found that there is an increase in intensity of superlattice reflections in X-ray diffraction 

patterns below room temperature, but this has been attributed to some additional atomic 

displacements rather than a change in cation order (Gosula et al 2000). A constant 

microstructure associated with the chemical ordering is also consistent with the observations 

of Hilton et al (1990) in relation to limited changes of superlattice reflection intensities and 

diffuseness between ~100 K and ~425 K in electron diffraction patterns. Davies and Akbas 

(2000) reported that heat treatments at temperatures between 700 and 1400 °C failed to 
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induce any significant structural modification and Farber et al (2002) concluded that the 

equilibrium ordering transition temperature is ~950 °C. In this case the antiphase domain 

texture observed by TEM in samples prepared at higher temperatures arises from short range 

ordering only. 

Diffraction data are consistent with the PNR’s having local rhombohedral symmetry 

(de Mathan et al 1991a, Takesue et al 2001, Ye et al 2003, Jeong et al 2005). Diffuse neutron 

scattering data give correlation lengths for the polar ordering as ~10-15 Å at 300, 400 and 

500 K, with a small increase to ~20 Å at 250 K followed by a larger increase to ~45-60 Å 

between 200 and 10 K (Xu et al 2004). Yoshida et al (1998) reported the development of 

granular strain contrast in TEM images on a scale of ~100 Å at 260 K and a few hundred Å at 

200 K, together with the appearance of rhombohedral twin walls within individual PNR’s 

below 130 K. An additional domain structure has been observed by piezoresponse force 

microscopy in PbMg1/3Nb2/3O3-PbTiO3 (PMN-PT) above the ferroelectric-relaxor transition 

temperature (Shvartsman and Kholkin 2010). The domains appear to be “self-organised 

agglomerates of static (or quasi-static) PNR’s” (Shvartsman and Kholkin 2010) on a scale of 

~100-200 nm. The present authors have not found any reports in the literature of similar 

features in PMN, but domains in which neighbouring PNR’s interact to produce some degree 

of self alignment of polarisations via dipole/dipole interactions and elastic strain fields clearly 

might occur. This and the observations of Yoshida et al (1998) would fit with the original 

view of Viehland et al (1991) that the freezing process involves correlations between 

adjacent PNR’s up to a length scale of ~200 Å in PMN.  

Neutron pair distribution analysis implies that the volume fraction of PNR’s increases 

with falling temperature to ~10% at 300 K, then to ~20% at 250 K and ~30% at 15 K (Jeong 

et al 2005). The change near 250 K is consistent with passage through the percolation 

threshold, which is ~28% for spherical objects in three dimensions and slightly less than this 
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for ellipsoidal objects (Jeong et al 2005, Blinc 2006). The local symmetry of the matrix need 

not be cubic and the thickness of boundaries between the PNR’s is comparable with the size 

of the PNR’s themselves (Bokov and Ye 2006). A distinct pattern of thermal expansion 

indicates that the development of PNR’s is accompanied by a small positive volume strain 

(e.g. Zhao et al 1998, Dkhil et al 2001, 2009, Gehring et al 2009), which is presumably due 

to both the increasing volume fraction of PNR’s and the contribution of strain relaxation with 

increasing polarisation within them. Any additional relaxation of the matrix, say to a locally 

antiferroelectric structure (Ishchuk 2001), would also contribute to this strain. 

 

2.3. Characteristic timescales 

An alternative view of the overall relaxor behaviour of PMN is provided by 

considering the temperature dependence and interactions of phonons. The E1 soft optic mode 

described by Al-Zein et al (2010) would by itself lead to a conventional ferroelectric 

transition. The next transverse optic mode (A1 according to Al-Zein et al 2010) has also been 

shown to soften with increasing temperature below Tf and with decreasing temperature from 

above Td (Gehring et al 2001, Wakimoto et al 2002a, Bovtun et al 2004, Vakhrushev et al 

2010, Al-Zein et al 2010, Taniguchi et al 2010). Complications of damping close to the Γ 

point attributed to the influence of PNR’s in the temperature interval between Tf and Td are 

well documented (e.g. Gehring et al 2000, 2001, Wakimoto et al 2002a, Shirane et al 2005, 

Bokov and Ye 2006a, Hlinka and Kempa 2008), and a number of analyses of coupling 

between optic and acoustic modes have also been made (Wakimoto et al 2002b, Gvasaliya et 

al 2005 JPCM, Stock et al 2005). In one of the most recent analyses (Stock et al 2005) it was 

concluded that this coupling is weak, however.  

