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Strong electronic correlation in the hydrogen chain: A variational Monte Carlo study
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In this paper, we report a fully ab initio variational Monte Carlo study of the linear and periodic chain
of hydrogen atoms, a prototype system providing the simplest example of strong electronic correlation in
low dimensions. In particular, we prove that numerical accuracy comparable to that of benchmark density-
matrix renormalization-group calculations can be achieved by using a highly correlated Jastrow-antisymmetrized
geminal power variational wave function. Furthermore, by using the so-called “modern theory of polarization” and
by studying the spin-spin and dimer-dimer correlations functions, we have characterized in detail the crossover
between the weakly and strongly correlated regimes of this atomic chain. Our results show that variational Monte
Carlo provides an accurate and flexible alternative to highly correlated methods of quantum chemistry which,
at variance with these methods, can be also applied to a strongly correlated solid in low dimensions close to a
crossover or a phase transition.
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I. INTRODUCTION

The homogeneous (i.e., equispaced), linear, and periodic
chain of hydrogen atoms (hereafter, the H chain) is com-
monly believed to be the simplest physical system described
by the one-band, periodic, one-dimensional (1D) Hubbard
Hamiltonian1 [see Eq. (11)]. This Hamiltonian is exactly
solvable2 and its solution predicts the H chain to be always
a Mott-Hubbard (i.e., a strongly correlated) insulator. Indeed,
it seems reasonable to model the H chain by including
only the 1s orbitals and by neglecting the long-range tail
of the Coulomb interaction, especially for large interatomic
distances. As a consequence, the H chain has been intensively
studied to benchmark ab initio approaches to strong electronic
correlation3–6 despite the fact that this atomic chain is not
directly observable due to the well-known Peierls’ instability.

Previous ab initio studies—mostly using methods of quan-
tum chemistry—have been focused on finite (i.e., not periodic)
linear chains, only. However, periodic boundary conditions
(PBCs) analogous to the Born–von Kármán boundary condi-
tions used in solid-state physics are better suited to investigate
phase transitions or crossovers. Indeed, unwanted edge effects
are avoided by using PBCs and a speedup of the convergence
to the thermodynamic limit, i.e., the limit of infinite linear
chains, is expected.7,8 Hence an ab initio description of the
low-energy physics of a properly periodic H chain is still
missing. In this paper we provide an exhaustive, fully ab initio9

variational description of periodic chains by using the same
kind of variational wave function for both the weakly and
the strongly correlated regimes, i.e., for both small and large
interatomic distances.

From previous studies, it is known that in the strongly
correlated regime—i.e., for interatomic distances a larger than
a certain critical distance ac—the ground state of the finite H
chains is characterized by a huge degeneracy of the natural

orbitals,3,4 which leads to an almost uniform natural orbital
population, narrowly dispersed around 1.6 This behavior has
to be contrasted with the weakly correlated regime (a < ac)
for which already the restricted Hartree-Fock reference—that
yields either a doubly occupied or empty natural orbital—is
quite accurate.10

In many cases,4 part of the static correlation that character-
izes the strongly correlated regime can be effectively recovered
by means of an unrestricted Hartree-Fock calculation, or equiv-
alently, by means of a spin-polarized density-functional theory
calculation within the local-density approximation.1 Although
justified for finite systems, a spin-polarized approach implies
a mean-field antiferromagnetic order, which cannot be trusted
in the thermodynamic limit, because true antiferromagnetism
is not possible for 1D solids.11

The density-matrix renormalization group (DMRG) pro-
vides an, in principle exact, algorithm to compute the elec-
tronic structure of 1D and almost-1D systems, although in
practice limited by the size of the orbital basis set.12 DMRG
works very efficiently also when other highly correlated
methods fail, e.g., configuration interaction13 is not applicable
if the system size is too large and the standard coupled
cluster singles and doubles plus perturbative triples becomes
unstable in one dimension for large interatomic distances.3

Nevertheless, even the very favorable numerical efficiency
of DMRG is lost for a gapless (i.e., metallic) chain. In
this case, also the Moller-Plesset perturbative approach is
not straightforwardly applicable due to the numerical issues
triggered by the vanishing small gap.