Key additional features of the relaxor behaviour are the relaxational processes which 

give rise to the central peak in Raman, IR and Brillouin scattering spectra (Siny et al 1997, 
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Svitelskiy et al 2003, Kamba et al 2005, Taniguchi et al 2010) and to the quasielastic 

scattering in inelastic neutron scattering spectra (Hirota et al 2002, Gvasaliya et al 2004a, b, 

2005, Gehring et al 2009). Siny et al (1997) determined that the relaxation times involved are 

~10-12 s for the temperature interval over which the Raman central peak was observed (~100-

650 K) and Gvasaliya et al (2004b) obtained ~10-11 s from analysing the peak width of a 

broad quasi-elastic scattering central peak in inelastic neutron spectra. Essentially the same 

central peak features have been observed in Brillouin spectra of 0.93PbZn1/3Nb2/3O3-

0.07PbTiO3 (0.93PZN-0.07PT) from which Tsukada et al (2008) and Tsukada and Kojima 

(2008) obtained relaxation times of ~10-11 - 10-12 and ~10-12 - 10-13 s for two separate 

relaxation processes. Of particular significance in the context of the elastic properties of PMN 

is the observation that there is strong coupling between the relaxational central peak/quasi-

elastic scattering mode(s) and acoustic phonons (Stock et al 2005). The same conclusion, that 

PNR dynamics have a strong influence on acoustic modes, has also been reached for PMN-

PT (Ko et al 2010) and PZN-PT (Toulouse et al 2005, Xu et al 2008, Ko et al 2008, Tsukada 

and Kojima 2008, Tsukada et al 2008). While the relaxation dynamics occur on a time scale 

of ~10-12 s, NMR evidence is that polar clusters exist on a time scale of ~10-4-10-5 s (Blinc et 

al 2000). 

 

3. Strain analysis  

The starting point used here for considering the relaxor behaviour of PMN from the 

perspective of strain and elasticity is a conventional Landau treatment for the related 

ferroelectric transition(s). There are two symmetry-breaking processes: ferroelectric 

displacements tend to the lower the symmetry from Pm  

! 

3m to R3m, and cation ordering tends 

to lower the symmetry from Pm  

! 

3m to Fm  

! 

3m. The order parameters transform as irreducible 
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representations 
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where a, b, c, etc., are normal Landau coefficients, ΘsΓ and ΘsR are saturation temperatures 

for the 
  

! 

"4

# and 
  

! 

R1

+ order parameters, TcΓ and TcR are critical temperatures, ei are strains, with 

    

! 

ea = (e1 + e2 + e3) ,     

! 

eo = (e1 " e2 )  and     

! 

et = (1/ 3)(2e3 " e1 " e2 ) , λ’s are strain/order 

parameter coupling coefficients and 
    

! 

Cik

o  are elastic constants of the parent cubic phase. The 

final term represents direct biquadratic coupling of the two order parameters. Different 

combinations of non-zero order parameters give rise to different product structures, as listed 

in full in Table 1. A combination of R3m ferroelectric displacements with Fm  

! 

3m cation order 

gives a structure with q1 = q2 = q3 ≠ 0 and qR ≠ 0 which has space group R3m and a unit cell 

expressed in terms of basis vectors (-1,1,0), (0,-1,1), (2,2,2) with respect to the parent Pm  

! 

3m 

structure. 

If the ferroelectric transition takes place in a crystal with some fixed degree of cation 

order, qRF, the effect of the biquadratic coupling term is to renormalise the critical 

temperature, TcΓ. Ignoring saturation terms, the new critical temperature would be 
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! 