II. COMPUTATIONAL METHODS

Among the possible alternatives to standard quantum
chemical approaches,4,6 one can consider nonperturbative

245117-11098-0121/2011/84(24)/245117(6) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.245117


STELLA, ATTACCALITE, SORELLA, AND RUBIO PHYSICAL REVIEW B 84, 245117 (2011)

quantum Monte Carlo (QMC) methods like variational Monte
Carlo (VMC) or the, in principle more accurate, diffusion
Monte Carlo (DMC).14 In fact, a direct application of DMC to
a homogeneous chain raises some ergodicity issues when the
electrons are very localized about the nuclei, i.e., in the strongly
correlated regime.15 As a consequence, to date only alternating
(i.e., dimerized) chains have been investigated by means of
DMC.16 On the other hand, VMC can be made ergodic
by tailoring the sampling and by improving the variational
many-body wave function, so that it remains very effective
also close to crossovers and phase transitions.7,8

There have been dramatic theoretical advances in the
quality of the variational wave function during the last decade,
so that it is now possible to achieve chemical accuracy for
atoms, ions, small molecules, and even periodic systems.17–21

These quantitative improvements have been made possible by
new stochastic optimization techniques, which can optimize
variational wave functions depending on hundreds of free
parameters.22

In our variational calculations, we have used a Jastrow-
antisymmetrized geminal power (JAGP) variational wave
function for N (even) interacting electrons,18,19

�N ( �R) = J ( �R)A
N/2∏
i=1

�(�r↑
i ,�r↓

i ), (1)

where �R = {�r↑
1 , . . . ,�r↑

N/2,r
↓
1 , . . . ,�r↓

N/2} is the 3N -dimensional
coordinate vector, A is the antisymmetrization operator,
�(�x↑,�y↓) is a symmetric function describing a singlet electron
pair, and

J ( �R) = exp
N∑
i,j

[u(ri,j ) + f (�ri,�rj )], (2)

is the Jastrow factor.
By using Eq. (1), one can accurately describe both

static and dynamics correlations. Indeed, the antisymmetrized
geminal power, A

∏N/2
i=1 �(�r↑

i ,�r↓
i ), provides a very compact

multideterminant reference, while the Jastrow factor takes into
account the dynamic correlation by means of the following:
(i) A short-range homogeneous electron-electron interaction
through the term u(ri,j ), which just depends on the distance,
ri,j = |�ri − �rj |, between paired electrons.14 (ii) The inho-
mogeneous electron-electron-nucleus and electron-electron-
nucleus-nucleus interactions through the term f (�ri,�rj ), which
depends separately on the coordinates of the paired electrons,
and it can also describe long-range electronic correlations.

Results shown in this paper have been obtained using a
short-range homogeneous Jastrow factor, u(ri,j ) = (1/2b)(1 −
e−bri,j ). In addition, to assess the sensitivity of these results on
the details of the wave function, we have also considered a
long-range homogeneous Jastrow factor, u(ri,j ) = ri,j /2(1 +
bri,j ) (see Fig. 4). In both cases, b is a variational param-
eter, and the electronic cusp conditions14 are automatically
satisfied.

The functions �(�x↑,�y↓) in Eq. (1) and f (�x,�y) in Eq. (2) are
expanded using (in principle different) nonorthogonal atomic

orbitals,23 {φi} and {ϕi} so that

�(�x↑,�y↓) =
∑
α,β

λα,βϕα(�x↑)ϕβ(�y↓),

(3)
f (�x,�y) =

∑
α,β

gα,βφα(�x)φβ(�y).

In particular, up to 3s orbitals for the geminal part and 2s2p

for the Jastrow part have been considered in this work.24

In principle, all the entries of the matrices λα,β and
gα,β in Eq. (3) are variational parameters to be optimized.
However, by taking advantage of the symmetries of the
periodic linear chain,21 and by using an alternative, minimal
expansion in terms of molecular orbitals,19 the actual number
of independent variational parameters to optimize is reduced,
so that the optimization can be effectively performed by the
method described in Ref. 22.

All the VMC calculations have been performed by using
the TurboRVB package,25 starting from a density-functional
theory (in local-density approximation) calculation employing
the same orbital basis set {ϕi} of the geminal part [see Eq. (3)].
This preliminary step is done to speed up the convergence
of the following VMC optimization, while avoiding an
uncontrolled bias.