Tc"
*  is equivalent to the Curie temperature, Tc, from above. In this case, the evolution 

of parameters such as the soft mode frequency would give different Curie temperatures 

between samples that had been prepared with different degrees of cation order. More 

importantly, the development of ferroelectric displacements within antiphase boundaries of 

the ordered structure, where qRF = 0, would be different from within the domains, where qRF 

≠ 0, and heterogeneity would necessarily follow. The difference depends on the sign and 

magnitude of λΓR. By analogy with Pb(Sc1/2Ta1/2)O3, as summarised in Burton et al (2005), 

the ferroelectric transition temperature is expected to increase with increasing |qRF|, implying 

that λΓR is negative. 

 There will be two spontaneous strains, e4 and ea, defined with respect to the Pm  

! 

3m 

structure, depending on the order parameters according to 
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The only strain contribution arising from cation ordering would be to the volume strain, ea, 

and the magnitude of this would in principle be expected to differ locally between antiphase 

boundaries and antiphase domains. PMN has local rhombohedral domains at low 

temperatures but retains average cubic lattice geometry, i.e. e4 =     

! 

(a ao )cos"  = 0 since the 

cosine of the rhombohedral angle, α, over the length scaled averaged by X-ray diffraction is 

zero. There will still be a volume strain, ea, from the ferroelectric ordering, however, which 

should scale with the square of the average ferroelectric order parameter within the PNR’s.  
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Variations of the volume strain can be represented by the variation of e1 (ea = 3e1) 

which is determined from measured lattice parameters in the usual way. Figure 1a shows 

lattice parameter data from Bonneau et al (1991), Zhao et al (1998), Dkhil et al (2009) 

measured by neutron and X-ray diffraction, for example. The reference parameter of the 

parent cubic phase, ao, has been obtained by fitting the function (Salje et al 1991, Meyer et al 

2000, 2001, Sondergeld et al 2000, Carpenter et al 2003)  
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to data above 600 K. The resulting extrapolations to low temperatures are illustrated in Figure 

1a for data of Bonneau et al (1991) and Dkhil et al (2009). Following McKnight et al (2009), 

the saturation parameter Θs,ao was set at 150 K, which is within the expected range for 

leveling off of normal thermal expansion in oxide perovskites as T → 0 K. 

Variations of e1
2, where e1 = (a – ao)/ao = ea/3, from all the data in Figure 1a are 

shown in Figure 1b. Absolute values of e1 are subject to significant uncertainty from the 

choice of Θs,ao and differ between data sets due to uncertainties propagated from fitting of the 

baseline to limited number of points for ao at high temperatures. The trend with temperature 

is clearly the same in each case, however. By analogy with the behaviour of PbTiO3, the 

ferroelectric transition might be expected to be close to tricritical in character (Whatmore et 

al 1978), in which case the variation of e1 is expected to follow 
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as occurs also in the mineral lawsonite (Carpenter et al 2003). The only data in Figure 1b that 

extend to low enough temperatures to clearly include the influence of ΘsΓ are from the 

neutron diffraction results of Bonneau et al (1991). Fitting Equation 7 to data between 5 and 

200 K gives     

! 

Tc"
*  = 342 ± 38 K, ΘsΓ = 91 ± 45 K. Keeping ΘsΓ fixed at 91 K for a fit to X-ray 
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data of Bonneau et al (1991) in the interval 73-240 K gives     

! 

Tc"
*  = 341 ± 5 K (Fig. 1b). The 

data of Zhao et al (1998) obtained with a 5kV.cm-1 electric field applied to a ceramic sample 

show a slightly larger strain for the rhombohedral structure below 220 K, but the raw data 

overlap with those for the cubic phase (Fig 1a) and it is not clear that the difference is due to 

the electric field rather than simply being derived from the fitting of ao to data at high 

temperature obtained with zero field. 

A poled rhombohedral sample has α = 89.91 ± 0.02° at 80 K after removal of the 

electric field (de Mathan et al 1991), giving e4 = 0.0016 ± 0.0004 as the equilibrium strain for 

the ferroelectric equivalent of the cubic relaxor phase. The sample remained rhombohedral up 

to ~200 K and the limited data of de Mathan et al (1991b) have been used to calculate values 

of e4 (≈ cosα). Within experimental uncertainties, e4
 follows the pattern expected for 

    

! 

e1

2
" e4

2
" q1

4
" Tc #T( ) (Fig. 1b). 