Finally, we have used a supercell with PBCs14 in all
three Cartesian directions to model the periodic linear chain.
To avoid unphysical self-interaction of the chain with its
periodic replicas, the transverse dimensions of the supercell
have been taken as min(16a,80) (a.u.), where a is the
interatomic distance. According to the supercell formalism, the
thermodynamic limit, N → ∞, can be achieved by increasing
the number N of H atoms in the supercell. In particular, where
not otherwise indicated, by HN we mean a periodic chain with
N atoms in the supercell.

To identify the weakly and the strongly correlated regimes,
we have used the so-called “modern theory of polarization.’26

This theory also provides a way to discriminate between a
metal and an insulator alternative to the knowledge of the
(many-body) charge gap, which in fact is not accessible by a
variational ground-state calculation.

In practice, by VMC one computes the expectation values
of the complex polarization, zN ,16

zN = 〈�N |ei(2π/L)
∑

i r
‖
i |�N 〉, (4)

where r
‖
i is the component of �ri parallel to the chain axis. Then

the electronic localization length λN is obtained as

λN =
(

L

2π

)√
− ln |zN |2

N
, (5)

where L is the longitudinal dimension of the supercell and N

is the number of H atoms in the supercell.
From previous studies,3,4,6 one expects a huge degen-

eracy of the natural orbitals when the electrons are very
localized about the nuclei, i.e., when λN/a 
 1. Besides,
the theory says that, in the thermodynamic limit, N → ∞,
a metal is characterized by a vanishing modulus of the
complex polarization, |zN | → 0, while in the insulating case
|zN | → 1.7,8

245117-2



STRONG ELECTRONIC CORRELATION IN THE HYDROGEN . . . PHYSICAL REVIEW B 84, 245117 (2011)

-0.6

-0.55

-0.5

-0.45

-0.4

1 2 3 4 5 6 7

T
ot

al
 e

ne
rg

y/
at

om
 (

a.
u.

)

Interatomic distance, a (a.u.)

(a)

VMC H18 
VMC H34 
VMC H50 
VMC H66 

-0.6
-0.55
-0.5

-0.45
-0.4

1 2 3 4 5

(b)

VMC 
DMRG 

FIG. 1. (Color online) (a) Total energy per atom as a function
of the interatomic distance from VMC calculations of periodic
chains with 18, 34, 50, and 66 H atoms in the supercell. (Data are
almost superimposed at the scale of this figure; see also Table I.)
(b) Comparison between the total energy per atom of a finite H50

chain obtained by VMC and DMRG (Ref. 3).

III. RESULTS

In Fig. 1(a), we show the convergence of the total energy
per atom by increasing the number of H atoms per supercell
for several interatomic distances. We note that the H50 periodic
H chain is already well converged at the scale of this figure.
To follow the fine detail of the convergence, the values of the
total energy per atom details have been also listed in Table I.

In Fig. 1(b), a direct comparison between the VMC total
energy for the H50 finite chain and the benchmark DMRG
results obtained by using a STO-6G basis set3 demonstrates the
accuracy of our optimized JAGP variational wave function.27

In this case, to have a fair comparison against the DMRG
data, PBCs have not been employed to obtain the VMC results
showed in Fig. 1(b). The difference between the total energy
of H50 chains with and without PBCs and the same interatomic
distance is of the order of few mHa per atom.

Having verified the quality of the variational wave function,
in Fig. 2(a) we plot the electronic localization length λN in
units of the interatomic distance a as a function of a. For all

TABLE I. Total energy per atom as a function of the interatomic
distance a for the same periodic chains of Fig. 1(a). The VMC error
on the last digit is indicated in parentheses.

a H18 H34 H50 H66

1.0 −0.40751(4) −0.41639(3) −0.41380(3) −0.41358(2)
1.5 −0.55402(2) −0.55156(1) −0.55099(1) −0.55070(1)
2.0 −0.56480(2) −0.56329(1) −0.56296(1) −0.56284(1)
2.5 −0.54747(2) −0.54699(1) −0.54639(1) −0.54682(1)
3.0 −0.52796(2) −0.52770(2) −0.52717(1) −0.52727(1)
3.5 −0.51263(3) −0.51308(2) −0.51459(2) −0.51508(1)
4.0 −0.50458(3) −0.50556(4) −0.50599(2) −0.50626(1)
4.5 −0.50080(3) −0.50206(1) −0.50222(1) −0.50237(1)
5.0 −0.50014(2) −0.50029(1) −0.50047(1) −0.50063(1)
6.0 −0.49962(1) −0.49971(1) −0.49972(1) −0.49965(1)
7.0 −0.49980(1) −0.49981(1) −0.49979(1) −0.49972(1)
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FIG. 2. (Color online) (a) Electronic localization length λN

divided by the interatomic distance a as a function of a, for the
same chains of Fig. 1(a). (d) Modulus of the complex polarization
|zN | as a function of the interatomic distance for the same chains
of (c).