 

4. Discussion 

This treatment essentially follows the view of Cowley et al (2009) that there is an 

effective phase transition in PMN. The strain analysis is permissive of the view that the order 

parameter within PNR’s below Tc varies in a manner that is close to tricritical in character. 

Even excluding the uncertainty of the value of Θs,ao, the extrapolated transition temperature 

from 
    

! 

e1

2  (340 ± 40 K) is consistent with the value determined from the evolution of the soft 

mode frequency at high temperatures (Tc = 390 ± 30 K, Al Zein et al 2010; ~400 K, 

Vakhrushev et al 2010). Approximately tricritical character for an order parameter, q, is also 

implied by the variation with temperature of the intensity of the elastic part of a diffuse 

neutron scattering central peak, ICP, in data of Gvasaliya et al (2005). As shown in Figure 2a, 

    

! 

ICP

2 , which would be expected to scale with the order parameter as     

! 

ICP

2  ∝ q4, varies in the 
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same manner as 
    

! 

e1

2 . Equivalent data for elastic diffuse scattering from Gehring et al (2009) 

are also shown and the fit to these has Θs = 104 ± 15 K, Tc = 342 ± 5 K. Separate treatment of 

the static component of diffuse scattering intensity gives a closely similar result (Fig. 2b, with 

data from Fig.4a of Stock et al 2010). According to Equation 3, there must be differences in 

the ferroelectric transition temperature between ordered domains and disordered domain 

walls due simply to renormalisation by the order parameter for cation ordering. 

A Landau 246 potential would give slightly higher values of Tc but the implication is 

still that there is a discrete phase transition and an effective static order parameter which 

behaves in a manner that is close to tricritical. The overall trend of e1 and ICP are essentially 

the same for all the samples represented in Figures 1 and 2, and will be similar to other data 

sets for thermal expansion that are in the literature. The trend of e1 is typical of other 

transitions in perovskites in including a tail in the non-symmetry breaking strain above     

! 

Tc"
* , 

though this extends to much higher temperatures than in the case, say, of LaAlO3 (Carpenter 

et al 2010). The absence of a tail in the static component of the diffuse neutron scattering 

intensity (Fig. 2b) implies that the tail in the strain for PMN is due to the dynamic component 

of the structural evolution at T > Tc. The latter tends to zero at ~200 K (Stock et al 2010), 

more or less where the tail in strain meets the mean field fit to the data extrapolated from 

lower temperatures. 

The magnitude of e1 at 0 K in zero field is ~0.0036 implying a total positive volume 

strain (ea) of ~1%, though this is subject to uncertainties arising from the choice of Θs,ao. In 

the freezing interval observed by dielectric spectroscopy, i.e. ~230-370 K, the dynamic tail of 

the volume strain is larger than would be implied for the purely static component (Fig. 2b). 

The effect of increasing pressure at temperatures below ~400 K should be first to suppress 

dynamic aspects of the PNR’s, therefore, to give a rhombohedral phase with the enlarged unit 

cell of a structure which has q1 = q2 = q3 ≠ 0 and qR ≠ 0. Further increases in pressure should 
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then suppress the ferroelectric order parameter to leave a cubic phase (Fm  

! 

3m) with cation 

ordering only. Chaabane et al (2003) have reported a reduction of diffuse X-ray scattering in 

PMN with increasing pressure, and their limited data for an h+1/2, k+1/2, l+1/2 reflection 

(where h, k, l refer to the cubic P parent structure) are at least consistent with a doubled R3m 

structure becoming stable above ~4 GPa at room temperature. Significant changes in single 

crystal elastic constants have been observed at ~4.5 GPa (Ahart et al 2009) but there is 

uncertainty about the structure of the high pressure phase (Chaabane et al 2003, Ahart et al 

2009). Accurate determinations of both the volume strain and transition pressures would 

allow this model of the effect of pressure to be tested through the use of the relationship 

(from Carpenter 2007) 

    

! 