the supercells considered, we find that

λN/a ∝
{ |a − ac|η if a < ac,

a−1 if a > ac,
(6)

where η � 0.5 and ac � 3.5 (a.u.). This critical behavior is also
in agreement with the sudden switch from |z| � 0 to |z| � 1
visible in Fig. 2(b), i.e., to the crossover between a (finite-size)
metal and an insulator, namely a Mott-Hubbard insulator.1

To further characterize the nature of the weakly and strongly
correlated regimes of the H chain, we have investigated the
spin-spin,

fss(i − j ) = 〈�N |Ŝ(i)
z Ŝ(j )

z |�N 〉, (7)

and the dimer-dimer,

fdd (i − j ) = 〈�N |Ŝ(i)
z Ŝ(i+1)

z Ŝ(j )
z Ŝ(j+1)

z |�N 〉, (8)

correlation functions, where Ŝ(i)
z measures the transverse

component of the electronic spin about the ith H atom of the
chain. By neglecting logarithmic corrections, we have fitted
these functions by28

fss(i − j ) = ass

(i − j )2
+ bss

cos[π (i − j )]

(i − j )Kss
, (9)

fdd (i − j ) = add + bdd

cos[π (i − j )]

(i − j )Kdd
(10)
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FIG. 3. (Color online) (a) Scaling exponent Kss of the spin-spin
correlation function [see Eq. (9)] as a function of the interatomic
distance, for same H chains of Figs. 1 and 2. (b) Scaling exponent
Kss of the Hubbard model with a corresponding number of sites
(see text). (Data are superimposed at the scale of this figure.) (c),(d)
Same as (a) and (b), but for the dimer-dimer correlation function [see
Eq. (10)].

for the spin-spin and the dimer-dimer cases, respectively. The
parameters, ass , bss , Kss , add , bdd , and Kdd have been fitted
independently for each value of the interatomic distance a and
the number of H atoms in the supercell.

Results for the scaling exponents, Kss and Kdd , of the H
chain are reported in Figs. 3(a) and 3(c), respectively. For com-
parison, in Figs. 3(b) and 3(d) we show the scaling exponents
obtained by solving numerically29 the N -site Hubbard model
Hamiltonian1 with PBCs (i.e., the simulation cell is folded so
that the (j + N )th and j th sites represent the same atom),

H = −t

N∑
j=1

∑
σ=↑,↓

(c†j,σ cj+1,σ + c
†
j+1,σ cj,σ ) + U

N∑
j=1

nj,↑nj,↓,

(11)
with a number of sites N correspondent to the number of
H atoms in the chain supercell. In Eq. (11), the creation
(annihilation) operator c

†
j,σ (cj,σ ) creates (annihilates) an

electron of spin σ at site j , while nj,σ = c
†
j,σ cj,σ . Since one

expects (for U fixed) that ln(U/t) ∝ a, we have shown the
Hubbard exponents as a function of U/t using a semilog plot.

The behavior of the scaling exponent Kss is very similar
in the two cases, i.e., the H chain in Fig. 3(a) and the
Hubbard model in Fig. 3(b). However, small but noticeable
discrepancies between the H chain and the Hubbard model for
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FIG. 4. (Color online) (a) Localization length as a function of
the inverse of the number of H atoms in the supercell for different
parametrizations of the JAGP variational wave function (see text).
(Data “sr-hJ + iJ” and “lr-hJ + iJ” are superimposed at the scale of
this figure; see also Table II.) (b) Corresponding total energy per
atom.

the scaling exponent Kdd are found by comparing Figs. 3(c)
and 3(d).