Pc =
a"#s"

1

3
C11

o + 2C12

o( )
2$1"

coth
#s

T

% 

& 
' 

( 

) 
* + coth

#s

Tc"
*

% 

& 
' ' 

( 

) 
* * 

% 

& 

' 
' 

( 

) 

* 
* ,     (8) 

where Pc is the R3m ↔ Fm  

! 

3m transition pressure at temperature T. 

Even though PMN is a relaxor ferroelectric, the evolution of its macroscopic strain 

follows a pattern which would be expected at a conventional ferroelectric phase transition 

associated with a soft optic mode and a critical temperature of between 350 and 400 K. Use 

of a Landau free energy expansion should then yield predictions of the form of the elastic 

constant variations which would represent the limiting case of elastic softening due to 

strain/order parameter coupling alone. The expansion for Pm  

! 

3m ↔ R3m or Fm  

! 

3m ↔ R3m 

(with constant qR) transitions is the same as for Pm  

! 

3m ↔ R  

! 

3c (
    

! 

R4

+), so that expressions for 

the elastic softening will also be the same. These are given in full by Carpenter et al (2010) 

for the Pm  

! 

3m ↔ R  

! 

3c octahedral tilting transition in LaAlO3. If the elastic constant matrix 

for a cubic material is diagonalised, the eigenvalues, K = 
    

! 

1

3
(C11 + 2C12 ), 

    

! 

1

2
(C11 "C12 ) and 

C44 transform as irreducible representations 
  

! 

"1

+,   

! 

"3

+ and 
  

! 

"5

+ respectively. The corresponding 
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eigenvectors are the symmetry-adapted strains ea, eo and et, and e4. For a second order 

transition, eq2 coupling leads to a discontinuities in C44, 
    

! 

1

2
(C11 "C12 ) and the bulk modulus, 

K, at T = Tc. The rhombohedral phase is expected to be softer than the cubic phase by a fixed 

amount which depends on the square of the strain/order parameter coupling coefficients, i.e. 

  

! 

"1#
2  for the bulk modulus, 

  

! 

"2#
2  for 

    

! 

1

2
(C11 "C12 ) and   

! 

"3#
2  for C44. If the transition is 

tricritical, the discontinuity is larger and the elastic constants of the low symmetry phase 

recover in a non-linear manner with falling temperature. These well known patterns are 

illustrated in Rehwald (1973) and Carpenter and Salje (1998), for example, and the β ↔ α 

transition in quartz shows the non-linear pattern of softening below the transition point 

characteristic of a transition which is close to being tricritical (Carpenter et al 1998). For 

LaAlO3 it was found that RUS measurements on a rhombohedral crystal containing all 

possible twin orientations could be treated as being cubic, on average, and that the resulting 

values of C44 and 
    

! 

1

2
(C11 "C12 ) which were obtained showed the expected softening due to 

the cubic ↔ rhombohedral transition. Thus, a twinned crystal of rhombohedral PMN might 

be expected to display softening of the form shown in Figure 3 for a tricritical transition. 

Coupling terms of the form eq2 and e2q2 do not cause softening of elastic constants in the 

stability field of the high symmetry phase ahead of the transition point. However, softening of 

elastic constants which have symmetry properties related to the identity representation, in this 

case K only, can occur above Tc as a consequence of fluctuations due to interactions between 

phonon modes with k-vectors just away from the critical point of the Brillouin zone (Höchli 

1972, Cummins 1979, Lüthi and Rehwald 1981, Yao et al 1981, Fossum 1985, Carpenter and 

Salje 1998, Carpenter 2007). This has been added to the expected form of “classical” 

softening for a ferroelectric transition in PMN shown in Figure 3. Finally, coupling of the 

form λe2q2 leads to renormalisation of the elastic constants according to     

! 

C = C
o

+ 2"q
2  (e.g. 
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see Carpenter and Salje 1998). Differences in cation order between antiphase domains and 

antiphase boundaries should, in principle, result in the elastic properties of the domains being 

different from those of the the domain walls, therefore. 