For large interatomic distance a, both the H-chain expo-
nents behave as expected for the Hubbard model (neglecting
logarithmic corrections), i.e., Kdd ∼ Kss ∼ 1.28 Less con-
clusive results can be inferred from the weakly correlated
regime for a < ac. Finite-size effects are responsible for the
deviation of the scaling exponents from their thermodynamic
values in the case of the Hubbard model. The same effects
also mask possible discrepancies in the thermodynamic limit
of the H chain and the Hubbard model. Further numerical
investigations are needed to provide conclusive results on a
possible metal-insulator transition at a finite value ac of the
interatomic distance of the H chain (see Sec. IV).

Finally, we investigate in more detail the capability of the
variational JAGP wave function to describe the Mott-Hubbard
insulating phase of the H chain for a > ac. In particular, we
focus on the a = 5.0 (a.u.) case and we consider some variants
of the JAGP variational wave function, Eq. (1).

In Fig. 4(a) we plot the electronic localization length
λN obtained by optimizing different JAGP variational wave
functions. We consider the following cases (for the notation,
see previous section): (i) sr-hJ + iJ, corresponding to Eq. (1)
with short-range homogeneous Jastrow factor plus the inhomo-
geneous part. This is the standard case considered elsewhere
in this paper; (ii) lr-hJ + iJ, as the sr-hJ + iJ wave function, but
with a long-range homogeneous Jastrow factor, instead; (iii)
sr-hJ, and (iv) lr-hJ, which are as the sr-hJ + iJ and lr-hJ + iJ
wave functions, respectively, but without the inhomogeneous
Jastrow factor, i.e., with f (�ri,�rj ) = 0.

We find that the localization length λN is well converged
at the scale of Fig. 4(a) if the inhomogeneous Jastrow factor
is included, regardless of the choice of the homogeneous part.
If the inhomogeneous Jastrow factor is not included, values of
λN almost twice as large are found and they slightly increase
with the system size, showing that the homogeneous Jastrow
alone is not enough to give an accurate description of the
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TABLE II. Total energy per atom as a function of the number, N ,
of H atoms in the supercell, for the same chains of Fig. 4(b). The
VMC error on the last digit is indicated in parenthesis.

N sr-hJ + iJ lr-hJ + iJ sr-hJ lr-hJ

18 −0.50014(2) −0.49987(2) −0.48918(6) −0.48984(6)
34 −0.50029(1) −0.50042(1) −0.48956(4) −0.49123(3)
50 −0.50047(1) −0.50045(1) −0.48969(3) −0.49072(3)
66 −0.50063(1) −0.50066(1) −0.48956(3) −0.49082(3)

Mott-Hubbard insulating phase. Values of the total energy
per atom reported in Fig. 4(b) also confirm the relevance of
the long-range, inhomogeneous Jastrow factor to improve the
accuracy of the VMC description of a Mott-Hubbard insulator.
To follow the fine detail of the convergence, the values of the
total energy per atom have been also listed in Table II.

Our findings are in agreement with previous variational
studies of lattice models with short-range interactions which
showed that a correct description of the Mott-Hubbard insu-
lating phase can be achieved only by combining a Gutzwiller
projector and a long-range Jastrow factor.8,30

In fact, although the single H atoms are on average neutral,
charge fluctuations that give, e.g., virtual H+-H− pairs are
always possible. Such charge fluctuations are in fact strongly
suppressed at large interatomic distance a (and, in the Hubbard
model, for large U ). Therefore, at large a, in order to prevent
an instability of the Mott-Hubbard insulator toward a metallic
state driven by the quantum fluctuations,31 the H+-H− pairs
must be bound. In the context of the Hubbard model,8,30 it
has been demonstrated that such binding mechanism can be
included in the variational wave function by means of an
inhomogeneous Jastrow factor, analogous to the the second
term in Eq. (2). Crucially, the matrix element gα,β in the
expansion of the inhomogeneous Jastrow factor [see Eq. (3)]
can be nonvanishing also for pairs of orbitals (labeled by the
Greek indices) that are far apart. Indeed, such long-range
correlation is necessary to bind the virtual H+-H− pairs
and, along with the homogeneous Jastrow factor, provides
an accurate way to model electron localization in the Mott-
Hubbard insulating phase, as shown in Fig. 4(a).