 The small size of PNR’s in the nonergodic phase of PMN does not appear to hinder 

the development of volume strain, ea, since the volume strain of a rhombohedral sample at 

low temperatures (in a 5kV.cm-1 field) is at most only ~0.3% greater than that of the cubic 

structure with no field (using e1 values from Fig. 1b). Softening of the bulk modulus, which 

scales with λ1Γ
2, would be expected to be comparable to that associated with a normal 

ferroelectric transition, therefore. Strain contrast associated with the PNR’s in transmission 

electron microscope images (e.g. Viehland et al 1995) and the presence of twin walls within 

individual PNR’s (Yoshida et al 1998) signify that a degree of local e4 shear strain also 

develops, though this could be smaller in magnitude than would occur in larger ferroelectric 

domains (i.e. < ~0.002 at 80 K). If the influence of small domain sizes is to reduce the 

magnitude of the strain by reducing the effective value of the coupling coefficient λ3Γ, the 

amount of softening of C44 would also be expected to be reduced since it scales with λ3Γ
2. On 

the other hand, shear strains eo and et are strictly zero in the rhombohedral structure so, to a 

first approximation, the coupling coefficient λ2Γ should not be renormalized. Softening of 

    

! 

1

2
(C11 "C12 ) should be comparable with the softening which would occur for the true 

ferroelectric transition. 

As set out in the following paper in this series (Carpenter et al 2011), the real elastic 

properties of PMN do not follow the pattern predicted in this way (solid lines in Fig. 3). 

Rather they show steeper variations with a minimum located between Tf and Tc (dashed line 

in Fig. 3). Here, the comparison with LaAlO3 is again instructive. Additional softening of the 

elastic constants of LaAlO3 within the stability field of the rhombohedral structure is due to 
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coupling of acoustic modes with a relaxational mode which gives rise to quasi-elastic 

scattering in Brillouin spectra (Carpenter et al 2010). As with PMN, the relaxation time for 

the central peak modes (~10-11 s) is sufficiently short as to allow strong coupling with 

acoustic modes. The relaxational processes associated with dynamic and quasistatic PNR’s in 

PMN turn out to dominate the elastic behaviour in comparison with the effects of classical 

strain/order parameter coupling (Laiho et al 1992, Carpenter et al 2011). 

 

5. Conclusions 

Spontaneous strains determined from published lattice parameter data contain 

information on both static and dynamic aspects of the relaxor ferroelectric behaviour of 

PMN. Specifically: 

1. The volume strain evolves as if there is a discrete phase transition which is tricritical in 

character with Tc ≈ 350 K. This matches with the Curie temperature for the soft optic mode 

and the characteristic temperature for the development of the static part of PNR formation. 

The static component of the relaxor behaviour thus appears to conform to a simple mean field 

model. 

2. Although the characteristic length scale of PNR’s in PMN remains small, the volume strain 

provides a measure of the effective order parameter within them. This is matched by data for 

the shear strain in samples poled in an electric field. The discrete (~tricritical) phase 

transition thus appears to occur within the PNR’s on a length scale of ~10-50 Å. 

3. Additional strain, beyond that expected from coupling with a static order parameter, occurs 

in the temperature interval of freezing indicated by dielectric measurements, and is 

interpreted in terms of dynamic contributions down to the freezing temperature, Tf. 

4. There is no direct evidence for an anomaly in the evolution of the strain near T*, unless 

this corresponds with the first appearance of a dynamic component of the volume strain. Data 
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from the literature generally do not extend to high enough temperatures to be able to discern 

exactly how this onset might actually be associated with the Burns temperature, Td, however. 

5. Predictions of the pattern of variations for elastic constants based on a conventional 

Landau description of the (Fm  

! 

3m - R3m) ferroelectric phase transition do not match up with 

observations, signifying that the elastic softening arises predominantly as a consequence of 

dynamic aspects of the relaxor behavour. As is taken up in the companion paper (Carpenter et 

al 2011), relaxational mode(s) accompanying the PNR formation occur on a sufficiently short 

time scale to allow strong coupling with acoustic modes.  
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Table 1. Space groups, non-zero order parameter components, and lattice vectors for (origin = 
(0,0,0)), for combined R-point ordering and gamma-point ferroelectric displacements, as 
obtained from ISOTROPY (Stokes et al 2007). 