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the ground state of
a homogeneous, linear, and periodic chain of hydrogen
atoms (or H chain) from first principles, by means of a
state-of-the-art variational Monte Carlo approach. In fact,
using a highly correlated Jastrow-antisymmetrized geminal
power variational wave function allowed us to obtain a total
energy per atom comparable to benchmark density-matrix
renormalization-group calculations.3 Furthermore, by using
the so-called “modern theory of polarization,”26 we have
characterized the crossover between the weakly correlated
(for small interatomic distances) and the strongly correlated
regimes (for large interatomic distances) through a single,
simple parameter, i.e., the electronic localization length. Our
results extend to the properly periodic H-chain previous
results obtained by studying long, yet finite, chains.3,4,6 In

particular, we confirmed that the crossover between the weakly
and strongly correlated regimes of the H chain corresponds
physically to a crossover between a (finite-size) metallic and an
insulating phase. Finally, by studying the asymptotic behavior
of the spin-spin and dimer-dimer correlation functions, we
have also verified that the insulating phase of the real H chain
is of the Mott-Hubbard type, as expected from the Hubbard
model.1 Since the correct description of such a correlated
insulator is beyond the possibility of density-functional theory
in any of its conventional local or semilocal approximations,
one can think of using our findings to devise an improved class
of functionals. We are currently exploring this possibility.

Intriguingly, we have found small but noticeable deviations
from the behavior predicted by the Hubbard model in the
case of the scaling exponent of the dimer-dimer correlation
function predicted by the Hubbard model.28 These deviations
can be possibly due to the finite-size scaling or to a true
discrepancy between the H chain and the 1D Hubbard model
in the thermodynamic limit.

It will be interesting to check for possible new low-energy
physics of the H chain at variance of the one-band, 1D
Hubbard model predictions. These might be originated by
the following: (i) the long-range Coulomb repulsion—indeed
inefficiently screened in 1D systems—not included in the
Hubbard model; (ii) the atomic orbital polarization—essential
to describe noncovalent contribution to the bonding—not
representable in terms of 1s orbitals, only. In particular,
relative simple elaborations of the Hubbard model, which just
contain next-nearest-neighbor interaction, already predict a
rich phase diagram even for a 1D system.8,32 Besides, it is
known that long-range Coulomb repulsion can yield gapless
charge excitations (plasmons) in one dimension, as observed
in experiments.33

Of course, more accurate finite-size extrapolation is de-
sirable, although not possible with our current computational
resources. In particular, the use of diffusion Monte Carlo to
improve the variational results might be also beneficial, but
in practice still highly problematic due to the well-known
ergodicity issues in dealing with strong electronic localization
in 1D systems.15

In conclusion, given that the homogeneous, linear, and peri-
odic chain of hydrogen atoms is becoming a standard test case
for ab initio approaches to strong electronic correlation,3,4,6 the
results reported in this paper show that variational Monte Carlo
(with a highly correlated Jastrow-antisymmetrized geminal
power variational wave function) can provide an accurate
and flexible alternative to highly correlated methods of
quantum chemistry. Besides, and at variance with most of the
methods of quantum chemistry, variational Monte Carlo can
be successfully employed to study a strongly correlated solid
in low dimensions close to a crossover or a phase transition.7,8
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and A. Ažman, Phys. Rev. B 19, 2034 (1979).

11I. Affleck, J. Phys.: Condens. Matter 1, 3047 (1989).
12G. K.-L. Chan and S. Sharma, Annu. Rev. Phys. Chem. 62, 465

(2011).
13R. Cimiraglia and R. Resta, Int. J. Quantum Chem. 19, 301

(1981); V. Vetere, A. Monari, G. L. Bendazzoli, S. Evangelisti, and
B. Paulus, J. Chem. Phys. 128, 024701 (2008).

14W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev.
Mod. Phys. 73, 33 (2001).

15M. Casula, C. Filippi, and S. Sorella, Phys. Rev. Lett. 95, 100201
(2005); M. Casula, S. Sorella, and G. Senatore, Phys. Rev. B 74,
245427 (2006).

16P. Umari, A. J. Willamson, G. Galli, and N. Marzari, Phys. Rev.
Lett. 95, 207602 (2005); P. Umari and N. Marzari, J. Chem. Phys.
131, 094101 (2009).

17N. D. Drummond, M. D. Towler, and R. J. Needs, Phys. Rev. B 70,
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