 

Space Group Order parameter 
components 

   
  

! 

R1

+            
  

! 

"4

# 

Relationships between 
order parameter 

components 

Lattice vectors 

    

! 

Pm3m  0 000  (0,0,0)(0,0,0)(0,0,0) 
P4mm 0 q100  (0,1,0)(0,0,1)(1,0,0) 
Amm2 0 q1q20 q1 = q2 (0,0,1)(1,–1,0)(1,1,0) 
R3m 0 q1q2q3 q1 = q2 = q3 (1,–1,0)(0,1,–1)(1,1,1) 
Pm 0 q1q20 q1 ≠ q2 (0,1,0)(0,0,1)(1,0,0) 
Cm 0 q1q2q3 q1 = q2 ≠ q3 (1,1,0)(–1,1,0)(0,0,1) 
P1 0 q1q2q3 q1 ≠ q2 ≠ q3 (1,0,0)(0,1,0)(0,0,1) 

    

! 

Fm3m  qR 000  (2,0,0)(0,2,0)(0,0,2) 
I4mm qR q100  (0,–1,1)(0,–1,–1)(2,0,0) 
Imm2 qR q1q20 q1 = q2 (1,–1,0)(0,0,2)(–1,–1,0) 
R3m qR q1q2q3 q1 = q2 = q3 (–1,1,0)(0,–1,1)(2,2,2) 
Cm qR q1q20 q1 ≠ q2 (–2,0,0)(0,0,2)(–1,1,0) 
Cm qR q1q2q3 q1 = q2 ≠ q3 (–1,–1,–2)(–1,1,0)(1,1,0) 
P1 qR q1q2q3 q1 ≠ q2 ≠ q3 (1,0,1)(1,1,0)(–1,1,0) 
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Figure captions 

 

Figure. 1. Strain analysis of transformation behaviour associated with Tc. (a) Lattice 

parameter data from the literature showing the well known change in thermal expansion in 

the vicinity of 400 K. Lines through the neutron diffraction data of Bonneau et al (1991) and 

X-ray diffraction data of Dkhil et al (2009) represent the variation of the reference parameter, 

ao, as given by fits of Equation 6 for temperatures above 600 K. (b) Solid lines through data 

for e1
2 are fits of Equation 7 which show that the strain evolution below ~350-400 K can be 

represented as a Landau tricritical evolution of the order parameter. Data for cosα2 are from a 

sample initially cooled in an electric field to induce transformation to the rhombohedral 

ferroelectric structure.  

 

Figure 2. Comparisons of strain evolution with intensity data from central peaks in neutron 

scattering spectra. (a) The square of the intensity of central peak data from Fig. 8a of Gehring 

et al (2009), and Fig. 15 of Gvasliya et al (2005) shows the same evolution with temperature 

as 
    

! 

e1

2 . (b) Data from Figure 4a of Stock et al (2010) for the static part of the intensity, Istatic, 

also vary in a manner that is indistinguishable from the variation of 
    

! 

e1

2 , apart from in the 

temperature interval ~250 -450 K where there is a distinct tail in e1 but almost none in Istatic. 

 

Figure 3. Schematic comparison of the form of elastic softening expected from coupling 

between strain and a classical static parameter (solid curves) with the form of observed 

variations (dotted curves), following Laiho et al (1992). The horizontal broken line represents 

the evolution of single crystal elastic constants for the high temperature structure in the 

absence of any relaxor or ferroelectric ordering, excluding the normal influences of thermal 

expansion. The solid curve above Tc represents the form of softening that would be expected 
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for the bulk modulus, K, ahead of the transition due to interactions between phonon modes 

with k-vectors just away from the critical point. The solid curve below Tc represents the form 

of softening/stiffening of bulk and shear moduli that would be expected for a normal 

ferroelectric transition with tricritical character. The observed softening (summarised in 

Carpenter et al 2011) is distinguished by steeper softening over a wide range of temperatures 

as T → Tc from above, in both shear and bulk moduli, a frequency-dependent minimum at Tf 

< T < Tc, followed by an approximately linear recovery of the shear modulus and saturation 

as T → 0 K. 

 

 


